Semi-Invariants of Binary Forms and Symmetrized Graph-Monomials

Shashikant Mulay

Department of Mathematics, University of Tennessee, Knoxville, TN 37996 U.S.A.
Email: smulay@utk.edu

Received: November 10, 2020, Accepted: March 10, 2021, Published: March 26, 2021

The authors: Released under the CC BY-ND license (International 4.0)

1. Introduction

Fix an integer \(N \geq 2 \). Let \(k \) be a field of characteristic either 0 or strictly greater than \(N \). Let \(X, Y, t, z_1, \ldots, z_N \) be indeterminates. Let \(E_1(t), \ldots, E_N(t) \) and \(f(X + t) \) be the polynomials defined by

\[
f(X + t) := \prod_{i=1}^{N} (X + z_i + t) =: X^N + \sum_{i=1}^{N} E_i(t) X^{N-i}.
\]

For \(1 \leq i \leq N \), let \(e_i := E_i(0) \). Then, \(f(X) = X^N + e_1 X^{N-1} + \cdots + e_N \). A polynomial \(P(e_1, \ldots, e_N) \in k[e_1, \ldots, e_N] \) is said to be translation invariant provided \(P(E_1(t), \ldots, E_N(t)) = P(e_1, \ldots, e_N) \). It is a (well known) simple exercise to verify that the subring \(k[y_1, \ldots, y_{N-1}] \) of \(k[e_1, \ldots, e_N] \), where \(y_i := E_i(-e_i/N) \) for \(1 \leq i \leq N \), is the ring of all translation invariant members of \(k[e_1, \ldots, e_N] \). Furthermore, we have \(k[y_1, \ldots, y_{N-1}] = k[e_1, \ldots, e_N] / k[z_1 - z_2, \ldots, z_1 - z_N] \) (e.g., see Ch. 2, Theorem 1 of [10]). A polynomial \(h \in k[e_1, \ldots, e_N] \) is said to be homogeneous of weight \(w \) provided as a polynomial in \(z_1, \ldots, z_N, h \) is homogeneous of degree \(w \). Note that \(y_i \) is homogeneous of weight \(i + 1 \) for \(1 \leq i \leq N \). Next, consider the (generic) binary form \(F := \sum a_iX^iY^{N-i} \) of degree \(N \) where \(a_0 \) is an indeterminate and \(a_1 := a_0e_1 \) for \(1 \leq i \leq N \). A semi-invariant of \(F \) of degree \(d \) and weight \(w \) is a polynomial \(Q \in k[a_0, a_1, \ldots, a_N] \) such that \(Q = a_d^d P(e_1, \ldots, e_N) \) where \(P(e_1, \ldots, e_N) \) is translation invariant, homogeneous of weight \(w \) and has total degree \(d \) in \(e_1, \ldots, e_N \). For \(0 \leq i \leq N \), the weight of \(a_i \) is defined to be \(i \). Then, note that \(Q \) is homogeneous of degree \(d \) and weight \(w \) in \(a_0, \ldots, a_N \). An invariant of \(F \) of degree \(d \) is a semi-invariant of \(F \) of degree \(d \) and weight \(Nd/2 \). For a fixed \(N \), the set of semi-invariants (of the binary \(N \)-ic form \(F \)) of degree \(d \) and weight \(w \) form a finite dimensional \(k \)-linear subspace of \(k[a_0, a_1, \ldots, a_N] \). This subspace is known to be trivial unless \(2w \leq Nd \). Provided \(\text{char} k = 0 \) and \(2w \leq Nd \), a theorem of Cayley-Sylvester proves that the dimension of the aforementioned space of semi-invariants of degree \(d \) and weight \(w \) is the coefficient of \(q^{w} \) in \((1 - q)(N+d)/(N+d)_q \) where \((N+d)/(N+d)_q \) is the \(q \)-binomial coefficient (see [6], [18] or Theorem 5 of [10]). Let \(p_w(N, d) \) denote the coefficient of \(q^w \) in \((N+d)/(N+d)_q \). Then, \(p_w(N, d) \) is the number of integer-partitions of \(w \) in at most \(N \) parts with each part \(\leq d \). As a corollary of the Cayley-Sylvester theorem, we then have \(p_w(N, d) \geq p_{w-1}(N, d) \) for \(2 \leq w \leq Nd/2 \); this establishes the unimodality of the coefficients of \((N+d)/(N+d)_q \). For the first purely combinatorial proof of this result, see [11]. Since \(p_w(N, d) - p_{w-1}(N, d) \) are the dimensions of spaces of semi-invariants, it is natural to investigate explicit (lower, upper) bounds on them. Recently, some interesting lower bounds on \(p_w(N, d) - p_{w-1}(N, d) \) have come to light (see [4], [12], [19] and their references). This article has two objectives: provide explicit methods of constructing a class of \(k \)-linearly independent semi-invariants and obtain a new lower bound on \(p_w(N, d) - p_{w-1}(N, d) \) for certain pairs \((w, d)\).
The non-trivial lower bounds of [4], [12] and [19] are valid for \(\min\{N, d\} \geq 8 \) but for all sufficiently large values of \(d \) and \(w \), they do not depend on \((w, d) \). In contrast, our lower bounds (see Theorem 3.1) are polynomials in \(w \) for all \((N, d) \); Example 3.1-3.2 and Remark 3.1 appearing at the end of the article present a more detailed comparison. In the rest of the introduction, we describe our motivation for, and our method of, constructing semi-invariants of a binary \(N \)-ic form.

Ever since the theory of invariants of binary forms was founded, invariant-theorists have explored and devised methods for writing down concrete invariants; however, each of these methods has its own shortcomings. The ‘symbolic method’ of classical invariant theory (see [3], [6], [7]) provides an easy recipe for formulating symbolic expressions that yield invariants and semi-invariants. But, without full expansion (or un-symbolization) one does not know whether a given symbolic expression yields a nonzero semi-invariant. Here we prefer the other method, i.e., the method of symmetrized graph-monomials. This too was known to classical invariant theorists (see [13], [14], [17]). It poses the problem of finding a useful criterion to determine the nonzero-ness of the symmetrization. Historically, Sylvester and Petersen considered this problem; in fact, Petersen formulated a sufficient (but not necessary) condition that ensures zero-ness of the symmetrization. For a detailed historical sketch of this topic, we refer the reader to [16]. In [16], nonzero-ness of the symmetrization of a graph-monomial is shown to be equivalent to certain properties of the orientations and the orientation preserving graph-automorphisms of the underlying graph; but as matters stand, verification of these properties is as forbidding as a brute force computation of the desired symmetrization. Our interest in construction, as opposed to existence, of invariants and semi-invariants stems primarily from the need to obtain explicitly described trial wave functions for systems of \(N \) strongly correlated Fermions in a fractional quantum Hall state. Such a trial wave function is essentially determined by a so-called correlation function. The intuitive approach of physics presents such a correlation function as a symmetrization of a monomial obtained from the graph of correlations representing allowed strong interactions between \(N \) Fermions. It so happens that this correlation function turns out to be a semi-invariant (an invariant in certain cases), of a binary \(N \)-ic form. In this article, we establish an easy-to-use yet broadly applicable sufficient criterion (see Theorem 2.1) for non-triviality of a symmetrized graph-monomial. Besides enabling explicit constructions of the desired trial wave functions, Theorem 2.1 is also interesting from a purely invariant theoretic point of view. Following Theorem 2.1, we exhibit a sample of its applications (see Theorem 2.2, Theorem 3.1).

A multigraph is a graph in which multiple edges are allowed between the same two vertices of the graph. Consider a loopless undirected multigraph \(\Gamma \) on finitely many (at least two) vertices labeled \(1, 2, \ldots, N \); multigraph \(\Gamma \) is said to be \(d \)-regular provided each vertex of \(\Gamma \) has the same degree \(d \). In the figures below, \(\Gamma_1 \) is seen to be a 2-regular multigraph and the multigraphs \(\Gamma_2, \Gamma_3 \) both are 3-regular.

![Figure 1: \(\Gamma_1 \)](image1)

![Figure 2: \(\Gamma_2 \)](image2)

![Figure 3: \(\Gamma_3 \)](image3)

Let \(\varepsilon(\Gamma, i, j) \) be the number of edges in \(\Gamma \) connecting vertex \(i \) to vertex \(j \). The graph-monomial of \(\Gamma \), denoted by \(\mu(\Gamma) \), is the polynomial in \(z_1, \ldots, z_N \) defined by

\[
\mu(\Gamma) := \prod_{1 \leq i < j \leq N} (z_i - z_j)^{\varepsilon(\Gamma, i, j)}.
\]

