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Abstract: Conventionally, a pair (σi, σi+1) is a bond in a permutation σ = σ1σ2 · · ·σn if σi− σi+1 = ±1. The
number of bonds in a permutation σ ∈ Sn has a direct influence on the number of distinct patterns of order
n − 1 contained in σ, affecting the structure of the downset of σ in the containment poset

⋃
n∈N Sn. Thus, to

characterize the sparseness of the downset of a permutation σ ∈ Sn, we aim not only to find the number of
bonds in σ, but also to predict the number of bonds contained in its patterns. To this end, we introduce a new
statistic, separator number, as a significant factor in measuring the sparseness of this poset. An element σj in
a permutation σ = σ1 · · ·σn ∈ Sn is defined to be a separator of σ if we can obtain a new bond by omitting it
from σ. We also present some enumerative and asymptotic results regarding this new statistic.
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1. Introduction

Let Sn be the symmetric group of n elements. Let σ, π ∈
⋃
n∈N Sn. We say that σ contains π or that π is a

pattern of σ if there exists a subsequence of elements of σ that is order-isomorphic to π. As an example, the
permutation σ = 3624715 (written in one-line-notation) contains π = 3142, as both the subsequences 6275 and
6475 testify. If π is contained in σ, this relation is denoted by the expression π � σ.

The set of all permutations ∪n∈NSn is a poset under the containment order. This is called the permutation
pattern poset.

Omitting one element from a permutation σ = σ1 · · ·σn ∈ Sn and standardizing, we obtain a permutation
π ∈ Sn−1 such that π � σ. The omission of σi or σj produces the same permutation if and only if (σi and σj)
belong to the same strip, defined as follows.

Definition 1.1. Let σ = σ1σ2 · · ·σn be a permutation and let i ∈ {1, 2, ..., n − 1}. Then, we say that the pair
(σi, σi+1) is a 2-block or a bond in σ if σi − σi+1 = ±1 . We further define a sequence (σi, σi+1, · · · , σi+k−1)
to be a strip of length k > 1 if, for each 0 ≤ j ≤ k− 2, the pair (σi+j , σi+j+1) is a bond. We also allow (trivial)
strips of length k = 1. Note that a strip of a permutation might be ascending or descending. Occasionally, we
omit parentheses in bonds or strips.

Example 1.1. The permutation σ = 45187623 has 45, 1, 876 and 23 as its maximal strips.

Permutations of Sn with zero bonds are connected to the problem of placing n non-attacking kings in an
n × n chessboard. These permutations were counted in [12] (see also [10]), and the structure of their pattern
poset was discussed in a recent paper by the authors of the present work [5], where they were called king
permutations, and the set of such permutations of order n was denoted by Kn.

The distribution of these bonds has been examined previously in [7, 8, 13]. The number of bonds in a
permutation σ ∈ Sn affects the structure of the poset of all permutations contained in σ, the downset of σ,
because the number of permutations π ∈ Sn−1 such that π � σ is n− β(σ), where β(σ) is the number of bonds
in σ (see Theorem 6 in [7]).

To better understand the structure and the extent of the sparseness of the poset
⋃
n∈N Sn, we would like to

obtain information not only about the number of bonds of a given σ ∈ Sn, but also on the number of bonds of
the permutations contained in σ. Hence, we introduce a new concept. A separator in σ is an element in σ, the
removal of which produces a new bond (see the formal definition below).
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This concept can also be seen via an analogy to a chessboard. Note that if we draw a permutation σ =
σ1σ2 · · ·σn on a chessboard, then “σi separates σk from σl” means that knights located at (k, σk) and (l, σl)
can attack each other.

In [1], the authors defined the notion of a k-prolific permutation. A permutation σ ∈ Sn is called k-prolific if
each (n−k)-subset of the elements of σ = σ1 · · ·σn forms a unique pattern. By Corollary 7 of [7], a permutation
has the maximum number of patterns of order n− 1 if and only if it has no bonds; hence, π ∈ Kn if and only
if it is 1-prolific as a member of Sn.

Moreover, using Theorem 2.25 from [1], one can prove that a permutation is 2-prolific if and only if it has
no bonds and no separators.

