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Abstract: In this paper, we derive recurrence equations for efficiently calculating the number of multiset
derangements, by applying holonomic methods to the Even–Gillis formula.
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In fond memory of Joe Gillis (3 Aug. 1911- 18 Nov. 1993),
who taught us that Special Functions Count

1. Introduction

The famous problème des rencontres, due to Montmort, can be formulated (see [6, Page 58]) in terms of counting
the number of ways of rearranging a deck of n distinct cards, such that no card landed in the previous location.
Calling this number Dn, there are quite a few good answers. Perhaps the best is as the solution of the
(inhomogeneous) first-order linear recurrence

Dn+1 − (n+ 1)Dn = (−1)n+1, D1 = 0,

that enables you, very fast, to find the first, say, 10000 terms. It follows, in particular, that the number of ways
of completely deranging a standard deck of cards, where all the 52 cards are considered distinct is

29672484407795138298279444403649511427278111361911893663894333196201.

This raises the natural question, of counting derangements of a standard deck of cards with 13 different
denominations {1, . . . , 13} (where 1 = Ace, 11 = Jack, 12 = Queen, 13 = King), but ignoring suits. To our
great surprise, this number was not (Jan. 22, 2021) in Neil Sloane’s monumental OEIS [7]. The exact value is
the one in the title, namely

1493804444499093354916284290188948031229880469556.

This is a special case of the problem of finding the number of derangements of a multiset. You have a1
copies of 1, a2 copies of 2, . . . , an copies of n, in other words, you have the multiset 1a1 . . . nan , and you are
interested in the number, let’s call it M(a1, . . . , an), of derangements. In other words, out of the total number
of arrangements, given by the multinomial coefficient (a1 + · · · + an)!/(a1! · · · an!), how many are there where
each location is different than the original. Here is why such questions are useful.‡

‡This answers a question of Persi Diaconis, who asked ‘Why is it useful?’, at the end of DZ’s talk about this problem, at the
special session of the Joint Mathematics Meeting in memory of Richard Askey, Jan. 2021. We thank him for raising this important
question, which also inspired the word ‘useful’ in the title.
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2. Symbolic Computation of Multiset Derangements

Suppose that in a certain army there are n different ranks, and each officer must wear a jacket indicating his
or her rank. In a certain party, there were a1 officers of rank 1, a2 officers of rank 2, . . . , an officers of rank
n. Before the party started, they hung their jackets in the coat-room. When the party was over, they were all
very drunk, so they each grabbed a jacket (uniformly) at random.

What is the probability that everyone shows the wrong rank?

Knowing the exact (rather than the approximate) probability is (potentially) very useful in deciding what
odds to bet on such an event. Recall that probability theory started out with such important (and useful!)
questions about gambling! For example, M(2, 2, 2) = 10, since there are ten of them. Here they are:(
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The million dollar question is: How to efficiently compute these numbers M(a1, a2, . . . , an)? (For example,
the number of the title is M(4, 4, . . . , 4) where the 4 is repeated 13 times.)

For a fixed n, the great Percy Alexander MacMahon gave a nice generating function that he deemed impor-
tant enough to include in the entry Combinatory Analysis that he contributed, in 1910, to the eleventh edition
of Encyclopedia Britannica [5, Page 755, Column 1]∑

0≤a1,...,an<∞

M(a1, . . . , an)xa11 · · ·xann =
1

1− e2 − 2e3 − · · · − (n− 1)en
,

where ei = ei(x1, . . . , xn) is the elementary symmetric function of degree i.
But this is not very efficient if one wants to find, say, M(5, . . . , 5), where 5 is repeated 100 times. One would

have to find the Taylor series of a rational function with 100 variables, and extract the coefficient of x51 · · ·x5100.
Even for the number in the title, one would have to extract the coefficient of x41 · · ·x413 in a rational function
with 13 variables.

A much more efficient formula was given in the seminal paper [3], by Shimon Even and Joe Gillis. It is the
following amazing formula, made more widely known by Richard Askey in his classic monograph [2, Page 43].

Theorem 2.1 (Even–Gillis [3]). The number of ways of deranging the multiset 1a1 . . . nan is

(−1)a1+···+an
∫ ∞
0

e−xLa1(x) · · ·Lan(x) dx.

Here La(x) is the (simple) Laguerre polynomial of degree a, so useful in classical potential theory, Quantum
Mechanics, and elsewhere, and thanks to Gillis and Even, even in combinatorics!

La(x) :=

a∑
α=0

(−1)α
(
a

α

)
xα

α!
.