Let \(g(\Gamma) \) denote the symmetrization of \(\mu(\Gamma) \), i.e., \(g(\Gamma) := \sum \mu_{\sigma}(\Gamma) \), where the sum ranges over the permutations \(\sigma \) of \(\{1, 2, \ldots, N\} \) and \(\mu_{\sigma}(\Gamma) \) stands for the product of \((z_{\sigma(i)} - z_{\sigma(j)})^{r(\Gamma, i, j)} \) for \(1 \leq i < j \leq N \). In the classical invariant theory of binary forms (where \(k = \mathbb{C} \)), it is well known that if \(\Gamma \) is \(d \)-regular on \(N \) vertices, then \(g(\Gamma) \) is a (relative) invariant of degree \(d \) (and weight \(Nd/2 \)) of the binary \(N \)-ic form \(F \). Moreover, the vector space of invariants of \(F \) of degree \(d \) is spanned by the set of symmetrized graph monomials corresponding to the \(d \)-regular multigraphs on \(N \) vertices (for a proof see [6] or its modern treatment: Ch. 2, Theorem 4 of [10]). If \(\Gamma \) is not \(d \)-regular for any \(d \), then \(g(\Gamma) \) is a semi-invariant (as defined in [6], [7]) of \(F \) irrespective of the characteristic of \(k \). For example, \(g(\Gamma_1) \) is a quadratic invariant of a binary sextic (investigated in [5]) and each of \(g(\Gamma_2), g(\Gamma_3) \) is a cubic invariant of a binary quartic. It can be easily verified that \(g(\Gamma_2) \) is identically 0 whereas \(g(\Gamma_3) \) is essentially the only nonzero cubic invariant of a binary quartic. In general, given a nonzero semi-invariant of \(F \), there is no known method to determine whether the invariant is \(g(\Gamma) \) for some multigraph \(\Gamma \). Also, for non-isomorphic multigraphs \(\Gamma, \Gamma' \), their corresponding semi-invariants \(g(\Gamma), g(\Gamma') \) may be numerical multiples of each other. Clearly, it is desirable to understand the types of multigraph \(\Gamma \) for which \(g(\Gamma) \) is nonzero. For then, we get a natural method of constructing nonzero semi-invariants of \(F \).
In the physics of Fermion-correlations, vertices of Γ correspond to Fermions and the edges in Γ represent correlations (a repulsive interaction) between the Fermions; here, it suffices to work over \mathbb{C}. A multigraph Γ is called a configuration of Fermions provided $g(\Gamma)$ is nonzero, and then $g(\Gamma)$ is called the correlation-function of this configuration. A configuration Γ need not be d-regular for any d. In physics, a configuration Γ is as important as its associated correlation function $g(\Gamma)$. This leads to some interesting new problems that do not seem to have any parallels in the theory of invariants. For example, let $p(\Gamma)$ and $L(\Gamma)$ denote the maximum of and the sum of all $e(\Gamma,i,j)$ respectively. For fixed integers N, L and d, consider the set $C(N,L,d)$ of multigraphs Γ with the maximum vertex-degree d, $L(\Gamma) = L$ and $g(\Gamma) \neq 0$. Let $p(N,L,d)$ denote the minimum of $p(\Gamma)$ as Γ ranges over $C(N,L,d)$. A configuration $\Gamma \in C(N,L,d)$ is minimal if $p(\Gamma) = p(N,L,d)$. It is known (see [11], [15]) that the lowest energy configurations (or states) Γ are those with the least $p(\Gamma)$. Thus one needs to estimate $p(N,L,d)$ for a given triple (N,L,D). Likewise, given Γ, $\Gamma' \in C(N,L,d)$, it is of interest to know when $g(\Gamma)$ is (or is not) a constant multiple of $g(\Gamma')$. Without digressing into deeper physics, we simply refer the reader to [2], [9], [10] and [15]. Using a weak corollary of Theorem 2.1 of this article, we have explicitly constructed trial wave functions for the minimal IQL configurations of N Fermions in a Jain state with filling factor $< 1/2$ (see [10]); it is not possible to give a full account of our recent results here. The central result of this article (Theorem 2.1), presents a useful sufficient condition on a multigraph Γ that ensures non-triviality of $g(\Gamma)$. There is nothing akin to Theorem 2.1 in the existing literature. Whenever Theorem 2.1 is applicable to even a single member of $C(N,L,d)$, it readily yields an upper bound on $p(N,L,d)$. Our proof of Theorem 2.1 is purely algebraic in nature; so, the edge-function (or the edge-matrix) of a multigraph is of key importance in the proof. In Theorem 2.1 we consider only those multigraphs Γ that can be partitioned into two or more sub-multigraphs $\Gamma_1, \ldots, \Gamma_m$ such that each $g(\Gamma_i)$ is nonzero (in particular, if Γ_i has no edges) and the inter-edges between pairs Γ_i, Γ_j are more ‘dominating’ (in a specific way) than the intra-edges within each Γ_i. Using Theorem 2.1, we are able to construct several infinite families of invariants (including skew-invariants, see Theorem 2.2) as well as families of k-linearly independent semi-invariants of a binary N-ic form over k (see Theorem 3.1). Philosophically, our approach has its source in [1] where the linear independence of standard monomials is proved by counting the corresponding standard Young bitableaux; this yields formulae for Hilbert functions of ladder determinantal ideals. In a similar spirit, we count multigraphs of a certain ‘degree’ and ‘weight’ to produce linearly independent semi-invariants of the corresponding degree and weight; this yields the aforementioned lower bound. In closing, we share our optimism that there is a generalization of Theorem 2.1 yet to be discovered, that will allow construction of all semi-invariants as symmetrized-graph-monomials.

2. Symmetrization of graph-monomials

In what follows, N is tacitly assumed to be an integer ≥ 2, k denotes a field and z_1, \ldots, z_N are indeterminates. We let z stand either for (z_1, \ldots, z_N) or the set \{ z_1, \ldots, z_N \}. It is tacitly assumed that either k has characteristic 0 or the characteristic of k is $> N$. As usual, given a positive integer n, S_n denotes the group of all permutations of the set \{ $1, \ldots, n$ \}.

Definition 2.1. Let m and n be positive integers.

1. Let $\text{Symm}_N : k[z] \rightarrow k[z]$ be the Symmetrization operator defined by

$$\text{Symm}_N(f) := \sum_{\sigma \in S_N} f(z_{\sigma(1)}, \ldots, z_{\sigma(N)}).$$

$f \in k[z]$ is said to be symmetric provided

$$f(z_{\sigma(1)}, \ldots, z_{\sigma(N)}) = f(z_1, \ldots, z_N) \text{ for all } \sigma \in S_N.$$

2. For an $m \times n$ matrix $A := [a_{ij}]$, let $r_i(A) := a_{i1} + \cdots + a_{in}$ (the sum of the entries in the i-th row of A) for $1 \leq i \leq m$ and let

$$||A|| := r_1(A) + \cdots + r_m(A) = \sum_{i=1}^m \sum_{j=1}^n a_{ij}.$$

3. Let $E(N)$ denote the set of all $N \times N$ symmetric matrices $A := [a_{ij}]$ such that each a_{ij} is a nonnegative integer and $a_{ii} = 0$ for $1 \leq i \leq N$.

4. Given an integer d, by $E(N,d)$ we denote the subset of $A \in E(N)$ such that $r_i(A) = d$ for $1 \leq i \leq N$, i.e., each row-sum of A is exactly d.

5. For an $N \times N$ matrix $A := [a_{ij}]$, let

$$\delta(z, A) := \prod_{1 \leq i < j \leq N} (z_i - z_j)^{a_{ij}}.$$
6. Let \(D_{(m,n)} := [(c_{ij})] \) be the \(m \times n \) matrix such that

\[
c_{ii} := \begin{cases}
0 & \text{if } i = j, \\
1 & \text{if } i \neq j.
\end{cases}
\]

By \(D_n \), we mean \(D_{(n,n)} \). In particular, \(D_1 = 0 \).

Lemma 2.1. Let \(n \) be a positive integer. For \(1 \leq i \leq n \), let \(g_i \in \mathbb{Q}(z) \). Then \(g_1^2 + g_2^2 + \cdots + g_n^2 = 0 \) if and only if \(g_i = 0 \) for \(1 \leq i \leq n \). In particular, given \(a \neq g \in \mathbb{Q}(z_1, \ldots, z_N) \) and a nonempty subset \(S \subseteq \mathbb{N} \), we have

\[
\sum_{\sigma \in S} (g(z_{\sigma(1)}, \ldots, z_{\sigma(N)}))^2 \neq 0.
\]

Proof. With the above notation, assume that \(g_1 \neq 0 \). Let \(b := g_1^2 + g_2^2 + \cdots + g_n^2 \). For \(1 \leq i \leq n \), let \(p_i, q_i \in \mathbb{Q}[z_1, \ldots, z_N] \) be polynomials such that \(g_i q_i = p_i \) and \(q_i \neq 0 \). Note that, \(g_1 \neq 0 \) implies \(p_1 \neq 0 \). Now since \(f := p_1 q_1 q_2 \cdots q_n \) is a nonzero polynomial with coefficients in \(\mathbb{Q} \), there exists \((a_1, \ldots, a_N) \in \mathbb{Q}^N \) such that \(f(a_1, \ldots, a_N) \neq 0 \). Fix such an \(N \)-tuple \((a_1, \ldots, a_N)\) and let \(c_i := g_i(a_1, \ldots, a_N) \) for \(1 \leq i \leq n \). Then, \(c_1 \neq 0 \) and \(c_i \in \mathbb{Q} \) for \(1 \leq i \leq n \). Since \(c_i^2 > 0 \) and \((c_1^2 + \cdots + c_n^2) > 0 \), we have \(h(a_1, \ldots, a_N) > 0 \). This proves the first claim. The remaining assertions now easily follow. \(\Box \)

Definition 2.2.

1. For \(B \subseteq \{1, 2, \ldots, N\} \), let

\[
\pi(B) := \{(i, j) \in B \times B \mid i < j\}.
\]

By abuse of notation, \(\pi(B) \) is also identified as the set of all \(2 \)-element subsets of \(B \). The set \(\pi(\{1, \ldots, N\}) \) is denoted by \(\pi[N] \).

2. Given \(C \subseteq \pi[N] \) and a function \(\varepsilon : C \to \mathbb{N} \), the image of \((i, j) \in C \) via \(\varepsilon \) is denoted by \(\varepsilon(i, j) \). An integer \(w \in \mathbb{N} \) is identified with the constant function \(C \to \mathbb{N} \) such that \((i, j) \to w \) for all \((i, j) \in C \).

3. Given \(C \subseteq \pi[N] \) and a function \(\varepsilon : C \to \mathbb{N} \), define

\[
v(z, C, \varepsilon) := \prod_{(i, j) \in C} (z_i - z_j)^{\varepsilon(i, j)}
\]

with the understanding that \(v(z, \emptyset, \varepsilon) = 1 \).

Remark 2.1. There is an obvious bijective correspondence \(\varepsilon \leftrightarrow [a_{ij}] \) given by

\[
a_{ij} = \varepsilon(i, j) \quad \text{for } 1 \leq i < j \leq N
\]

between the set of functions \(\varepsilon : \pi[N] \to \mathbb{N} \) and the set \(E(N) \).

Suppose \(m_1 \leq m_2 \leq \cdots \leq m_q \) is a partition of \(N \) and \(M \in E(N) \). Consider \(M \) as a \(q \times q \) block-matrix \(\{M_{rs}\} \), where \(M_{rs} \) has size \(m_r \times m_s \) for \(1 \leq r, s \leq q \). View \(M \) as the sum \(M^* + M^{**} \), where \(M^* \) is the \(q \times q \) block-diagonal matrix having \(M_{rr} \) as its \(r \)-th diagonal block and where \(M^{**} \) is the \(q \times q \) block-matrix whose diagonal blocks are zero-matrices. Clearly, \(M^* \) and \(M^{**} \) both are in \(E(N) \) and \(M_{rr} \in E(m_r) \) for \(1 \leq r \leq q \).

Definition 2.3. Let the notation be as above.

1. For \(1 \leq r \leq q \), define

\[
A_r := \{i + m_0 + \cdots + m_{r-1} \mid 1 \leq i \leq m_r\}.
\]

2. For \(1 \leq r \leq q \), let \(G_r \) denote the group of permutations of the set \(A_r \).

3. Define

\[
\pi := \bigcup_{1 \leq r \leq q} A_r \times A_r.
\]

4. For \(1 \leq r \leq q \) and \((i, j) \in \pi(A_r) \), let \(\varepsilon_r(i, j) \) denote the \(ij \)-th entry of \(M^* \).

5. For \(1 \leq r \leq q \), define

\[
\delta_r(M^*) := \text{Symm}_{m_r}(v(z, \pi(A_r), \varepsilon_r)).
\]
Remark 2.2. 1. Observe that

\[
\pi = \pi[N] \setminus \bigcup_{i=1}^{q} \pi(A_i).
\]

2. For each \(r\), the \(\varepsilon_r(i,j)\) are the entries in the strict upper-triangle of the symmetric matrix \(M_{rs}\).

