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Abstract: The present “historical” paper describes the mathematical life of Pierre Leroux from my point

of view as a colleague, main collaborator, and friend. It is an adaptation in English, slightly augmented and
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(Société mathématique de France) under the title La carrière mathématique de Pierre Leroux.

Keywords: Combinatorics; Discrete mathematics; Theory of combinatorial species

2020 Mathematics Subject Classification: 05A05; 05A15

1. Introduction

Professor Pierre Leroux
UQÀM 2006.

Pierre Leroux (1942-2008) was a professor in the
mathematics department of Université du Québec
à Montréal (UQÀM) from June 1971 to August
2007, when he took his retirement. Far from
ceasing his research and student supervision
activities, he had taken them all over again until
the moment of his completely unexpected death,
on March 9, 2008.

2. Early mathematical activities

The early mathematical activities of Pierre Leroux began in the mid-sixties through his work in algebra and,

more specifically, in category theory. At the Université de Montréal, in 1965, he published a master thesis [50]

on the existence of injective envelopes then, in 1970 under the supervision of Jean-Marie Maranda, a remarkable

doctoral thesis [51] on the extension of a pair of adjoint functors to categories of morphisms. In 1970-71 he

worked as a post-doctoral research fellow of NSERC (Canada), at the Laboratoire de mathématiques, Faculté

des sciences d’Orsay (France).

Then came his first three research articles published in international scientific journals: the first, in 1970

in collaboration with Paul Ribenboim, on higher order derivations in semi-additive categories [62], followed in

1971-72, by two publications [52, 53] dealing respectively with erasure structures, and a characterization of the

category of groups.

In 1975, he introduced an interesting extension, at the category level, of the Möbius inversion which was

until then confined to number theory, and more generally, to the context of incidence algebras. He thus created

a new class of categories he named Möbius categories [54]. From 1980 to 1982, in collaboration with Mireille

Content, François Lemay and Jean Saraillé, he published three other articles on various properties of Möbius
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categories [15,55,67]. He also wrote, in 1985 with R.E Block, an article Generalized dual coalgebras of algebras,

with applications to cofree coalgebras [7].

3. He discovers the world of modern combinatorics

During a sabbatical year at the mathematics department of the University of San Diego (UCSD), 1978-79,

he discovers the world of modern combinatorics by collaborating with researchers including Adriano Garsia,

Richard Stanley, Gérard Xavier Viennot, etc. His enthusiasm for this subject is such that he started in 1979,

on his return to UQÀM, a new weekly research seminar: the Séminaire de Combinatoire. This seminar was so

successful with the national and international mathematical community, that its activities, every Friday, still

exist today, even after over forty years.

It is under the impetus of this seminar that the Groupe de Recherche en Combinatoire de l’UQÀM, was born

around the 1980s, initially bringing together André Joyal, Gilbert Labelle, Jacques Labelle, Pierre Bouchard,

François Bergeron, Hélène Décoste, etc. A multitude of other researchers having been added since.

Figure 1: Some early members of the Groupe de recherche en combinatoire, LaCIM, UQÀM, around 1990.
Bottom row: André Joyal, Louise Laforest, Odile Sheehy, François Bergeron, Pierre Leroux, Manon Blais, Jacques Labelle.

Upper row: Gilbert Labelle, Guillaume Cartier, Pierre Fortier, Srecko Brlek, Christophe Reutenauer, Alain Goupil, Pierre Bouchard,

Timothy Walsh, Martin G. Ducharme.

At same time, inspired by the work of Dominique Foata on exponential generating series [23], André Joyal

introduced the Theory of combinatorial species with his fundamental paper [33] (see also [34, 35]). A species

of structures is an endofunctor F : B → B of the category B of finite sets with bijections as morphisms. The

following terminology is used : For each finite set U , an element s of the corresponding set F [U ] is called an

F -structure on (the underlying set) U and for each bijection f : U → V between finite sets, the corresponding

bijection F [f ] : F [U ] → F [V ] is said to transport along f , each F -structure s on U to a corresponding F -

structure t = F [f ](s) on V (and f is called an isomorphism from s to t). For example, the species Gra of

simple graphs is the functor Gra : B → B for which Gra[U ] is the set of all simple graphs labelled by U

and Gra[f ] transports each simple graph s on U to the corresponding isomorphic graph t on V along the

graph isomorphism (relabelling) f . The main point is functoriality, since it requires that the transports must

behave “coherently” : F [g ◦ f ] = F [g] ◦ F [f ] whenever the composite bijection g ◦ f is defined. Because

of functoriality, all the notions of labelled or unlabeled structures, automorphism groups of structures, etc,

are automatically embodied within every species. Yeong-Nan-Yeh showed, in his Ph.D. Thesis under Stephen

Schanuel [79] (see also [80]), that every species F can be encoded by a very general formal series of the form

F = F (X) =
∑
n,H fn,HX

n/H where, for each n ≥ 0, H runs through the subgroups of the symmetric group

Sn and fn,H ∈ N. Such series are called the molecular expansion of the species F .