1.1 Overview and main results

Let σ ∈ Sn, and D2(σ) = {π ∈ Sn−2 | π ≺ σ} be the (n− 2)-th level of the downset of σ. The first main result
in this paper provides an upper bound on D2(σ) as follows.

|D2(σ)| ≤
(
n− β(σ)

2

)
+ β(σ)− sep∗(σ), (1)

where β(σ) is the number of bonds in σ and sep∗(σ) is the number of separators in σ not contained in a bond
of σ (see Theorem 3.1).

Our second result characterizes the permutations in which each element is a separator. We refer to these
as fully separated permutations. According to the former result, the downset of a fully separated permutation
is sparse in some sense. It is worth noting that the set of fully separated permutations consists of inflations
of the permutations 2413 and 3142 (see Definition 4.3). These two permutations are common in the literature
on avoiding permutations, e.g., the set Av(2413, 3142), which coincides with the set of separable permutations
(See for example [2–4,6, 11]). In particular, we prove the following.

In a permutation σ ∈ Sn, each element is a separator if and only if n = 4k, k ∈ N and
α1, . . . , αk ∈ {3142, 2413} and π ∈ Sk such that σ = π[α1, . . . , αk] (see Theorem 4.1).

We also characterize the permutations which have no separators. These permutations are counted by the
sequence A137774 in the Online Encyclopedia of Integer Sequences (OEIS).

Next, we calculate the expectation of the number of separators.

• The expectation of the number of separators in a randomly chosen n-permutation is 4(n3−6n2+14n−13)
n(n−1)(n−2) .

• The asymptotic value of this expectation is 4 (see Theorem 5.3).

Finally, we use the principle of inclusion-exclusion to construct a generating function that gives the distri-
bution of the number of separators of a certain type over the poset

⋃
n∈N Sn (see Theorem 6.1).

This paper is organized as follows. In Section 2, we present the formal definition of separators and list
some of their fundamental properties. In Section 3, we present the upper bound for the number of patterns
of a permutation σ ∈ Sn of order n − 2. In Section 4, we present a characterization and an enumeration
of fully separated permutations. In Section 5, we calculate the expectation of the number of separators in a
random permutation and its asymptotic limit using a direct combinatorial method. Section 6 is devoted to the
generating function for the number of permutations with a specific number of separators. Finally, in Section 7,
we present directions for further research.

2. Separators

We begin with the formal definition of our new concept of separators of a permutation.

Definition 2.1. For σ = σ1σ2 · · ·σn ∈ Sn we say that σi separates σj1 from σj2 in σ if by omitting σi from σ
we obtain a new 2-block. This occurs if and only if one of the following cases holds.

1. j1, i, j2 are subsequent numbers and |σj1 − σj2 | = 1, i.e.,

σ = · · ·b σi b± 1 · · · .

In this case, we say that σi is a vertical separator.

2. σj1σiσj2 are subsequent numbers and |j1 − j2| = 1, i.e.,

σ = · · ·σi · · ·σi ± 1 σi ∓ 1 · · · or σ = · · ·σi ± 1 σi ∓ 1 · · ·σi · · · .

In this case, we say that σi is a horizontal separator.
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Example 2.1. Let σ = 123645. The element 4 is a vertical separator and the element 5 is a horizontal separator.
The element 2 is not a separator of any type, because its removal creates the permutation 12534, containing the
bond 12, which already exists in σ.

The choice of the names of the separators is explained in the following figure, in which σ1 = 3 is a horizontal
separator (the omitting of which forms the 2-block 23), σ3 = 5 is a vertical separator (the omitting of which
forms the 2-block 12) and σ4 = 2 is both a vertical and a horizontal separator (the omitting of which forms the
two 2-blocks 21 and 43).

Horizontal separator Vertical separator Separators of both types

31524 [31524] [31524]

Definition 2.1. Let SepV (π) and SepH(π) be the sets of vertical and horizontal separators of a permutation π
respectively. Let Sep(π) = SepV (π) ∪ SepH(π) and sep(π) = |Sep(π)|.

Example 2.2. Let σ = 132465879. Then, SepV (σ) = {2, 3, 6, 7}, and SepH(σ) = {2, 3, 5, 8}. Note that 7 is a
vertical separator, although 7 is a part of a 2-block, specifically, 87, because by omitting 7 from σ, we obtain a
new 2-block, 78.

Remark 2.1. Several comments are now in order for a permutation σ = σ1 · · ·σn.

1. Notice the significance of the word ’new’ in Definition 2.1. For example, the identity permutation has an
abundance of 2-blocks, although it has no separators.