3. We have \(\delta(z, M^{**}) = v(z, \pi[N], \varepsilon)\) and

\[
\delta(Z, M^{*}) = \prod_{r=1}^{q} v(z, \pi(A_r), \varepsilon_r).
\]

4. We have \(\delta(z, M) = \delta(z, M^{*}) \cdot \delta(z, M^{**})\).

5. For each \(r\), we have

\[
\delta_r(M^{*}) = \sum_{\sigma \in G_r} \sigma(v(z, \pi(A_r), \varepsilon_r)).
\]

6. The \(\varepsilon(i,j)\) are the entries in the strict upper-triangle of the symmetric matrix \(M^{**}\).

Theorem 2.1. Let the notation be as above. Assume \(q \geq 2\) and of the following properties (1) - (3), either (1) and (2) hold or (1) and (3) hold.

(1) For \(1 \leq r < s \leq q\), the matrix \(M_{rs}\) has only positive entries.

(2) For \(1 \leq r < s \leq q\), the positive integer \(b(m_r, m_s) := \|M_{rs}\|\) depends only on the ordered pair \((m_r, m_s)\) and furthermore, if \(m_r = m_s\), then \(b(m_r, m_s)\) is an even integer.

(3) Characteristic of \(k\) is 0 and for \(1 \leq r < s \leq q\), \(\|M_{rs}\|\) is even.

Also, assume that the properties (i) - (iv) listed below are satisfied.

(i) Either \(m_i < m_j\) for \(1 \leq i < j \leq q\) or \(M^* = 0\).

(ii) If properties (1) and (2) hold, then \(\prod_{r=1}^{q} \delta_r(M^{*}) \neq 0\).

(iii) If property (2) does not hold but properties (1) and (3) hold, then each entry of \(M^*\) is an even integer.

(iv) The least nonzero entry of the matrix \(M^{**}\) is strictly greater than the greatest entry of the matrix \(M^*\).

Then \(\text{Symm}_N(\delta(z, M)) \neq 0\).

Proof. Define \(m_0 = 0\). At the outset, observe that a permutation \(\sigma \in S_N\) can be naturally viewed as a permutation of \(\pi[N]\) by letting \(\sigma(i,j) := \{\sigma(i), \sigma(j)\}\), i.e., for \((i,j) \in \pi[N]\),

\[
\sigma(i,j) := \begin{cases}
(\sigma(i), \sigma(j)) & \text{if } \sigma(i) < \sigma(j), \\
(\sigma(j), \sigma(i)) & \text{if } \sigma(j) < \sigma(i).
\end{cases}
\]

Thus \(S_N\) is regarded as a subgroup of the group of permutations of \(\pi[N]\).

For \(\sigma \in S_N\) and \(1 \leq r \leq q\), define

\[
B_r(\sigma) := \sigma^{-1}(A_r) = \{i \mid 1 \leq i \leq N \text{ and } \sigma(i) \in A_r\}.
\]

Clearly, sets \(B_1(\sigma), \ldots, B_q(\sigma)\) partition \(\{1, \ldots, N\}\) and \(B_i\) has cardinality \(m_i\) for all \(1 \leq i \leq q\).

Define

\[
G := \{\sigma \in S_N \mid \sigma(i,j) \in \pi \text{ for all } (i,j) \in \pi\}.
\]

For \(1 \leq r \leq q\), a permutation \(\sigma \in G_r\) is to be regarded as an element of \(S_N\) by declaring \(\sigma(i) = i\) if \(i \in \{1, \ldots, N\} \setminus A_r\). This way each \(G_r\) is identified as a subgroup of \(S_N\).

Given \(\sigma \in G\) and \((i,j) \in \pi(A_r)\) with \(1 \leq r \leq q\), clearly there is a unique \(s\) with \(1 \leq s \leq q\) such that \(\sigma(i,j) \in \pi(A_s)\). Fix a \(\sigma \in G\). Consider \(i \in B_r(\sigma) \cap A_s\) with \(1 \leq s \leq q\). Then for \(i \neq j \in A_s\), we must have \(\{\sigma(i), \sigma(j)\}\) in \(\pi(A_r)\) and hence \(j \in B_r(\sigma)\). It follows that \(A_s \subseteq B_r(\sigma)\). If \(1 \leq s < p \leq q\) are such that \(A_s \cup A_p \subseteq B_r(\sigma)\), then an \((i,j) \in A_s \times A_p\) is in \(\pi\) whereas \(\sigma(i,j)\) is in \(\pi(A_r)\). This is impossible since \(\sigma \in G\).

Thus we have established the following: given \(r\) with \(1 \leq r \leq q\) and \(\sigma \in G\), there is a unique integer \(r(\sigma)\) such
that $1 \leq r(\sigma) \leq q$ and $B_r(\sigma) = A_{r(\sigma)}$. In other words, the image sets $\sigma(A_1), \ldots, \sigma(A_q)$ form a permutation of the sets A_1, \ldots, A_q. If $1 \leq r < s \leq q$ and $\sigma \in G$, then since $r(\sigma) \neq s(\sigma)$, we infer that

$$
\pi \cap (A_r(\sigma) \times A_s(\sigma)) \neq \emptyset \quad \text{if and only if } r(\sigma) < s(\sigma).
$$

Moreover,

$$m_r(\sigma) = m_r \quad \text{for all } 1 \leq r \leq q \text{ and } \sigma \in G.$$

If the first case of (i) holds, i.e., the integers m_i are mutually unequal, then we must have $r(\sigma) = r$ for all $1 \leq r \leq q$ and $\sigma \in G$. Hence, in this case G is the direct product of (the mutually commuting) subgroups G_1, G_2, \ldots, G_q.

Hypothesis (1) implies $v(z, \pi[N], \varepsilon) = v(z, \varepsilon)$. If $G = G_1 \times G_2 \times \cdots \times G_q$, then we have

$$
\sum_{\sigma \in G} \left(\prod_{r=1}^q \sigma(v(z, \pi(A_r), \varepsilon_r)) \right) = \prod_{r=1}^q \left(\sum_{\theta \in G_r} \theta(v(z, \pi(A_r), \varepsilon_r)) \right).
$$

For $1 \leq r \leq q$, define

$$w_r := \sum_{(i,j) \in \pi(A_r)} \varepsilon_r(i,j) \quad \text{and} \quad w := \sum_{i=1}^q w_i.$$

Our hypothesis (i) ensures that if $m_i = m_j$ for some $i \neq j$, then $w = 0$.

Now let $t, t_1, \ldots, t_q, x_1, \ldots, x_N$ be indeterminates and let

$$\alpha : k[z_1, \ldots, z_N] \rightarrow k[t, t_1, \ldots, t_q, x_1, \ldots, x_N]$$

be the injective k-homomorphism of rings defined by

$$\alpha(z_i) := tx_i + t_r \quad \text{if } i \in A_r \text{ with } 1 \leq r \leq q.$$

Then given $\sigma \in S_N$, $(i, j) \in \pi[N]$ and $1 \leq r, s \leq q$, we have

$$\alpha(z_{\sigma(i)} - z_{\sigma(j)}) = t(x_{\sigma(i)} - x_{\sigma(j)}) + (t_r - t_s)$$

if and only if $(\sigma(i), \sigma(j)) \in A_r \times A_s$.

Let x stand for (x_1, \ldots, x_N) and T stand for (t_1, \ldots, t_q). Given $f \in k[t, T, X]$, by the x-degree (resp. T-degree) of f, we mean the total degree of f in the indeterminates x_1, \ldots, x_N (resp. t_1, \ldots, t_q). Now fix a $\sigma \in G$ and consider

$$V_{\sigma}(x, t, T) := \alpha(\pi(v(z, \pi, \varepsilon))).$$

For an ordered pair (i, j) with $1 \leq i, j \leq q$, set

$$A(\sigma, i, j) := \pi \cap (A_{i(\sigma)} \times A_{j(\sigma)}).$$

It is straightforward to verify that $V_{\sigma}(x, 0, T)$ is

$$
\prod_{1 \leq r < s \leq q} \left(\prod_{(i,j) \in A(\sigma, r, s)} (t_r - t_s)^{\varepsilon(i,j)} \cdot \prod_{(i,j) \in A(\sigma, s, r)} (t_s - t_r)^{\varepsilon(i,j)} \right).
$$

Suppose condition (2) of the theorem holds. Then for $1 \leq r < s \leq q$, we have

$$\sum_{(i,j) \in A(\sigma, r, s)} \varepsilon(i,j) = \begin{cases}
0 & \text{if } s(\sigma) < r(\sigma), \\
b(m_r, m_s) & \text{if } r(\sigma) < s(\sigma).
\end{cases}$$

Further, if $1 \leq r < s \leq q$ are such that $s(\sigma) < r(\sigma)$, then

$$m_s = m_{s(\sigma)} \leq m_{r(\sigma)} = m_r$$

implies $m_s = m_{s(\sigma)} = m_{r(\sigma)} = m_r$ and so, (2) ensures that $b(m_r, m_s)$ is an even integer. Hence, if property (2) holds, then

$$V_{\sigma}(x, 0, T) := \prod_{1 \leq r < s \leq q} (t_r - t_s)^{b(m_r, m_s)}.$$
On the other hand, if condition (3) holds, then we merely observe that there is a nonzero homogeneous $g_\sigma \in \mathbb{Q}[t_1, \ldots, t_q]$ such that $V_\sigma(x, 0, T) = g_\sigma^2$. In any case, the t-order of $V_\sigma(x, 0, T)$ is 0 (i.e., $V_\sigma(x, t, T)$ is not a multiple of t) and the T-degree of $V_\sigma(x, 0, T)$ is

\[d := \sum_{(i,j) \in \pi} \varepsilon(i, j). \]

Define

\[\gamma := \sum_{\sigma \in G} \sigma(v(z, \pi, \varepsilon)) \quad \text{and} \quad V(x, t, T) := \sum_{\sigma \in G} V_\sigma(x, t, T). \]

Then $\alpha(\gamma) = V(x, t, T)$. If (2) holds, then letting $|G|$ denote the cardinality of G, we have $|G| \neq 0$ in k and

\[\left(\#\right) \quad V(x, 0, T) = |G| \prod_{1 \leq r < s \leq q} (t_r - t_s)^{\beta(m_r, m_s)} \]

and hence $V(x, 0, T) \neq 0$. On the other hand, if (3) holds, then we have

\[V(x, 0, T) = \sum_{\sigma \in G} g_\sigma^2, \]

which is necessarily nonzero in view of Lemma 2.1. Now it is clear that $\alpha(\gamma) \neq 0$, the t-order of $\alpha(\gamma)$ is 0 and the T-degree of $\alpha(\gamma)$ is d.