We can associate to each species of structures symmetric functions as well as generating series and cycle index

series for the enumeration of labeled or unlabeled structures in the spirit of Pólya theory. Several combinatorial
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operations – addition, multiplication (Cauchy as well as Hadamard), substitution, derivation, etc – allow us to

build various species starting from other (generally simpler) species. These operations are compatible with cor-

responding operations on the above underlying formal series. This gives rise to combinatorial functional and dif-

ferential equations facilitating the analysis of properties of the studied species of structures. The research group

in combinatorics became in 1989, with Pierre Leroux as first director, an institutional research center at UQÀM

called LaCIM: Laboratoire de Combinatoire et d’Informatique Mathématique (https://lacim.UQAM.ca/).

The theory of species constitutes still today one of the main research axes of LaCIM. Many variants of the

theory of species − linear species, relative species, many variables species, weighted species, virtual species

(allowing minus signs), K-species, tensorial species, q-species, Möbius species, cubical species, etc − have been

created by members of LaCIM and various researchers around the world.

4. His work on the Theory of Species and Combinatorics

Let us now continue with the mathematical work of Pierre Leroux. He published in 1982, in collaboration with

Hélène Décoste and Gilbert Labelle, an article on a combinatorial setting for the Newton-Raphson iteration [19].

In this paper, the root of the studied equation is the species of so-called “enriched” rooted trees [37], rather

than a number, vector, or function as in numerical analysis. The Newton-Raphson iteration corresponds, in

this context, to approximations of this species by producing rooted trees on increasingly large sets (whose

cardinalities double at each step, reflecting the quadratic convergence in the context of classical analysis).

Then come two fundamental articles, with Dominique Foata in 1983 [25] and Volker Strehl in 1985 [68] on

combinatorial models of Jacobi polynomials and of various associated identities.

Then comes a series of papers (1985-91) [70–72] with Gérard Xavier Viennot, on the combinatorial resolution

of systems of differential equations within the framework of linear-species, that is to say, species whose structures

live on linearly ordered sets. This approach to differential equations provides, for example, a unified method

for solving combinatorially differential problems of the type y′ = f(x, y), y(0) = y0. In particular, the classical

result of Désiré André who interprets, with the help alternating permutations, the coefficients of the power

series solution y = y(x) of the problem y′ = 1 + y2, y(0) = 0 follows immediately and perfectly automatically

from this theory. Also, this approach to differential equations provides a new framework for iterated integrals

in classical control theory [31,60,73].

Figure 2: Gérard Xavier Viennot, Pierre Leroux, Gilbert Labelle, FPSAC 2000, Moscow.

Let us underline, in passing, the text Methoden der Anzahlbestimmung für einige Klassen von Graphen,

Bayreuther Mathematische Schriften (1988) [56] in which Pierre describes the methods of the theory of species
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to the German mathematical community during a stay in Bayreuth.

After two articles on reduced matrices and the q-log convexity of q-Stirling numbers, in 1990 [57] and the

p, q-Stirling numbers the same year with Anne de Medicis [16], Pierre Leroux continues with three articles

on the theory of species: in 1991, with François Bergeron and Gilbert Labelle [9], on the expectation of the

number of leaves of a tree having a given automorphism; in 1992, with Hélène Décoste and Gilbert Labelle [20]

on the use of functorial composition (by opposition to partitional composition) in the theory of species and

its applications to graph theory; in 1993, with Ibrahim Miloudi [61] on generalizations of Otter’s formula in

the form of combinatorial equations which connect families of trees (or graphs) to the same families when

the structures are pointed. These equations, which he called dissymmetry formulas, allow us to elegantly

analyze non-pointed structures by looking at the corresponding pointed ones having simpler automorphism

groups and more easily characterized via combinatorial equations. In collaboration with Anne de Médicis

in 1995, Leroux also published a text on generalized Stirling numbers, convolutions and corresponding p,q-

analogues [17]. Note also his joint work with Étienne Rassart and Ariane Robitaille, Enumeration of Symmetry