2. The numbers 1 and n can only be vertical separators, while σ1 and σn can only be horizontal separators.

3. If σi is a vertical separator in σ, then i is a horizontal separator in σ−1. Hence, SepV (σ) = SepH(σ−1),
and thus Sep(σ) = Sep(σ−1).

4. For σ = σ1σ2 · · ·σn, let σr = σn · · ·σ2σ1 be the reverse of σ. Then, we have SepV (σ) = SepV (σr) and
SepH(σ) = SepH(σr).

5. A separator can be simultaneously of both vertical and horizontal types. For instance, in example 2.2, the
elements 2, 3 are separators of both types.

3. An upper bound for the number of (n− 2)-patterns

Let σ ∈ Sn. Recall that D2(σ) = {π ∈ Sn−2 | π ≺ σ} is the (n − 2)-th level of the downset of σ. Recall also
that β(σ) is the number of bonds in σ, and let sep∗(σ) be the number of separators in σ not contained in a
bond of σ. For example, sep∗(3124) = 1 because 1 and 2 are separators contained in the bond 12, while 3 is a
separator not contained in any bond.

The following result provides an upper bound on |D2(σ)|.

Theorem 3.1.

|D2(σ)| ≤
(
n− β(σ)

2

)
+ β(σ)− sep∗(σ). (2)

Proof. Let σ = σ1 · · ·σn. Every pattern π ∈ D2(σ) is obtained by omitting a pair (σi, σj); hence, we have
|D2(σ)| ≤

(
n
2

)
. Moreover, if (σi, σj) is a bond, then for every σk /∈ {σi, σj}, the pattern obtained by omitting σi

and then σk is identical to the pattern obtained by omitting σj and then σk (assuming without loss of generality
that σi, σj > σk). This means that each pair constituting a bond in σ can be considered as a single element of
σ; thus, the maximal number of patterns π ∈ D2(σ) obtained by omitting pairs of entries which do not form a

bond is not more than
(
n−β(σ)

2

)
.

However, to obtain a pattern in D2(σ), we can also omit pairs of the form (σi, σj) which do constitute a
bond in σ. Therefore, we add β(σ) to the sum.

Note that if we happen to omit from σ a separator σi, then we obtain τ ∈ Sn−1 such that τ ≺ σ and τ
contains a bond (u, v). Omitting σi and then u is identical to omitting σi and then v; we, therefore, subtract
the number of separators of σ to prevent double counting. Note that because we already dealt with entries σi
which are part of a bond, here we have only to consider the separators sep∗(σ) which are not part of a bond.
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Remark 3.1. A slightly tighter upper bound can be achieved if we add s(σ) instead of β(σ) to the binomial in
Equation (2), where s(σ) is the number of nontrivial strips in σ. The new upper bound is as follows.

|D2(σ)| ≤
(
n− β(σ)

2

)
+ s(σ)− sep∗(σ). (3)

Example 3.1. Let σ = 641235. Then, β(σ) = 2, s(σ) = 1, sep∗(σ) = 2; thus, we have |D2(σ)| ≤ 5. Indeed,
D2(σ) = {1234, 3124, 4123, 4213, 4312}.

Remark 3.2. Note that a separator in σ which is part of a bond is necessarily a part of a triple of the form
(a, a+ 2, a+ 1) or it is reverse. In this triple, there is one bond and two separators, both of which are parts of
the bond (a+ 2, a+ 1). Omitting every two entries from this triple produces a single element (a); thus, in this

subpermutation π we have n = 3, , s(π) = 1, sep∗(π) = 0; therefore,
(
n−β(π)

2

)
+ s(π)− sep∗(π) = 2, which is not

equal to |D2(π)| = 1. We can correct this by subtracting 1 for each such triple, or in other words, by subtracting
half of the number of separators that are parts of a bond. The new upper bound is then given by the following
expression.

|D2(σ)| ≤
(
n− β(σ)

2

)
+ s(σ)− sep∗(σ)− 1

2
sep∗∗(σ), (4)

where sep∗∗(σ) is the number of separators in σ which are contained in a bond of σ.

Note that even the least upper bound is not tight, as the next example testifies.

Example 3.2. Let σ = 35142. Then β(σ) = 0, s(σ) = 0, sep∗(σ) = 3, sep∗∗(σ) = 0 so according to Equation
4, we must have |D2(σ)| ≤ 7. However, we know that D2(σ) ⊆ S3, and thus |D2(σ)| 6= 7.