For $\sigma \in S_N$, define

\[F_\sigma(z) := \prod_{r=1}^q \sigma(v(z, \pi(A_r), \varepsilon_r)) \quad \text{and} \quad W_\sigma(x, t, T) := \prod_{r=1}^q \alpha(\sigma(v(z, \pi(A_r), \varepsilon_r))). \]

Then $W_\sigma(x, t, T) = \alpha(F_\sigma(x))$. If $\varepsilon_r = 0$ for all r, then $F_\sigma(x) = 1$ and hence

\[\sum_{\sigma \in G} F_\sigma(x) = |G| \neq 0. \]

If $G = G_1 \times \cdots \times G_q$, then we have

\[\sum_{\sigma \in G} F_\sigma(x) = \prod_{r=1}^q \left(\sum_{\theta \in G_r} \theta(v(z, \pi(A_r), \varepsilon_r)) \right). \]

Now suppose $G = G_1 \times \cdots \times G_q$. Given $\sigma \in G$, write $\sigma = : \theta_1 \theta_2 \cdots \theta_q$, where $\theta_r \in G_r$ for $1 \leq r \leq q$. Then

\[\alpha(\sigma(v(z, \pi(A_r), \varepsilon_r))) = t^{w_r} \theta_r(v(z, \pi(A_r), \varepsilon_r)) = t^{w_r} \sigma(v(z, \pi(A_r), \varepsilon_r)) \]

and hence

\[W_\sigma(x, t, T) = t^w \prod_{r=1}^q \sigma(v(z, \pi(A_r), \varepsilon_r)) = t^w F_\sigma(x). \]

Consequently,

\[\alpha(\sigma(v(z, \pi, \varepsilon))) \prod_{r=1}^q \alpha(\sigma(v(z, \pi(A_r), \varepsilon_r))) = t^w V_\sigma(x, t, T) F_\sigma(x). \]

Case I: hypothesis (ii) holds. Then as proved above $V_\sigma(x, 0, T)$ is independent of the choice of $\sigma \in G$ and $V_\sigma(x, 0, T)$ is a nonzero polynomial depending only on T. In particular, letting $\iota \in S_N$ denote the identity permutation, we have $V(0, 0, T) \neq 0$ and

\[\sum_{\sigma \in G} V_\sigma(x, 0, T) F_\sigma(x) = V_\sigma(x, 0, T) \sum_{\sigma \in G} F_\sigma(x). \]

The sum appearing on the right of the above equation is obviously independent of t; moreover, hypothesis (ii) ensures that it is nonzero and thus has t-order 0. Case II: hypothesis (iii) holds. Then $V_\sigma(x, 0, T) = g_\sigma^2$ as well as $F_\sigma(x) = f_\sigma^2$, where $g_\sigma \in k[T]$ and $f_\sigma \in k[x]$ are nonzero polynomials. In this case, Lemma 2.1 ensures that

\[\sum_{\sigma \in G} V_\sigma(x, 0, T) F_\sigma(x) = \sum_{\sigma \in G} (f_\sigma g_\sigma)^2 \neq 0. \]
In either case, the sum
\[\sum_{\sigma \in G} V_\sigma(x, t, T) W_\sigma(x, t, T) = \sum_{\sigma \in G} t^w V_\sigma(x, t, T) F_\sigma(x) \]
has \(t \)-order exactly \(w \).

Next, for \(\sigma \in S_N \), let
\[R(\sigma) := \bigcup_{1 \leq r \leq q} \pi(B_r(\sigma)). \]
Observe that \(\pi \cap R(\sigma) = \emptyset \) if and only if \(\sigma \in G \). Also, observe that
\[\alpha(z_{\sigma(i)} - z_{\sigma(j)}) = t(x_{\sigma(i)} - x_{\sigma(j)}) + (t_r - t_s), \]
where \(r = s \) if and only if \((i, j) \in R(\sigma)\).

Fix a \(\sigma \in S_N \setminus G \). Then clearly
\[v(z, \pi, \varepsilon) = v(z, \pi[N], \varepsilon) = v(z, R(\sigma), \varepsilon) v(z, \pi[N] \setminus R(\sigma), \varepsilon). \]

Moreover, note that
\[v(z, R(\sigma), \varepsilon) = v(z, \pi \cap R(\sigma), \varepsilon) \quad \text{and} \quad v(z, \pi[N] \setminus R(\sigma), \varepsilon) = v(z, \pi \setminus R(\sigma), \varepsilon). \]

Define
\[\lambda(\sigma) := \sum_{(i, j) \in \pi \cap R(\sigma)} \varepsilon(i, j) \quad \text{and} \quad d(\sigma) := \sum_{(i, j) \in \pi \setminus R(\sigma)} \varepsilon(i, j). \]

Then \(d(\sigma) = d - \lambda(\sigma) \). From our choice of \(\sigma \) and hypothesis (1), it follows that \(\lambda(\sigma) \geq 1 \) and hence \(d(\sigma) < d \).

Let
\[P_\sigma(x, t, T) := \alpha(\sigma(v(z, \pi \cap R(\sigma), \varepsilon))), \quad Q_\sigma(x, t, T) := \alpha(\sigma(v(z, \pi \setminus R(\sigma), \varepsilon))). \]

Observe that \(V_\sigma(x, t, T) = P_\sigma(x, t, T) \cdot Q_\sigma(x, t, T), \)
\[P_\sigma(x, t, T) = t^{\lambda(\sigma)} \cdot \prod_{(i, j) \in \pi \cap R(\sigma)} (x_{\sigma(i)} - x_{\sigma(j)})^{\varepsilon(i, j)} \]
and \(Q_\sigma(x, 0, T) \) is a nonzero \(T \)-homogeneous polynomial of \(T \)-degree \(d(\sigma) \). Hence the \(t \)-order of \(V_\sigma(x, t, T) \) is exactly \(\lambda(\sigma) \). For \(1 \leq r \leq q \), let
\[P^{(r)}_\sigma(x, t, T) := \alpha(\sigma(v(z, \pi(B_r) \cap R(\sigma), \varepsilon))), \quad Q^{(r)}_\sigma(x, t, T) := \alpha(\sigma(v(z, \pi(B_r) \setminus R(\sigma), \varepsilon))). \]

Now for \(1 \leq r \leq q \), we do have
\[\sigma(v(z, \pi(A_r), \varepsilon_r)) = \sigma(v(z, \pi(A_r) \cap R(\sigma), \varepsilon_r)) \cdot \sigma(v(z, \pi(A_r) \setminus R(\sigma), \varepsilon_r)) \]
and hence
\[\alpha(\sigma(v(z, \pi(A_r), \varepsilon_r))) = P^{(r)}_\sigma(x, t, T) \cdot Q^{(r)}_\sigma(x, t, T). \]

Since \(\pi(B_r(\sigma)) \cap \pi(B_s(\sigma)) = \emptyset = \pi(A_r) \cap \pi(A_s) \) for \(1 \leq r < s \leq q \), we have
\[\pi \cap R(\sigma) = \{(i, j) \in \pi \mid \sigma(i, j) \in \pi[N] \setminus \pi \} = \bigcup_{r=1}^{q} (\pi \cap \pi(B_r(\sigma))). \]

and
\[J := \bigcup_{r=1}^{q} (\pi \setminus R(\sigma)) = \{(i, j) \in \pi[N] \setminus \pi \mid \sigma(i, j) \in \pi \}. \]

Recall that \(\sigma \) is also viewed as a permutation of \(\pi[N] \). Hence \(J \) and \(\pi \cap R(\sigma) \) have the same cardinality. Partition \(\pi \cap R(\sigma) \) into \(q \) subsets \(I_1(\sigma), \ldots, I_q(\sigma) \) such that \(|I_r(\sigma)| = |\pi(A_r) \setminus R(\sigma)| \) for \(1 \leq r \leq q \). For \(1 \leq r \leq q \), define
\[\lambda_r(\sigma) := \sum_{(i, j) \in I_r(\sigma)} \varepsilon(i, j) \quad \text{and} \quad e_r(\sigma) := \sum_{(i, j) \in \pi(A_r) \cap R(\sigma)} \varepsilon_r(i, j). \]

Then \(\lambda(\sigma) = \lambda_1(\sigma) + \cdots + \lambda_q(\sigma) \), the \(t \)-order of \(P^{(r)}_\sigma(x, t, T) \) is \(e_r(\sigma) \) and the \(t \)-order of \(Q^{(r)}_\sigma(x, t, T) \) is 0 for \(1 \leq r \leq q \). Consequently, the \(t \)-order of \(V_\sigma(x, t, T) W_\sigma(x, t, T) \) is
\[\lambda(\sigma) + \sum_{r=1}^{q} e_r(\sigma) = \sum_{r=1}^{q} e_r(\sigma) + \lambda_r(\sigma). \]
Our hypothesis (iv) guarantees that firstly \(c_\ell (\sigma) + \lambda_\ell (\sigma) \geq w_\ell \) for \(1 \leq \ell \leq q \) and secondly, since \(\sigma \) is not in \(G \), there is at least one \(r \) with \(c_\ell (\sigma) + \lambda_\ell (\sigma) \geq w_\ell + 1 \). It follows that for each \(\sigma \in S_N \setminus G \), the \(t \)-order of \(V_\sigma(x,t,T)W_\sigma(x,t,T) \) is at least \(w + 1 \).

Let \(\Upsilon := \text{Symm}_N(\delta(z,M)) \). Then we have
\[
\Upsilon = \text{Symm}_N \left(v(z,\pi,\varepsilon) \prod_{r=1}^q v(z,\pi(A_r),\varepsilon_r) \right)
\]
and hence
\[
\alpha(\Upsilon) = \sum_{\sigma \in G} V_\sigma(x,t,T)W_\sigma(x,t,T) + \sum_{\sigma \in G_2S_N} V_\sigma(x,t,T)W_\sigma(x,t,T).
\]
Since \(G \) is nonempty, the first sum on the right has \(t \)-order \(\alpha(\Upsilon) \). Since what has been shown above the first sum on the right has \(t \)-order \(w \) whereas the second sum on the right has \(t \)-order at least \(w + 1 \). Hence \(\alpha(\Upsilon) \) has \(t \)-order \(w \). Since \(w \) is a nonnegative integer, \(\alpha(\Upsilon) \neq 0 \). In particular, \(\Upsilon \neq 0 \).

Remark 2.3. We continue to use the above notation.

1. Suppose \(M \) satisfies the hypotheses of Theorem 2.1 and \(\lambda \) is a positive integer such that
\[
\text{Symm}_{m_\ell}(\delta(z,\lambda M_\ell)) \neq 0
\]
for \(1 \leq \ell \leq q \). Then \(\lambda M \) also satisfies the hypotheses of Theorem 2.1. In general, the polynomials \(\text{Symm}_N(\delta(z,M)) \) and \(\text{Symm}_N(\delta(z,\lambda M)) \) do not seem to be related in any obvious manner (see the last of the Example 2.1 below).