Classes of Convex Polyominoes in the Square Lattice [66], in which the authors enumerate and classify convex

polyominoes according to their dihedral symmetry groups making use of various functional equations. This study

is extended, with Étienne Rassart, to the class of parallelogram polyominoes in Enumeration of symmetry classes

of Parallelogram Polyominoes [65]. Underline also the work Stirling Numbers Interpolation using Permutations

with Forbidden Subsequences (2002) [49], made in collaboration with our Italian friends Elisa Pergola and

Renzo Pinzani as well as Enumeration of Symmetry classes of Convex Polyominoes on the Honeycomb Lattice,

(2005) [26] with Dominique Gouyou-Beauchamp. Pierre is one of the dozens of “checkers” of Doron Zeilberger’s

1996 celebrated paper Proof of the Alternating Sign Matrix Conjecture [81].

Figure 3: Rooted trees are singletons followed by a set of rooted trees: T = XE(T ).

From 1996, however, Pierre’s work mostly focused on the theory of species and its applications. In An

Extension of the Exponential Formula in Enumerative Combinatorics (1996) [42], in collaboration with Gilbert

Labelle, a new virtual weighted species, noted Λ(α), is introduced. It satisfies the remarkable property that it

allows to add a weight counter, α, for the connected components in the structures of any species F , satisfying

F (0) = 1, by forming another species, F(α), via a simple substitution: F(α) = Λ(α) ◦F+ where F+ = F −1 is the

species of F -structures on nonempty sets. For each such species F , this equation gives rise, canonically, to seven

corresponding identities at the level of generating, q-generating, and some indicatrix series. The decomposition

of the species Λ(α), into homogeneous components constitutes a combinatorial extension of the binomial theorem

of Newton for (1 +X)(α). Another co-author, Pierre Auger, then joined us and other combinatorial extensions

of Newton’s binomial and multinomial theorems appeared as expansions of the homogeneous components (ac-

cording to cardinality of underlying sets or multisets) of any species of the form M(1+X) or M(X1 + · · ·+Xm),

where M = M(X) = Xn/H is a molecular species, H being the stabilizer group of M -structures on n-element

sets, see Generalized Binomial Coefficients for Molecular Species (2000) [3], and Combinatorial addition formu-

las and applications (2002) [4]. Also note the work Cubical Species and Nonassociative Algebras (1998) [32], with

Gábor Heteyi, that introduces a variant of the theory species in which symmetric groups are replaced by hyper-

octahedral groups, and the introduction, with Pierre Auger and Gilbert Labelle, of the Devmol package, written

in the Maple computer algebra language, which calculates the expansion of the homogeneous components of an

important class of species called cyclo-set species (i.e., the smallest class of species containing the species Cn
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of n-cycles and the species En of n-sets, n = 0, 1, 2, . . . , which is closed under the combinatorial operations of

addition, multiplication, derivation, and substitution): Computing the molecular expansion of species with the

Maple “Devmol” package (2003) [5].

In a series of papers, in collaboration with Miklos Bóna, Michel Bousquet, Cédric Chauve, Martin Ducharme,

Tom Fowler, Ira Gessel, Gilbert Labelle, and Cédric Lamathe, several results concerning the classification and

the exact or asymptotic enumeration of classes of trees, planar maps and non pointed cacti do their emergence

through the introduction of appropriate dissymmetry formulas and functional equations: Enumeration of (uni-

or bi-colored) plane trees according to their degree distribution (1996) [43], Enumeration of m-ary cacti (2000) [6],

Enumeration of Planar two-face Map (2000) [13], The specification of 2-trees (2002) [24], Two bijective proofs

of the arborescent form of the Good-Lagrange formula and some applications to colored rooted trees and cacti

(2003) [12], A classification of plane and planar 2-trees (2003) [46], Labelled and unlabelled enumeration of

k-gonal 2-trees (2004) [47], Enumeration of k-gonal 2-trees according to size and perimeter [48], A classification

of plane trees (2006) [21].

Pierre Leroux is co-author with François Bergeron and Gilbert Labelle of the monograph Combinatorial

species and tree-like structures [11] (see [10] for a French version, and Jacques Labelle [39] - [40] for an introduc-

tion to species) published by Cambridge University Press in 1998. In this 457 pages book, the authors make a

synthesis of the work that had been done until then in the development of the theory of species by the Québec

school LaCIM and other collaborators and researchers in the United States, France, and Germany, especially.