4. Fully separated permutations

We first deal with the permutations of Sn that have no separators of any type. The table below presents these
permutations for 1 ≤ n ≤ 4.

n = 1 1
n = 2 12, 21
n = 3 123, 321,
n = 4 1234, 4321, 2143, 3412, 4123, 3214, 2341, 1432

The permutations in Sn that have no separators of any type are counted by the sequence A137774 of the
OEIS. They correspond to the number of ways to place n non-attacking empresses (a chess piece that moves
like a rook and a knight) on an n × n chessboard. It may be easily observed that this set is closed to reverse
and inverse.

Theorem 4.1 below deals with the opposite case, i.e., the number of permutations, all the elements of which
are separators. First, we introduce some definitions. A comprehensive survey of the concepts described here
can be found in [9].

Definition 4.1. Let π = π1 · · ·πn ∈ Sn. A block (or interval) of π is a nonempty contiguous sequence of
entries πiπi+1 · · ·πi+k whose values also form a contiguous sequence of integers.

Example 4.1. If π = 2647513, then 6475 is a block, but 64751 is not.

Each permutation can be decomposed into singleton blocks, and also forms a single block by itself; these are
the trivial blocks of the permutation. All other blocks are called proper.

Definition 4.2. A block decomposition of a permutation is a partition of it into disjoint blocks.

For example, the permutation σ = 67183524 can be decomposed as 67 1 8 3524. In this example, the
relative order between the blocks forms the permutation 3142, i.e., if we take for each block one of its elements
as a representative, then the sequence of representatives is order-isomorphic to 3142. Moreover, the block 67 is
order-isomorphic to 12, and the block 3524 is order-isomorphic to 2413. These are instances of the concept of
inflation, defined as follows.

Definition 4.3. Let n1, · · · , nk be positive integers with n1 + · · · + nk = n. The inflation of a permutation
π ∈ Sk by the permutations αi ∈ Sni

(1 ≤ i ≤ k) is the permutation π[α1, · · · , αk] ∈ Sn obtained by replacing the
i-th entry of π with a block which is order-isomorphic to the permutation αi on the numbers {si+1, · · · , si+ni}
instead of {1, · · · , ni}, where si = n1 + · · ·+ ni−1 (1 ≤ i ≤ k).

ECA 1:3 (2021) Article #S2R21 4
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Example 4.2. The inflation of 2413 by 213, 21, 132 and 1 is

2413[213, 21, 132, 1] = 546 98 132 7.

We are interested in the structure of all permutations in Sn in which every element is a separator.
Recall that Kn is the set of king permutations of size n, i.e., the set of permutations σ ∈ Sn such that for

each 1 < i ≤ n, we have |σi − σi−1| > 1.
In Theorem 3.19 of [5], we proved that in a permutation σ ∈ Kn, each element of σ is a separator if and

only if σ = π[α1, . . . , αk], where α1, . . . , αk ∈ {3142, 2413} and π ∈ Sk. In the following theorem, we extend
this result and show that this structure also captures all the permutations in Sn in which each element is a
separator.

Theorem 4.1. In a permutation σ ∈ Sn, each element is a separator if and only if n = 4k, k ∈ N and there
are α1, . . . , αk ∈ {3142, 2413} and π ∈ Sk such that σ = π[α1, . . . , αk].

Proof. As the “only if” part of the statement is obvious, we prove only the “if” part. Let σ ∈ Sn be a permutation
such that each element of σ is a separator. If we show that σ lacks 2-blocks, i.e., σ ∈ Kn, then by Theorem
3.18 in [5], this completes the proof. We assume to the contrary that σ contains a block of the form a, a + 1,
and show that not all the elements of σ are separators.

We distinguish two different cases according to the type of separation of a+ 1.

• a+ 1 is a vertical separator. In this case, σ contains the sub-sequence · · · a, a+ 1, a− 1 · · · . The element
a − 1 is also a separator, so we distinguish between two subcases according to the type of separation of
a− 1.