2. Suppose for \(1 \leq i \leq s \), there is a partition \(m^{(i)} \) of \(N \) with respect to which \(M_i \in E(N) \) satisfies the hypotheses of Theorem 2.1 and let \(\Upsilon_i := \text{Symm}_N(\delta(z,M_i)) \). If \(\alpha(\Upsilon_1),\ldots,\alpha(\Upsilon_s) \) are \(k \)-linearly independent, then \(\Upsilon_1,\ldots,\Upsilon_s \) are also \(k \)-linearly independent. Now to ensure \(k \)-linear independence of \(\alpha(\Upsilon_1),\ldots,\alpha(\Upsilon_s) \), it suffices to ensure the \(k \)-linear independence of their respective \(t \)-initial forms. For simplicity, assume that property (2) is satisfied by the \(M_i \) and \(M_i^* = 0 \) for \(1 \leq i \leq s \). Then from the equality (1) in the proof of Theorem 2.1, it follows that the \(t \)-initial coefficient, i.e., the coefficient of the lowest power of \(t \), is not in \(\langle \Upsilon_1,\ldots,\Upsilon_s \rangle \). The \(k \)-linear independence of such products is completely determined by the exponents \(b(m_\ell,m_s) \).

Example 2.1.

1. Consider the following \(E_1,E_2,E_3 \in E(6) \) presented as \(2 \times 2 \) block-matrices.
\[
E_1 := \begin{bmatrix}
0 & C_1 \\
C_1^T & 0
\end{bmatrix},
\]
where
\[
C_1 := \begin{bmatrix}
3 & 3 & 3 \\
3 & 3 & 3 \\
3 & 3 & 4
\end{bmatrix}, \quad C_2 := \begin{bmatrix}
3 & 3 & 3 \\
3 & 3 & 4 \\
3 & 3 & 4
\end{bmatrix}, \quad C_3 := \begin{bmatrix}
3 & 3 & 3 \\
3 & 3 & 4 \\
3 & 3 & 4
\end{bmatrix}.
\]
A direct computation using MAPLE shows that
\[
\text{Symm}_6(\delta(z,E_1)) \neq 0, \quad \text{Symm}_6(\delta(z,E_2)) = 0 \text{ and } \text{Symm}_6(\delta(z,E_3)) \neq 0.
\]
Of course, in the case of \(E_1 \), Theorem 2.1 does apply. Since \(\|C_2\| = 29 = \|C_3\| \) is an odd integer, Theorem 2.1 can not be applied in the case of \(E_2, E_3 \).

2. For \(j = 1,2 \), let \(E_j \in E(5,18) \) be presented in \(2 \times 2 \) block-format as
\[
E_j := \begin{bmatrix}
0 & A_j \\
A_j^T & B
\end{bmatrix}, \text{ where } B := \begin{bmatrix}
0 & 1 & 7 \\
1 & 0 & 1 \\
7 & 1 & 0
\end{bmatrix},
\]
\[
A_1 := \begin{bmatrix}
5 & 13 & 0 \\
5 & 3 & 10
\end{bmatrix} \text{ and } A_2 := \begin{bmatrix}
8 & 10 & 0 \\
2 & 6 & 10
\end{bmatrix}.
\]
Then a MAPLE computation shows that \(h_j := \text{Symm}_5(\delta(z,E_j)) \neq 0 \) for \(j = 1,2 \). Up to a nonzero integer multiple, \(h_1 \) and \(h_2 \) are the same; either one can be identified as the Hermite’s invariant of a quintic binary form (see [2] or [3]). Since this invariant has weight 45, it is a skew invariant. Let \(M \in E(9,90) \) be the \(2 \times 2 \) block-matrix \([M_1] \) such that \(M_{11} = 0, M_{12} = 4 \times 5 \text{ matrix having each entry } 18 \text{ and } M_{22} \in \{E_1,E_2\} \). Note that Theorem 2.1 is applicable and thus \(g := \text{Symm}_6(\delta(z,M)) \) is a nonzero invariant of a binary nonic. Also, since \(g \) has weight 405, \(g \) is a skew invariant.
3. Let $M \in E(4,2)$ be the 2×2 block matrix $[M_{ij}]$, where $M_{11} = 2D_2 = M_{22}$ and $M_{12} = 0 = M_{21}$. Let
g := Symm_4(δ(z, M)) \text{ and } h := Symm_4(δ(z, 2M)). Then } 2M \in E(4,4) \text{ and by Lemma 2.1, } gh \neq 0.
Clearly, g and h both are invariants of a binary quartic. A computation employing MAPLE shows that g and h are algebraically independent over k.

Lemma 2.2. Suppose d is a positive integer such that N/d is an integer multiple of 4. Then there is an explicitly described $E \in E(N, d)$ such that each entry of E is an even integer. Moreover, if k has characteristic 0, then $g := Symm_N(δ(z, E))$ is a nonzero invariant (of degree d) of a binary form of degree N.

Proof. First, suppose $N = 2m$ for some positive integer m and d is an even positive integer. Let $E \in E(N)$ be the $m \times m$ block matrix $[M_{ij}]$ such that $M_{ij} := dD_2$ for $1 \leq r \leq m$ and $M_{ij} = 0$ for $1 \leq i < j \leq m$. Then clearly $E \in E(N, d)$ and since d is even, each entry of E is an even integer. Secondly, suppose N is odd and $d = 4e$ for some positive integer e. Our construction proceeds by induction on N. If $N = 3$, then let $E := (2e)D_3$. Henceforth, assume $N \geq 5$. If $N = 3$ is odd, then by induction hypothesis, we have an $M \in E(N − 3, d)$ such that each entry of M is an even integer. If $N − 3$ is even, then by the first part of our proof we have an $M \in E(N − 3, d)$ such that each entry of M is an even integer. Now let E be the 2×2 block matrix $[C_{ij}]$ with $C_{11} := (2e)D_3$, $C_{22} := M$ and $C_{12} = C_{21} = 0$. Then clearly $E \in E(N, d)$ and each entry of E is an even integer. In either case, provided $char k = 0$, Lemma 2.1 ensures that $g \neq 0$. □

Theorem 2.2. Assume that $N \geq 3$.

(i) Suppose m, n are positive integers such that $n \geq 2$ and $N = mn$. Let a, b be positive integers and let $d := 2a(n − 1) + (m − 1)(n − 1)b$. Then there is an explicitly described $E \in E(N, d)$ such that $g := Symm_N(δ(z, E))$ is a (degree d) nonzero invariant of a binary form of degree N.

(ii) Suppose m, n, r are positive integers such that $n \geq 2$, $1 \leq r \leq mn − 1$ and $N = 2mn − r$. Given positive integers a, b such that
\[c := \frac{2(n − 1)a + (m − 1)(n − 1)b}{r}\]
is an integer, there is an explicitly described $E \in E(N, nmc)$ yielding a (degree nmc) nonzero invariant $g := Symm_N(δ(z, E))$ of a binary form of degree N.

(iii) Suppose l, m, n are positive integers such that $l < m < n < l + m$ and $N = l + m + n$. Given a positive integer d such that each of
\[a := \frac{(m + l − n)d}{2ln}, \quad b := \frac{(l + n − m)d}{2ln}, \quad c := \frac{(m + n − l)d}{2mn}\]
is an integer, there is an explicitly described $E \in E(N, d)$ yielding a (degree d) nonzero invariant $g := Symm_N(δ(z, E))$ of a binary form of degree N.

(iv) Suppose s is a nonnegative integer and t, u, v are positive integers such that $t \leq 2u \leq 2t − 1$. Then letting
\[N := 2(2tv + 1) \text{ and } d := (2s + 1)(2u + 1)(4w + 2v + 1),\]
there is an explicitly described $E \in E(N, d)$ such that $g := Symm_N(δ(z, E))$ is a nonzero invariant of a binary form of degree N. Moreover, g is a skew invariant of weight $w := (2s + 1)(2tv + 1)(2u + 1)(4w + 2v + 1)$.

(v) Given $E \in E(N, d)$ such that each entry of E is strictly less than d and $Symm_N(δ(z, E)) \neq 0$, a matrix $E^* \in E(2N − 1, dN)$ can be so constructed that $g := Symm_N(δ(z, E^*))$ is a nonzero invariant of a binary form of degree $2N − 1$.

Proof. To prove (i), let $E \in E(N)$ be the $n \times n$ block matrix $[M_{ij}]$, where $M_{ii} = 0$ for $1 \leq i \leq n$ and $M_{ij} = 2aI + bD_m$ for $1 \leq i < j \leq n$. It is straightforward to verify that $E \in E(N, d)$ and Theorem 2.1 can be applied to deduce $g \neq 0$.

To prove (ii), first note that $mn − r \geq 1$. Let $E \in E(N)$ be the $(n + 1) \times (n + 1)$ block matrix $[M_{ij}]$ defined as follows. For $1 \leq i \leq n + 1$, $M_{ii} = 0$. If $mn − r \leq m$, then for $1 \leq i < j \leq n + 1$, M_{ij} is the $(mn − r) \times m$ matrix having each entry equal to c and $M_{ij} = 2aI + bD_m$. If $m < mn − r$, then for $1 \leq i < j \leq n + 1$, $M_{ij} = 2aI + bD_m$ and $M_{(n+1)j}$ is the $m \times (mn − r)$ matrix having each entry equal to c. Then clearly $E \in E(N, d)$. If $mn − r = m$, then $m(mn − r)c = 2ma + m(n + m)c$ is necessarily an even integer. Now it is straightforward to verify that Theorem 2.1 can be employed to infer $g \neq 0$.

To prove (iii), let $E \in E(N)$ be the 3×3 block matrix $[M_{ij}]$ such that $M_{rr} = 0$ for $1 \leq r \leq 3$, $M_{12} = M_{21}^T$ is the $l \times m$ matrix having each entry equal to a, $M_{13} = M_{31}^T$ is the $l \times n$ matrix having each entry equal to b and $M_{23} = M_{32}^T$ is the $m \times n$ matrix having each entry equal to c. By hypothesis, each of a, b, c is a positive
integer. Since \(d = ma + nb = la + nc = lb + mc \), we have \(E \in E(N,d) \). As before, it is easily verified that Theorem 2.1 is indeed applicable in this case and hence \(g \neq 0 \).

To prove (iv), let \(m := 1, n := 4w + 2r + 1 \) and \(r := 8w - 4v + 4v \). Clearly, \(n \geq 7 \) and \(N = 2mn - r \). Since \(t \leq 2u \leq 2t - 1 \), we have \(1 \leq r \leq n - 1 \). Define \(a := (2s + 1)(2u - t + 1) \) and say \(b := 1 \). Then letting \(c := (2s + 1)(2u + 1) \), we have \(c \geq 3 \) and \(cr = (n - 1)[2a + (m - 1)b] \). Observe that the positive integers \(a, b, c, m, n, r \) satisfy all the requirements of (ii). Thus, by taking \(E \in E(N,d) \) as described in the proof of (ii), we infer that \(g \neq 0 \). If \(w \) denotes the weight of \(g \), then \(2w = Nd \) and hence \(w = (2s + 1)(2u + 1)(4u + 2v + 1) \). Since \(w \) is an odd integer, \(g \) is a skew invariant.