Pierre Leroux was the main organizer of the international Colloque de combinatoire énumérative, held at

UQÀM (1985) whose proceedings are published in the Springer-Verlag Lecture Notes in Mathematics, no.1234

[41]. This historic congress brought together more than a hundred participants around the world, including

a good number of renowned researchers in analytic and algebraic combinatorics∗. It has contributed to the

recognition of combinatorics as a real field of mathematics that has its own objectives, effective methods, and

tools as well as very broad fields of application.

Figure 4: Book on species (Cambridge U. Press) [11], poster and Springer Lecture Notes vol. 1234 [41].

Here is an anecdote about these Proceedings: as co-editor with Pierre, it was I who opened, in his presence,

∗Including (apart from local LaCIM members): Ashok K. Agarwal, George E. Andrews, Richard Askey, Anders Björner,
David Bressoud, Neil J. Calkin, Luigi Cerlienco, Henry Crapo, Pierre Damphousse, Maylis Delest, Serge Dulucq, Omer Egecioglu,
Dominique Foata, Adriano Garsia, Ira M. Gessel, Chris Godsil, Ian Goulden, Dominique Gouyou-Beauchamps, Curtis Greene,
Werner Hässelbarth, David, J. Jackson, Gil Kalai, Adalbert Kerber, Germain Kreweras, Clement Lam, John McKay, Guy Melançon,
Sri G. Mohanty, Tadepalli Naranaya, Oscar Nava, Heinrich Niederhausen, Kathy O’Hara, Joseph Oliveira, Peter Paule, Francesco
Piras, Simon Plouffe, Robert W. Quackenbush, Don Rawlings, Eric Regener, Jeff Remmel, Bruce Richmond, Ivan Rival, Ivo
Rosenberg, Gian-Carlo Rota, Ernst Ruch, Bruce Sagan, Richard Stanley, Dennis Stanton, Volker Strehl, Denis Thérien, Gabriel
Thierrin, Loys Thimonier, Antonietta Venezia, Terry Visentin, Xavier G. Viennot, Dennis White, Yeong-Nan Yeh, Doron Zeilberger,
Günter Ziegler.
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the letter from Springer-Verlag announcing the final acceptance of the monograph. To my surprise, I learned

that Springer-Verlag had assigned the number 1234 to our Lecture Note. When I mentioned this information

to Pierre, he immediately thought it was a fictitious bogus number and that the final number would come later.

Upon closer examination, we realized that it was indeed number 1234 that Springer-Verlag had assigned us.

What a beautiful coincidence for a book on enumerative combinatorics!

5. Graph embeddings and statistical mechanics

Another series of articles, with Andrei Gagarin and Gilbert Labelle, makes the bridge between the theory of

species and the topology of embeddable graphs on surfaces such as the projective plane or the torus: Struc-

ture and labeled enumeration of K33-subdivision-free Projective-Planar Graphs (2005) [27], Counting unlabelled

toroidal graphs with no K33-subdivisions (2007) [28] and The structure of K33-subdivision-free toroidal graphs,

(2007) [29]. In addition to classifying these species of graphs through functional equations and the use of a

special substitution of classes of networks into the edges of graphs, the authors manage to enumerate these

graphs up to isomorphism by switching to the Walsh indicatrix series which constitute a kind of extension of

the indicatrix series of Pólya. In collaboration with Timothy Walsh, a new work, based on the previous ones

deals with the study and the classification of 2-connected graphs whose 3-connected components are members of

a given species of graphs: Two-connected graphs with prescribed three-connected components (2009) [30]. Pierre

Figure 5: Graph embedded on a torus [29]

Leroux has also been interested in making connections between the theory of species and statistical mechanics.

His first work on the subject is entitled Enumerative problems inspired by Mayers’ theory of cluster integrals

(2004) [59], followed, with the collaboration of Martin G. Ducharme and Gilbert Labelle, by Graph invariants

arising from the theory of cluster integrals (2007) [22]. In these works, Mayer’s integrals (cluster integrals) are

related to the theory of species. Functional equations for species of graphs weighted by Mayer weights are

established and efficient methods for calculating these weights are given for certain classes of graphs.