1. If a− 1 is a vertical separator then σ = · · · a a + 1 a− 1 a + 2 · · · . The element a + 2 must be
a separator, but not a horizontal one (otherwise, a+ 3 and a+ 1 should have been adjacent to each
other), so a+ 2 is vertical, and we obtain the following:
σ = · · · a a+1 a−1 a+2 a−2 · · · . By the same argument, a−2 must be a vertical separator,
and thus σ = · · · a a + 1 a − 1 a + 2 a − 2 a + 3 · · · . This process continues until we reach
σn, which cannot be a horizontal separator; however, by Remark 2.1.2, it also cannot be a vertical
separator.

2. If a − 1 is a horizontal separator then σ = · · · a − 2 a a + 1 a − 1 · · · . Hence, a − 2 must be a
horizontal separator, such that σ = · · · a − 2 a a + 1 a − 1 a − 3 · · · . By the same argument,
a − 3 must be a horizontal separator, and thus σ = · · · a − 4 a − 2 a a + 1 a − 1 a − 3 · · · .
This process continues until we reach a − k = 1, which cannot be a vertical separator; however, by
Remark 2.1.2, it also cannot be a horizontal separator.

• a+ 1 is a horizontal separator; in this case, we consider σ−1 in which (σ−1)a+1 is a vertical separator by
Remark 2.1.3. Because a, a + 1 is a block in σ, σ−1 contains a block in locations a, a + 1, which means
that (σ−1)a = b, (σ−1)a+1 = b+ 1 constitutes a bond with b+ 1 as a vertical separator, returning to the
previous case.

We conclude that σ ∈ Kn where Kn is the set of king permutations of order n, and as mentioned before, the
proof is completed by Theorem 3.18 of [5].

Figure 1 illustrates the structure of such permutations in which each of their elements is a separator, according
to the above theorem.

Figure 1: The plot of 14 16 13 15 7 5 8 6 2 4 1 3 11 9 12 10

According to Theorem 4.1, we can now enumerate these permutations.
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Corollary 4.1. The number of permutations in Sn which have exactly n different separators is given by the
following expression. {

2kk! if n = 4k

0 otherwise.

Those permutations for k = 1 and k = 2 are:

k = 1 (n = 4) 2413, 3142
k = 2 (n = 8) 24136857, 24137586, 31426857, 31427586, 68572413, 75862413, 68573142, 75863142

5. The expectation of the number of separators

In this section, we calculate the expectation of the number of separators in a randomly chosen permutation of
Sn. To do so, let us first calculate the expectation of the number of vertical separators. Consider the sample
space of all n! permutations, with a uniform probability, and for each π ∈ Sn, let X(π) count the number of
vertical separators in π. For each 1 ≤ i ≤ n, let Xi be the characteristic random variable of entry i as a vertical
separator. Obviously, X =

∑n
i=1Xi counts the number of vertical separators for each π ∈ Sn.

To calculate E[X] =
∑n
i=1E[Xi], let us first calculate E[Xi] for each 1 ≤ i ≤ n. The entry i is a vertical

separator in a permutation π ∈ Sn if π contains a consecutive sequence of the form a, i, a+ 1 or its reverse. If
i ∈ {1, n}, the entry a can be chosen in n− 2 ways. After choosing a, we have (n− 2)! ways to arrange the rest

of the permutation, such that E[X1] = E[Xn] = 2(n−2)(n−2)!
n! . Now, for each 1 < i < n, the same consideration

applies, but now we have only (n− 3) ways to choose a. Thus, we can observe that E[Xi] = 2(n−3)(n−2)!
n! . From

the above arguments, we obtain

E[X] =

n∑
i=1

E[Xi] = 2E[X1] + (n− 2)E[X2].

A simple calculation now yields the following.

Theorem 5.1. The expectation of the number of vertical separators in a randomly chosen n-permutation is
2(n−2)
n . The asymptotic value of the expectation is 2.

We calculate now the expectation of the number of separators that are both vertical and horizontal. Let
Y be a random variable counting the number of entries of a permutation π which are separators of both types
and for 1 < i < n, denote by Yi the appropriate characteristic variable. Note that the entries 1 and n cannot
be separators of both types.

Let us calculate E[Yi], where 1 < i < n is a separator of both types. Because entry i is vertical, we have
π = · · · a i a+ 1 · · · or its reverse. Moreover, i, being also horizontal, the pair i− 1, i+ 1 must be adjacent
in π.

Depending on the structure of π, we now obtain one of the following cases.