Lastly, to prove (v), suppose \(E \in E(N,d) \) is such that each entry of \(E \) is strictly less than \(d \) and \(\text{Symm}_N(\delta(z,E)) \neq 0 \). Let \(E^* \) be the \(2 \times 2 \) block matrix \([C_{ij}]\), where \(C_{11} := 0, C_{22} := E \) and \(C_{12} = C_{21}^T \) is the \((N - 1) \times N\) matrix with each entry equal to \(d \). Clearly, \(E^* \in E(2N - 1, dN) \) and Theorem 2.1 can be applied to infer \(g \neq 0 \).

Example 2.2. We continue assuming \(N \geq 3 \).

1. \(N = 4e \). Using (i) of Theorem 2.2 with \(n := 2 \) and \(m := 2e \), we obtain nonzero invariants of degree \(d \) for \(d = 2e + 1 \) and all \(d \geq N - 1 \). If \(\text{char} k = 0 \) and \(d \leq N - 2 \) is even, then Lemma 2.2 yields a nonzero invariant of degree \(d \).

2. With the notation of (iii), let \(Y := \{1 \leq d \in \mathbb{Z} \mid a,b,c \in \mathbb{Z}\} \) and
 \[
 y := \frac{2lmn}{\gcd(N - 2l, N - 2m, N - 2n, 2lmn)}.
 \]
 Then it is straightforward to verify that \(d \in Y \) if and only if \(d = sy \) for some positive integer \(s \). Of course, \(2lmn \in Y \); but \(y \) can be strictly less than \(2lmn \) (e.g., consider \((l,m,n) := (2,5,6)\) or \((l,m,n) := (9,15,21)\)). If \(l + m + n \) is odd and \(d = 2 \mod 4 \), then the resulting \(g \) is a nonzero skew invariant. So, (iii) produces skew invariants for binary forms of odd degrees (in contrast to (iv)). The least value of \(N \) for which (iii) may be used to obtain skew invariants is \(N = 3 + 5 + 7 = 15 \); whereas for the ones that can be obtained by using (iv), it is \(N = 2(2 \cdot 1 + 1) = 10 \). For 3-partitions \(N = l + m + n \) with \(l \leq m \leq n \leq l + m \), by imposing additional requirements such as: \((l + m - n)d \) is divisible by 4 if \(l = m \) and so on, hypotheses of Theorem 2.1 can be satisfied. Assertion (iii) can be generalized for certain types of partitions of \(N \) into 4 or more parts; the task of formulating such generalizations is left to the reader.

3. Let \(E \in \{E_1, E_2\} \subset E(5,18) \), where \(E_1, E_2 \) are as in the second example above Theorem 2.2. For \(2 \leq n \in \mathbb{Z} \), let \(d_n, M_n \in E(2^n + 1, d_n) \) be inductively defined by setting \(d_2 := 18, M_2 := E, d_{n+1} := (2^n + 1)d_n \) and where \(M_{n+1} := M_n^* \), is derived from \(M_n \) as in (iv) of Theorem 2.2. Then by (v) of Theorem 2.2,
 \[g_n := \text{Symm}_{2^n+1}(\delta(z,M_n)) \]
 is a nonzero skew invariant of a binary form of degree \(2^n + 1 \) for \(2 \leq n \in \mathbb{Z} \).

Remark 2.4. Theorem 2.2 exhibits the simplest applications of Theorem 2.1. At present, there does not exist a characterization of pairs \((N,d)\) for which Theorem 2.1 can be used to obtain a nonzero invariant. Interestingly, it is impossible to use Theorem 2.1 to construct invariants corresponding to certain pairs \((N,d)\), e.g, consider \((N,d) = (5,18)\): an elementary computation verifies that Hermite’s invariant of a binary quintic cannot be constructed via Theorem 2.1. A ‘good’ generalization of Theorem 2.1, if it exists, should repair this failing.

3. Enumeration of a class of Semi-invariants

In what follows, we use the results of the previous section to build a family of linearly independent semi-invariants of certain weights and degrees. Our construction allows explicit enumeration of these semi-invariants.

Definition 3.1. Let \(n, s \) be a positive integers.

1. Let \(\preceq \) denote the lexicographic order on \(\mathbb{Z}^{s+1} \).

2. For \(\alpha := (a_1, \ldots, a_{s+1}) \in \mathbb{Z}^{s+1} \), let \(|\alpha| := \sum_{i=1}^{s+1} a_i \) and
 \[
 \wt(n,\alpha) := \frac{1}{2} \left[n^2 - \left(\sum_{i=1}^{s+1} a_i^2 \right) \right].
 \]

3. Define \(\varphi(s,n) := (\varphi_1(s,n), \ldots, \varphi_{s+1}(s,n)) \in \mathbb{Z}^{s+1} \), where
 \[
 \varphi_j(s,n) := \left[\frac{n - \sum_{1 \leq i \leq j-1} \varphi_i}{s + 2 - j} - \frac{(s+1-j)}{2} \right] \quad \text{for } 1 \leq j \leq s+1.
 \]
4. Let \(\varpi(s, n) := \text{wt}(n, \varphi(s, n)) \).

5. By \(\mathcal{S}(s, n) \) we denote the set of all \(\alpha := (a_1, \ldots, a_{s+1}) \in \mathbb{Z}^{s+1} \) such that \(a_1 < a_2 < \cdots < a_{s+1} \) and \(|\alpha| = n \). Let \(\mathcal{P}(s, n) \) be the subset of \(\mathcal{S}(s, n) \) consisting of \((a_1, \ldots, a_{s+1}) \in \mathcal{S}(s, n) \) with \(a_1 \geq 1 \).

6. For \((i, j) \in \mathbb{Z}^2 \) with \(1 \leq i < j \leq s + 1 \), let \(\eta(i, j) := (\eta_1, \ldots, \eta_{s+1}) \) where \(\eta_r = 0 \) if \(r \neq i, j \), \(\eta_i = 1 \) and \(\eta_j = -1 \). An \((s + 1)\)-tuple \(\beta \) is said to be an elementary modification of \(\alpha \in \mathbb{Z}^{s+1} \) provided \(\beta = \alpha + \eta(i, j) \) for some \(1 \leq i < j \leq s + 1 \). An \((s + 1)\)-tuple \(\beta \) is said to be a modification of \(\alpha \in \mathbb{Z}^{s+1} \) if there is a finite sequence \(\alpha = \alpha_1, \ldots, \alpha_r = \beta \) such that \(\alpha_i \) is an elementary modification of \(\alpha_{i-1} \) for \(2 \leq i \leq r \).

Lemma 3.1. Fix positive integers \(n, s \) and let \(e \) be the integer such that

\[
 n - \frac{s(s + 1)}{2} = \left\lfloor \frac{n}{s+1} - \frac{s}{2} \right\rfloor (s + 1) + e.
\]

Let \(\varphi(s, n) = (p_1, \ldots, p_{s+1}) \). Then, the following holds.

(i) We have

\[
 p_j = \begin{cases}
 p_1 + j - 1 & \text{if } 1 \leq j \leq s + 1 - e, \text{ and} \\
 p_1 + j & \text{if } s + 2 - e \leq j \leq s + 1.
\end{cases}
\]

In particular, \(\varphi(s, n) \in \mathcal{S}(s, n) \). Moreover, if \((s + 1)(s + 2) \leq 2n \), then \(\varphi(s, n) \in \mathcal{P}(s, n) \).

(ii) We have

\[
 \varpi(s, n) = \frac{(s + 1)(s + 2)}{2} \left(\frac{n}{s+1} - \frac{s}{2} \right)^2 + \frac{(s + 1)^2(s + 2) - 2n(s + 2)}{2} \left(\frac{n}{s+1} - \frac{s}{2} \right) + 3(s + 1)^4 + 2(s + 1)^3 - 3(1 + 4n)(s + 1)^2 - 2(1 + 6n)(s + 1) + 24n^2.
\]

(iii) Let \(\alpha := (a_1, \ldots, a_{s+1}) \in \mathcal{S}(s, n) \). Then, \(\alpha \preceq \varphi(s, n) \), \(\varphi(s, n) \) is a modification of \(\alpha \) and

\[
 \sum_{1 \leq i < j \leq s+1} a_i a_j = \text{wt}(n, \alpha) \leq \varpi(s, n).
\]

(iv) \(\mathcal{P}(s, n) \neq \emptyset \) if and only if

\[
 s \leq \left\lfloor \frac{\sqrt{8n + 1} - 1}{2} \right\rfloor - 1.
\]

(v) Suppose \(s \geq 2 \), \((s + 1)(s + 2) \leq 2n \) and \(p_1 + e = bs + d \) where \(b, d \) are nonnegative integers with \(d \leq s - 1 \). Then, letting \(\varphi(s - 1, n) := (q_1, \ldots, q_s) \), we have \(q_1 = p_1 + b + 1 \) and

\[
 \varpi(s, n) - \varpi(s - 1, n) = p_1(s + 1 - e) + bd(s + 1) + \frac{1}{2} b(b-1)s(s+1).
\]

In particular, \(q_1 > p_1 \) and \(\varpi(s, n) - \varpi(s - 1, n) \geq 2p_1 \). If \(p_1 = 1 \), then \(2 \leq q_1 \leq 3 \) and \(2 \leq \varpi(s, n) - \varpi(s - 1, n) \leq 2s \).

(vi) Suppose \(s \geq 2 \), \((s + 1)(s + 2) \leq 2n \) and let \(v(s, n) := (v_1, \ldots, v_s) \) where \(v_i := i \) for \(1 \leq i \leq s \) and \(v_s = n - (1/2)(s+1) \). Then, \(v(s, n) \preceq \alpha \) and \(\text{wt}(n, v(s, n)) \leq \text{wt}(n, \alpha) \) for \(\alpha \in \mathcal{P}(s, n) \).

Proof. Note that \(0 \leq e \leq s \) and hence \(s + 1 - e \geq 1 \). Suppose \(1 \leq j \leq s + 1 - e \) is such that \(p_i = p_i + i - 1 \) for \(1 \leq i \leq j \). Then,

\[
 p_{j+1} = \left\lfloor p_1 - \frac{j(j-1) - s(s+1) - 2e + (s-j)(s+1-j)}{2(s+1-j)} \right\rfloor.
\]

If \(j < s + 1 - e \), then \(e < s + 1 - j \) and hence \(p_{j+1} = p_1 + j \). If \(j = s + 1 - e \), then \(p_{j+1} = p_1 + j + 1 \). Next suppose (i) holds for some \(j \) with \(s + 2 - e \leq j \leq s \). Then,

\[
 p_{j+1} = \left\lfloor p_1 - \frac{j(j-1) - s(s+1) + 2(j+e-s-1) - 2e + (s-j)(s+1-j)}{2(s+1-j)} \right\rfloor.
\]
Clearly, \(p_1 < p_2 < \cdots < p_{s+1} \) and if \((s+1)(s+2) \leq 2n\), then \(p_1 \geq 1 \). Also, \(|\varphi(s, n)| = p_1(s+1) + [s(s+1)/2] + e = n\). Thus (i) holds.