6. Dissemination and promotion of research

Pierre’s mathematical career was also marked by his constant concern about the dissemination and promotion

of research. He not only gave a multitude of mathematical conferences at national and international meetings

but has also been an organizer of several important conferences. Apart from the UQÀM Colloquium SLN 1234

cited above, let us quote

• the Séminaire de combinatoire et d’informatique mathématique, at LaCIM, UQÀM (non-stop since 1979);

• the 3rd, 4th and 8th Formal Power series and Algebraic Combinatorics (SFCA/FPSAC), at LaBRI,

Université Bordeaux I, (1991) [18], at LaCIM, UQÀM (1992) [63,64], at Minneapolis (1996) [69];

• the LaCIM 2000 Colloquium, at UQÀM [44,45];

• the School of Statistical Mechanics and combinatorics, Val-Morin, Québec (2007), organized with Mireille

Bousquet-Mélou, Tony Guttmann, Alan Sokal [14].
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• the workshop Combinatorial Identities and their Applications in Statistical Mechanics, Isaac Newton In-

stitute for Mathematical Sciences, Cambridge, UK (2008) [1] (Pierre passed away just before the beginning

of that Workshop for which he was co-organizer with Abdelmalek Abdesselam).

Note that from 1993 to 2002, he was a member of the permanent program committee (president from

1993 to 1998) of the annual SFCA/FPSAC international conferences. He was an invited professor at several

institutions: Université de Nantes (1972); University of Calgary (1974); National Institute of Statistics and

Applied Economics, Rabat, Morocco (1975); University of California, San Diego (1978-79); Université Bordeaux

I (1984 and 2002); Universtät Erlangen-Nürnberg (1987); University of Minnesota (1987); University of Sidney

(1994); University of Florence (2002); Université de Paris-Sud (2002).

From 1983 to 1986, he was administrative manager at UQÀM, of the review Topologie Structurale [76]. From

1988 to 1998, he was Chairman of the management committee of the international research journal Annales des

sciences mathématiques du Québec [2]. He was also member of the editorial board of the Electronic Journal of

Combinatorics (1993-2008) and Discrete Mathematics (1999-2008).

Finally, let us mention three texts by Pierre which were still under construction at the time of his death: Enu-

merating combinatorial structures equipped with a list of commuting automorphisms [75], with Miguel Mendez

and Gilbert Labelle; Bridgeless graphs and the Legendre transform [8] with David Brydges; Mayer and Ree-

Hoover weights of infinite families of 2-connected graphs [36] with his doctoral student Amel Kaouche.

Figure 6: Pierre was among the founding members in 1969 of Canot Kayak Québec Federation

Pierre Leroux’s dedication to others is legendary. To quote just a few examples among many others, let us

mention that he was a supervisor for about forty master and doctoral students. He was a member of several

internal committees at UQÀM. In particular, from 2004 to 2007, he was vice-dean for research at the Faculté

des Sciences de l’UQÀM. From 2003 to 2007, he was co-president of a major development campaign of the

Fondation de l’UQÀM. Two days before his death, he learned with great joy that the translation - in Braille -

of his well-known book [58] on linear algebra was just being completed . . .

Xavier G. Viennot read a poem about Pierre, in French, at the beginning of a video-talk [78] he gave at

Newton Institute in Cambridge, April 7 (2008), at the workshop “Combinatorial Identities and their Applications

in Statistical Mechanics” cited above. This very nice poem is also available at the end of a paper he wrote

about Pierre entitled Pierre Leroux (1942-2008) [77].

In 2011, during a ceremony bringing together his wife Madeleine Loubert, his two daughters Sophie and

Marie-Claude, parents, and many friends, the UQÀM Faculté des Sciences awarded to Pierre Leroux the title

Bâtisseur de la Recherche.
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Pierre was a great builder, an important mathematician, and a complete man†.

Figure 7: Photo of a commemorative plaque affixed to the west wall of the Science Library, UQÀM
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Combinatoire énumérative, Montréal, Québec 1985, Lecture Notes in Mathematics 1234, Springer, Berlin,

1986, 126–159.

[36] A. Kaouche and P. Leroux, Mayer and Ree-Hoover weights of infinite families of 2-connected graphs, Sém.

Lothar. Comin. 61A (2009), Article B61Af (presentation by A. Kaouche).
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(1982), 52–61.

[56] P. Leroux, Methoden der Anzahlbestimmung für einige Klassen von Graphen, Bayreuth. Math. Schr. 26

(1988), 1–36.

[57] P. Leroux, Reduced matrices and q-log concavity properties of q-Stirling numbers, J. Combin. Theory Ser.

A 54 (1990), 64–84.
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