1. If a = i + 1 or a + 1 = i − 1 then π = · · · i − 1 i + 1 i i + 2 · · · or π = · · · i − 2 i i − 1 i + 1 · · ·
respectively. For i = 2, only the first case or its reverse can hold, whereas for i = n− 1, only the second
case or its reverse can hold. For 2 < i < n− 1, both cases and their reverses can hold. For each of these
subcases, there are exactly (n− 3)! ways to arrange the rest of the permutation.

2. Else, the permutation π contains two different sub-sequences of the forms a, i, a+1 and i−1, i+1 or their
reverses.

If i ∈ {2, n − 1}, then there are n − 4 ways to choose a, whereas if 2 < i < n − 1, then there are n − 5
ways to choose a. Each choice of such two subsequences leaves (n− 3)! ways to arrange the remainder of
the permutation.

Hence, we have

E[Yi] =


0 i ∈ {1, n}
2·(n−3)!+2·2·(n−3)!(n−4)

n! i ∈ {2, n− 1}
4·(n−3)!+2·2·(n−3)!(n−5)

n! 2 < i < n− 1

This allows us to observe that

E[Y ] =

n∑
i=1

E[Yi] = 2E[Y2] + (n− 4)E[Y3].

A simple calculation now yields the following.

ECA 1:3 (2021) Article #S2R21 6
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Theorem 5.2. The expectation of the number of separators of both types, vertical and horizontal, in a randomly
chosen n-permutation is

4(n− 3)2

n(n− 1)(n− 2)
,

and the asymptotic value of the expectation is 0.

Let Z be a random variable which counts the total number of separators (regardless of type). By Remark
2.1.3, the number of vertical separators has the same distribution as the number of horizontal separators;
therefore, E(Z) = 2E(X)− E(Y ). Thus, we have the following.

Theorem 5.3. The expectation of the number of separators in a randomly chosen n-permutation is

4(n3 − 6n2 + 14n− 13)

n(n− 1)(n− 2)
.

The asymptotic value of the expectation is 4.

6. A generating function for vertical or horizontal sepa-
rators

In this section we present a generating function for the number of vertical separators. For each n,m ∈ N, let
sn,m be the number of permutations π ∈ Sn with exactly m vertical separators. We want to calculate the
generating function h(z, u) =

∑
n≥0

∑n
m=0 sn,mz

num. According to remark 2.1.3, this generating function is
the same for horizontal separators.

To derive the function h(z, u), we enlarge the set of elements to contain marked permutations (to be defined
below). We then use the principle of inclusion-exclusion together with a method of splitting permutations into
two parts to attain the generating function for the number of vertical separators.

6.1 Counting permutation with marked bonds

A marked permutation is a permutation in which each bond can be chosen to be marked or not. The marked
bonds are denoted by bars above the corresponding part of the permutation. If several adjacent bonds are
marked, then we mark a long bar above the corresponding strip. An entry that is not contained in a marked
bond is considered to be a strip of length 1.

Example 6.1. Let π = 613452879. Here are some permutations with marked bonds, made out of π: 613452879,
613452879, and 613452879.

To count the marked permutations, we introduce some alternative notation.
Recall that for n ∈ N, a composition with m non-zero parts of n is a vector (a1, . . . , am) such that ai ∈ N

and
∑m
i=1 ai = n. We define an arrowed composition of n to be a composition in which, after every part which

is greater than 1, there exists one of the signs ↑ or ↓. For example, (2 ↑, 1, 7 ↓, 2 ↑) is an arrowed composition
of n = 12.

Now, each marked permutation π ∈ Sn can be uniquely presented as an arrowed composition (a1, . . . , am)
of n, together with a permutation σ ∈ Sm. This idea is best clarified by the following example.

Example 6.2. Let π = 245619873. We write π as a pair consisting of an arrowed composition of m = 6 parts
λ, and a permutation σ ∈ S6. First, we express π as a sequence of strips. b1 = 2, b2 = 45, b3 = 6, b4 = 1, b5 =
987, b6 = 3. Each strip contributes its length to the composition. Then, for each part, we add the sign ↑ if the
corresponding strip is increasing, the sign ↓ if the strip is decreasing, and no arrow if the strip is of length 1. In
our case, we obtain λ = (1, 2 ↑, 1, 1, 3 ↓, 1). Now, σ ∈ S6 is the permutation induced by the order of the blocks.
In this case, we have σ = 245163. The marked permutation π is now uniquely defined by the pair (λ, σ).