Let \(u(X), v(X) \in \mathbb{Z}[X] \) be defined by

\[
v(X) = \prod_{j=0}^{s+1} (X + p_1 + j) = (X + p_1 + s + 1 - e)u(X).
\]

Then, \(\varpi(s, n) \) is the coefficient of \(X^{s-1} \) in \(u(X) \). The coefficient of \(X^s \) in \(v(X - p_1) \) is

\[
\frac{1}{2} \left(\sum_{i=0}^{s+1} i \right)^2 - \frac{1}{2} \sum_{i=0}^{s+1} i^2 = \frac{(3s + 5)(s+2)(s+1)s}{24}.
\]

Now a straightforward computation verifies (ii).

Obviously, \(wt(n, \alpha) < n^2 \) for all \(\alpha \in \mathfrak{S}(s, n) \). If \(\beta \in \mathfrak{S}(s, n) \) is an elementary modification of \(\alpha = (a_1, \ldots, a_{s+1}) \in \mathfrak{S}(s, n) \), then note that \(wt(n, \beta) > wt(n, \alpha) \). Hence \(\alpha \) has a modification \(v \in \mathfrak{S}(s, n) \) that is ‘final’ in the sense that no member of \(\mathfrak{S}(s, n) \) is an elementary modification of \(v \). Fix such \(v := (v_1, \ldots, v_{s+1}) \).

If \(1 \leq i \leq s + 1 \) is such that \(v_{i+1} > v_i + 2 \), then \(v + \eta(i, i + 1) \in \mathfrak{S}(s, n) \); this contradicts our assumption about \(v \). So, \(v_i + 1 \leq v_{i+1} \leq v_i + 2 \) for all \(1 \leq i \leq s \). If there are \(1 \leq i < j \leq s + 1 \) such that \(v_{i+1} = v_i + 2 \) as well as \(v_{j+1} = v_j + 2 \), then \(v + \eta(i, j) \in \mathfrak{S}(s, n) \); an impossibility. Hence \(a_{i+1} = a_i + 2 \) for at most one \(i \) with \(1 \leq i \leq s \). Consequently, \(n = |v| = (s+1)v_1 + (s+1-i) + [s(s+1)/2] \) for some \(j \) with \(1 \leq j \leq s + 1 \). Clearly, \(s = s + 1 - e \) and in view of (ii), we have \(v = \varphi(s, n) \). Thus \(\varphi(s, n) \) is a modification of \(\alpha \). In particular, \(wt(n, \alpha) \leq \varphi(s, n) \) and \(\alpha \leq \varphi(s, n) \). The equality displayed on the left in (iii) readily follows from the definition of \(wt(n, \alpha) \). Thus (iii) holds.

Assertion (iv) is simple to verify. To prove (v), assume \(s \geq 2 \) and let \(p_1 + e = bs + d \) where \(b, d \) are nonnegative integers with \(d \leq s - 1 \). Consequently, \(q_1 = p_1 + b + 1 > p_1 \). Using (ii) \(\varpi(s, n) - \varpi(s-1, n) \) can be computed in a straightforward manner. If \(e \leq s - 1 \), then \(\varpi(s, n) - \varpi(s-1, n) \) is clearly \(\geq 2p_1 \). If \(e = s \), then we have \(b = 1 \) and since \((b - 1)s = p_1 - d\)

\[
\varpi(s, n) - \varpi(s-1, n) \geq p_1 \left(1 + \frac{1}{2}b(s+1) \right) \geq 2p_1.
\]

If \(p_1 = 1 \), then since \(0 \leq e \leq s \) and \(s \geq 2 \), we have \(0 \leq b \leq 0 \). If \(e \leq s - 1 \), then \(b = 0 \) and hence \(q_1 = 2 \), \(\varpi(s, n) - \varpi(s-1, n) = s + 1 - e \leq s + 1 \). If \(e = s - 1 \), then \(b = 1, d = 0 \) and hence \(q_1 = 3 \), \(\varpi(s, n) - \varpi(s-1, n) = 2 \).

Lastly, if \(e = s \), then \(b = 1 = d \) and hence \(q_1 = 3 \), \(\varpi(s, n) - \varpi(s-1, n) = s + 2 \). This establishes (v). The proof of (vi) is left to the reader.

Lemma 3.2. Let \(m, n, t \in \mathbb{Z} \) and \((b_1, \ldots, b_m) \in \mathbb{Z}^m \) be such that \(m \geq 1 \), \(n \geq 1 \), \(b_1 + \cdots + b_m = t \) and \(b_i \geq 0 \) for \(1 \leq i \leq m \). Let \(t = qn + r \), where \(q, r \) are integers with \(q \geq 0 \) and \(0 \leq r < n \). Then, there exists an \(m \times n \) matrix \(A := [a_{ij}] \) satisfying the following.

(i) \(0 \leq a_{ij} \in \mathbb{Z} \) for \(1 \leq i \leq m \), \(1 \leq j \leq n \) and \(\|A\| = t \).

(ii) \(c_j(A) := r_j(A^T) = \begin{cases} q+1 & \text{if } 1 \leq j \leq r \text{ and } \\ q & \text{if } r+1 \leq j \leq n. \end{cases} \)

(iii) \(r_i(A) = b_i \) for \(1 \leq i \leq m \).

Proof. Let \(t = qn + r \), where \(q, r \) are integers with \(q \geq 0 \) and \(0 \leq r < n \). Our proof proceeds by induction on \(m \).

Case 1: \(\rho = r \). By our induction hypothesis there is an \((m-1) \times n \) matrix \([a_{ij}]\) such that \(0 \leq a_{ij} \in \mathbb{Z} \) for \(1 \leq i \leq m - 1 \) and \(1 \leq j \leq n \), \(\|A\| = t - b_m \), \(a_1 + \cdots + a_{(m-1)j} = q - \ell \) for \(1 \leq j \leq r - \rho \), \(a_{1j} + \cdots + a_{(m-1)j} = q - \ell \) for \(r - \rho + 1 \leq j \leq n \) and \(a_1 + \cdots + a_m = b_1 \) for \(1 \leq i \leq m - 1 \). Define \(a_{nj} := \ell \) for \(1 \leq j \leq r - \rho \), \(a_{nj} := \ell + 1 \) for \(r - \rho + 1 \leq j \leq r \) and \(a_{nj} := \ell \) for \(r + 1 \leq j \leq n \). Then, the resulting \(m \times n \) matrix \([a_{ij}]\) is clearly the desired matrix \(A \).

Case 2: \(\rho > r \). At the outset observe that \(r < n + r - \rho < n \). As before, our induction hypothesis ensures the existence of an \((m-1) \times n \) matrix \([a_{ij}]\) such that \(0 \leq a_{ij} \in \mathbb{Z} \) for \(1 \leq i \leq m - 1 \), \(1 \leq j \leq n \), \(\|A\| = t - b_m \), \(a_1 + \cdots + a_{(m-1)j} = q - \ell \) for \(1 \leq j \leq n + r - \rho \), \(a_1 + \cdots + a_{(m-1)j} = q - \ell - 1 \) for \(n + r - \rho + 1 \leq j \leq n \) and \(a_1 + \cdots + a_m = b_1 \) for \(1 \leq i \leq m - 1 \). Define \(a_{nj} := \ell + 1 \) for \(1 \leq j \leq r \), \(a_{nj} := \ell \) for \(r + 1 \leq j \leq n + r - \rho \) and \(a_{nj} := \ell + 1 \) for \(n + r - \rho + 1 \leq j \leq n \). Then, the resulting \(m \times n \) matrix \([a_{ij}]\) is the desired matrix \(A \).
Definition 3.2. Let n and w be positive integers.

1. Define

$$\beta(n) := \left\lfloor \frac{\sqrt{8n + 1} - 1}{2} \right\rfloor.$$

2. For an integer s with $1 \leq s \leq \beta(n) - 1$ and an $a := (m_1, \ldots, m_{s+1}) \in \mathbb{P}(s, n)$, define

$$\nu(w, a) := \left(\frac{s - 1 + w - wt(n, a)}{s - 1} \right)$$

and

$$d(w, a) := \begin{cases}
 n - 1 + w - wt(n, a) & \text{if } m_1 = 1, \\
 n - 1 + w - wt(n, a) & \text{if } w = 1 + wt(n, a), \\
 n - m_1 + 1 + \left\lfloor \frac{w - wt(n, a)}{m_1} \right\rfloor & \text{otherwise}.
\end{cases}$$

3. Let $\nu(w, s, n) := \nu(w, \varphi(s, n))$ and $d(w, s, n) := d(w, \varphi(s, n))$.

Theorem 3.1. Assume that N is an integer ≥ 3 and k is a field of characteristic either 0 or strictly greater than N. Let F be the generic binary form of degree N (as in the introduction). Let s be an integer with $1 \leq s \leq \beta(N) - 1$ and let $a := (m_1, \ldots, m_{s+1}) \in \mathbb{P}(s, N)$. Let $m := m_1$ and let w be an integer such that $\theta := w - wt(N, a) \geq 1$. Then, for a positive integer $d \geq d(w, a)$, there exist $\nu(w, a)$ k-linearly independent semi-invariants of F of weight w and degree d.

Proof. Fix an ordered s-tuple $(\theta_1, \ldots, \theta_s)$ of nonnegative integers with

$$\theta_1 + \cdots + \theta_s = \theta.$$

Since $\theta \geq 1$, using Lemma 3.2 we obtain an $s \times m$ matrix $B^* := \lfloor b^*_w \rfloor$ having nonnegative integer entries such that $r_1(B^*) = \theta_i$ for $1 \leq i \leq s$ and

$$\lfloor \theta/m \rfloor \leq c_m(B^*) \leq \cdots \leq c_1(B^*) = \lfloor \theta/m \rfloor.$$

Let u be the greatest positive integer such that $c_u(B^*) \geq 1$ and let v be the least positive integer with $b^*_w \geq 1$. Define an $s \times m$ matrix $B := \lfloor b_{ij} \rfloor$ as follows. If $u = 1$ (in particular, if $m = 1$), let $B = B^*$. If $u \geq 2$, then let $b_{ij} := b^*_w$ for $(i, j) \neq (v, 1), (v, u)$, let $b_{uu} := b^*_w - 1$ and let $b_{v1} := b^*_w + 1$. Then, B has nonnegative integer entries, $r_i(B) = \theta_i$ for $1 \leq i \leq s$,

$$c_1(B) = \min \{1 + \lceil \theta/m \rceil, \theta\}, \quad \text{and} \quad \\
\lfloor \theta/m \rfloor - 1 \leq c_j(B) \leq \lceil \theta/m \rceil, \quad \text{for } 2 \leq j \leq m.$$

Using Lemma 3.2 again, we obtain matrices A_1, \ldots, A_s with nonnegative integer entries such that

(1) A_l has size $m \times m_{l+1}$ for $1 \leq l \leq s$,
(2) $r_i(A_l) = \theta_i$ for $1 \leq l \leq s$, $1 \leq i \leq m$ and
(3) $\lfloor \theta_i/m \rfloor \leq c_j(A_l) \leq c_j - 1(A_i) \leq \lceil \theta_i/m \rceil$ for $2 \leq j \leq m_{l+1}$.