In particular, the number of ways of deranging a standard deck of cards (given in the title) is∫ ∞
0

e−xL4(x)13 dx,

and it took Maple 0.123 seconds to find it! Using MacMahon’s formula would take much longer!
From now on, we are interested in fast efficient computations of the numbers [k repeated n times below].

F [n](k) = M(k, k, . . . , k) = (−1)kn
∫ ∞
0

e−xLk(x)n dx.

Suppose that we have 1000 different denominations (rather than 13) and still 4 suits, then we would need
the number F [1000](4). Now Maple has to integrate e−x times a polynomial of degree 4000 and it takes much
longer!, in fact, SBE took 295 seconds to compute it.
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It so happens that thanks to the Holonomic Systems Approach to Special Functions [8], initiated in 1990 by
one of us (DZ), and later extended and efficiently implemented [4] by another one of us (CK), the Even-Gillis
formula can be used to compute very fast F [n](k) for small (and not so small) k, and very large n, and also for
small n (we went as far as n = 9) and very large k, for which doing it directly would take a very long time.

Recall that a function f(n, x) is holonomic in (n, x) if (roughly) it satisfies a linear differential equation
(with respect to x) with coefficients that are polynomials in (n, x) and a linear difference equation (also called
recurrence equation), with respect to n, also with coefficients that are polynomials in (n, x). This is obviously
true for the Laguerre polynomials Ln(x).

It is easy to see that the integrand e−xLk(x)n is holonomic in (n, x) for each specific (numeric) k. In fact,
this is true for any function of (n, x) that has the form e−xP (x)n, for an arbitrary polynomial P (x).

It is also easy, since, as observed in [8], the class of holonomic functions is an algebra, that the integrand
e−xLk(x)n is holonomic in (k, x) for each specific (numeric) n.

For the former case, things are simpler, since the integrand is more than ‘just holonomic’, is it hyper-
exponential, i.e. the two relevant equations (differential and difference) are first order. For this special case the
Almkvist-Zeilberger algorithm [1] implemented in the Maple package

https://sites.math.rutgers.edu/~zeilberg/tokhniot/EKHAD.txt

(procedure AZdI), and also included in this article’s Maple package

https://sites.math.rutgers.edu/~zeilberg/tokhniot/MultiDer.txt ,

finds such a recurrence very fast. The output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oMultiDer1.txt

contains such recurrences for 1 ≤ k ≤ 19. The OEIS [7] (viewed Jan. 21, 2021) only has the sequences for
1 ≤ k ≤ 5.

The case k = 1 is the classical derangement sequence A000166. The case k = 2 is A000459, where a recurrence
is given. The case k = 3 is A059073, that only has the entries up to n = 12, and there is no recurrence. The
case k = 4 is A059074, where also only the entries up to n = 12 are given, and there is no recurrence. So the
number of the title of this paper ‘almost’ made it to the OEIS, since it is the n = 13 entry of that sequence.
The sequence corresponding to k = 5 is A123297, there is no recurrence and it only goes as far as n = 11. The
sequences for k ≥ 6 were not present. The above output file has many terms, and recurrences for all these
sequences through k = 19.

What about the sequences {F [n](k)}∞k=0 for a fixed, numeric n? Now things are much more complicated
(and slower), and the Almkvist-Zeilberger algorithm is not applicable. While we know, a priori that such a
recurrence exists, for every n, once n gets larger, it becomes computationally challenging. The Mathematica
package [4], written by one of us (CK) and available at

http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/

can handle it very well, and we found linear recurrences for n ≤ 9. The output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oMultiDer2.txt

contains such recurrences for 2 ≤ n ≤ 9.
Note that the case n = 2 is the identically 1 sequence (after all, the Laguerre polynomials are orthonormal,

and there exists exactly one multi-set derangement of 1n2n). The case n = 3 gives the Franel sequence∑n
k=0

(
n
k

)3
, as noted by Richard Askey (mentioned at the end of [3], and in [2, Page 43]). Surprisingly the

sequences for n ≥ 4 were not in the OEIS.

3. Conclusion

People have been playing cards for centuries and luminaries such as Persi Diaconis analyzed their random
shuffling. It is surprising that such a natural number, the number of ways of deranging a standard deck,
ignoring suits, could not be found anywhere in the OEIS, or for that matter on the internet. In fact, an internet
search for the number of the title did give one hit, but unless you know the number beforehand, it is useless.

But the main message of this article, in addition to filling this much needed gap, is to illustrate the great utility
of the Even-Gillis formula that, interfaced with symbolic-computation (the holonomic systems approach [1,4,8])
can easily find, almost immediately, the number of ways of, say, deranging the multisets 119 . . . 200019 and the
number of ways of deranging the multiset 12000 . . . 92000, both of which are contained in the above-mentioned
output files.
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