Clearly, $\|A_l\| = \theta_i$ for $1 \leq l \leq s$. Furthermore, we have

(4) $r_1(A_1) + \cdots + r_1(A_s) = \min \{1 + \lceil \theta/m \rceil, \theta\}$, and
(5) $r_i(A_1) + \cdots + r_i(A_s) \leq \lceil \theta/m \rceil$ for $2 \leq i \leq m$.

Let I denote a matrix (of any chosen size) having each entry 1. Let $M := [M_{ij}]$ be an $(s + 1) \times (s + 1)$ block-matrix such that M_{ij} is the transpose of M_{ji} for $1 \leq i \leq j \leq s + 1$, and the block M_{ij} is a $m_i \times m_j$ matrix defined by

$$M_{ij} := \begin{cases}
 0 & \text{if } i = j, \\
 I + A_{j-1} & \text{if } 1 \leq i < j \leq s + 1, \\
 I & \text{if } 2 \leq i < j \leq s + 1.
\end{cases}$$

Let M' denote the $(N - 1) \times (N - 1)$ matrix obtained from M by deleting the first row as well as the first column of M. Then, $M \in E(N)$ and $M' \in E(N - 1)$. Also, in view of properties (1) - (5), it is straightforward to verify that

$$r_i(M) = d(w, a) > r_i(M) \quad \text{for } 2 \leq i \leq N.$$
Remark 3.1. ensures that for \(\nu \geq 1, \) \(\alpha \) - independent semi-invariants (of a binary quintic form \(F \)) of weight \(6 + n \) and degree at least \(10 + n \). Let \(\alpha \) be the \(k \)-monomorphism employed in Theorem 2.1. Then, as noted in no. 2 of Remark 2.3, the \(t \)-initial coefficient of \(\alpha(\phi(1, \ldots, \theta_a)) \) is a nonzero constant (i.e., element of \(k \)) multiple of

\[
\eta(\phi(1, \ldots, \theta_a)) := \prod_{1 \leq i < j \leq n} (t_i - t_j)^{m_{ij}} \prod_{1 \leq j \leq n} (t_j - t_i)^{m_{ji}}.
\]

The set of all \(\eta(\phi(1, \ldots, \theta_a)) \) ranging over the allowed choices of \(s \)-tuples \((\phi(1, \ldots, \theta_a)) \), is clearly a \(k \)-linearly independent subset of \(k[t_1, \ldots, t_n] \). Hence the corresponding set \(S(\phi(1, \ldots, \theta_a)) \) is also a \(k \)-linearly independent subset of \(k[z_1, \ldots, z_n] \). Of course \(S(\phi(1, \ldots, \theta_a)) \subset k[e_1, \ldots, e_n] \) (where \(y_1, \ldots, y_n \) and \(e_1, \ldots, e_n \) are as in the introduction). Given \(\phi \in S(\phi(1, \ldots, \theta_a)) \), we homogenize \(\phi \) to get a homogeneous polynomial of degree \(d(w, a) \) in \(a_0, \ldots, a_N \) as in the introduction. In this manner we obtain a \(k \)-linearly independent set \(S(\phi) \) of semi-invariants of \(F \) of degree \(d(w, a) \) and weight \(w \). Obviously, \(|S(\phi)| = |S(\phi(1, \ldots, \theta_a))| \). Letting \(\nu := d - d(w, a) \), it follows that the set \(\{ a_0^s | \sigma \in S(\phi) \} \) is also \(k \)-linearly independent.

Example 3.1. Here we consider the case of \(3 \leq N \leq 7 \). It is essential to point out that the lower bounds proved in [4], [12], [19] assume \(N \geq 8 \). To the best of our knowledge, there is nothing in the existing literature with which we can compare the bounds in examples below.

1. If \(N = 3 \), then \(s = 1 \) and \(\varpi(1,3) = 2 \). In this case, Theorem 3.1 implies that for \(0 \leq n \leq 28 \), there exists a nonzero semi-invariant (of a binary cubic form \(F \)) of weight \(2 + n \) and degree at least \(2 + n \).

2. If \(N = 4 \), then \(s = 1 \) and \(\varpi(1,4) = 3 \). In this case, Theorem 3.1 implies that for \(0 \leq n \leq 28 \), there exists a nonzero semi-invariant (of a binary quartic form \(F \)) of weight \(3 + n \) and degree at least \(3 + n \).

3. If \(N = 5 \), then \(s = 1 \) and \(\varpi(1,5) = 6 \). In this case, Theorem 3.1 implies that for \(0 \leq n \leq 28 \), there exists a nonzero semi-invariant (of a binary quintic form \(F \)) of weight \(4 + n \) and degree at least \(4 + n \). So, we obtain two \(k \)-linearly independent semi-invariants of weight \(6 + n \) and degree at least \(6 + n \).

4. Assume \(N = 6 \). Then \(1 \leq s \leq 2 \), \(\varpi(1,6) = 8 \) and \(\varpi(2,6) = 11 \). Taking \(s = 1 \) in Theorem 3.1, we infer the existence of a nonzero semi-invariant (of a binary sextic form \(F \)) of weight \(8 + n \) and degree at least \(8 + n \) for all \(0 \leq n \leq 28 \). Next, taking \(s = 2 \), Theorem 3.1 ensures the existence of 5 + \(n \) \(k \)-linearly independent semi-invariants of weight \(16 + n \) and degree at least \(10 + n \) for all \(0 \leq n \leq 28 \).

5. Assume \(N = 7 \). Then \(1 \leq s \leq 2 \), \(\varpi(1,7) = 12 \) and \(\varpi(2,7) = 14 \). Letting \(s = 1 \) in Theorem 3.1, we obtain a nonzero semi-invariant (of a binary heptic form \(F \)) of weight \(12 + n \) and degree at least \(5 + [n/3] \) for \(0 \leq n \leq 28 \). Using Theorem 2.1 for the partition \(2 \leq 5 \), we infer the existence of a nonzero semi-invariant of weight \(10 + n \) and degree at least \(6 + [n/2] \) for all \(0 \leq n \leq 28 \). Letting \(s = 2 \) in Theorem 3.1, we deduce the existence of 5 + \(n \) \(k \)-linearly independent semi-invariants of weight \(18 + n \) and degree at least \(5 + [n + 4]/3 \) for all \(0 \leq n \leq 28 \).

Remark 3.1. Let \(N, w, d \) be positive integers. Let

\[
PP(N, w, d) := \left[\frac{4}{1000} \cdot \min\{2w, d^2, N^2\} \right]^{1/2} \cdot 2^{\min\{2w, d^2, N^2\}}.
\]

If \(\min\{N, d\} \geq 8 \) and \(w \leq Nd/2 \), then by Theorem 1.2 of [12], there are at least \(PP(N, w, d) \) \(k \)-linearly independent semi-invariants (of a binary \(N \)-ic form \(F \)) of degree \(d \) and weight \(w \). Observe that for \((w, d) \) with \(w \geq N^2/2 \) and \(d \geq N \), the bound \(PP(N, w, d) \) is independent of \((w, d) \) (i.e., depends only on \(N \)). In contrast, the lower bound \(\nu(w, a) \) is a polynomial of degree \(s - 1 \) in \(w \). The reader may wish to make similar comparison with results of [4].

Example 3.2. Let \(\nu(w, N) := \nu(w, \beta(N - 1, N)) \). Consider the case of \(N = 15 \). Note that \(\beta(N) = 5 \) and \(P(4,15) = \{ 15 \} \). We have \(\varpi(4,15) = 85 \) and \(\varpi(4,15) = 1 \). Let \(\nu(w) := \nu(w, 4, 15) \). Then, Theorem 3.1 ensures that for \(0 \leq n \leq 28 \), we have at least \(\nu(85 + n) \) \(k \)-linearly independent semi-invariants of weight \(85 + n \) and degree \(d \geq 14 + n \). Observe that \(2(85 + n) < (14 + n)^2 \) for \(n \geq 0 \), \(N^2 = 225 < 2(85 + n) \) for \(n \geq 28 \) and

\[
\nu(85 + n) = \left[\frac{3 + n}{3} \right] = \frac{1}{6} n^3 + \frac{11}{6} n + 1 \quad \text{for } n \geq 0.
\]
A straightforward computation verifies that $PP(15, 85 + n, d) = 1 < \nu(85 + n)$ for all $n \geq 0$ and $d \geq 14 + n$. Let $\text{semdim}(w, d, N)$ denote the dimension of the k-vector space of semi-invariants (of our N-ic form F) of weight w and degree d. Assume k has characteristic 0. Then, in the notation of the introduction, $\text{semdim}(w, d, N)$ is

$$ p_w(N, d) - p_{w-1}(N, d) := \text{the coefficient of } q^w \text{ in } (1 - q) \binom{N + d}{d}_q. $$

The table below presents a MAPLE computation of $\nu(85 + n)$ and $\text{semdim}(85 + n, 14 + n, 15)$ (denoted by semdim) for a small sample of values of w.

<table>
<thead>
<tr>
<th>w</th>
<th>$\nu(w)$</th>
<th>semdim</th>
<th>w</th>
<th>$\nu(w)$</th>
<th>semdim</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>286</td>
<td>1020697</td>
<td>125</td>
<td>12341</td>
<td>25995316</td>
</tr>
<tr>
<td>105</td>
<td>1771</td>
<td>4232793</td>
<td>135</td>
<td>23426</td>
<td>54621331</td>
</tr>
<tr>
<td>115</td>
<td>5456</td>
<td>11374824</td>
<td>145</td>
<td>39711</td>
<td>108639772</td>
</tr>
</tbody>
</table>

Let $s = 3$ and $a := \nu(3, 15) = (1, 2, 3, 9)$. Then, for integers $n \geq 0$, we have $\nu(65 + n, a) = (1/2)(n + 2)(n + 1) + d(65 + n, a)$ and $d(65 + n, a) = 14 + n$. At the other extreme, if $a = \nu(3, 15)$, then $\nu(3, 15) = 80$ and $\nu(2, 15) = 2$. So, $\nu(80 + n, 3, 15) = (1/2)(n + 2)(n + 1)$ and $d(80 + n, 3, 15) = 14 + \lceil n/2 \rceil$ for all $n \geq 0$. Thus for weights $65 \leq w < 80$, our lower bound is for degrees $\geq w - 1$; whereas, for weights $w \geq 80$ our lower bound is for degrees $\geq 14 + \lceil (w - 80)/2 \rceil$. If $s = 2$, then $\nu(2, 15) = 74$ and $\nu(2, 15) = 4$. Hence $\nu(74 + n, 2, 15) = n + 1$ and $d(74 + n, 2, 15) = 12 + \lceil n/4 \rceil$ for all $n \geq 0$. For $s = 1$, we have $\nu(1, 15) = 56$ and $\nu(1, 15) = 7$. Consequently, $\nu(56 + n, 1, 15) = 1$ and $d(56 + n, 1, 15) = 9 + \lceil n/7 \rceil$.

References