In other words, if we replace each j ↑ with the ascending permutation 123 · · · j and each j ↓ with the
descending permutation j · · · 321, we can see that this defines inflation. In the previous example, we can write
π = 245163[1, 12, 1, 1, 321, 1]. For convenience, we denote this inflation by σ[λ].

In [7] (during the proof of Theorem 10), C. Homberger calculated the generating function, counting the
number of permutations having a specific number of bonds. This was done by calculating the generating
function of marked bonds, and by using the inclusion-exclusion principle. If we denote by an,m the number
of permutations of Sn with m marked bonds and set A(z, u) =

∑
n≥1

∑
m≥0 an,mz

num, then the identity
permutation contributes z, and for each j ≥ 2, a strip of order j can be either 123 · · · j or j · · · 321, each of
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which has j − 1 bonds and thus contributes uj−1. Thus, the contribution is 2zjuj−1. It may be easily observed
from the above that

A(z, u) =
∑
m≥0

m!(z + 2z2u+ 2z3u2 + 2z4u3 + · · · )m =
∑
m≥0

m!zm
(

1 + zu

1− zu

)m
. (5)

(Here m denotes the number of strips).

Remark 6.1. The coefficients of znuk in the above formula can be easily calculated as follows.

A(z, u) = 1 +
∑
m≥0

(m+ 1)!zm+1(1 + zu)m+1/(1− zu)m+1

= 1 +
∑
m≥0

m+1∑
j=0

∑
i≥0

(m+ 1)!

(
m+ 1

j

)(
m+ i

i

)
zm+1+j+iuj+i.

Thus, an,k = [znuk]A(z, u) =
∑n−k
j=0 (n− k)!

(
n−k
j

)(
n−1−j
k−j

)
.

6.2 Comb decomposition and marked separators

Coming back to our counting of permutations with respect to the number of vertical separators, we now
demonstrate a method to reduce this problem to the problem of counting marked permutations with respect to
the number of bonds. We begin with a definition of what we refer to as comb permutations, as follows.

Definition 6.1. Let σ = (σ1, . . . , σk), τ = (τ1, . . . , τk) be two sequences such that {σ1, . . . , σk, τ1, . . . , τk} =
{1, 2, . . . , 2k}. Define the comb permutation π = σ � τ by π = σ1τ1σ2τ2 · · ·σkτk ∈ S2k. Similarly, let σ =
(σ1, . . . , σk+1), τ = (τ1, . . . , τk) be two sequences such that {σ1, . . . , σk+1, τ1, . . . , τk} = {1, 2, . . . , 2k + 1}. We
define the comb permutation π = σ � τ as π = σ1τ1σ2τ2 . . . σkτkσk+1 ∈ S2k+1. When π = σ � τ , we denote σ
as πodd and τ as πeven.

Now, let π = πodd�πeven where πodd and πeven are sequences with marked bonds. Note that if (πoddi πoddi+1) is
a marked bond of πodd, then the element of πeven which lies between πoddi and πoddi+1 in π is a vertical separator, we
call it a marked separator and denote it by marking a hat over it. For example, if πodd = (124) and πeven = (53),
then 12 is a marked bond in πodd, and thus 5 is a marked separator in πodd � πeven = 15̂234. Similarly, we
define marked separators for marked bonds in πeven. Therefore, we obtain the following.

Observation 6.1. Let πodd, πeven be defined as in Definition 6.1, and let π = πodd � πeven. Then, the number
of (marked) vertical separators in π is equal to the total number of (marked) bonds in πodd and πeven.

Let n = 2k. Given two arrowed compositions of k, λo of size mo and λe of size me, and given a permutation
σ ∈ Smo+me , we take the inflation α = σ[λo, λe], where λo, λe denotes the concatenation of λo and λe (it is a
permutation with marked bonds). We construct a permutation π as follows. Denote the first k elements of α
by πodd and the last k elements of α by πeven. Now, π = πodd � πeven. The case where n = 2k + 1 is similar.

Example 6.3. For k = 4, let λo = (1, 3 ↓), λe = (1, 1, 2 ↑) and let σ = 34215. Then,
α = 34215[1, 321, 1, 1, 12] = 36542178. Thus, πodd = (3654) and πeven = (2178); therefore, π = (3654) �
(2178) = 3261̂57̂4̂8.

On the other hand, given a permutation π ∈ Sn with marked separators, let πodd be the sequence of the
odd entries of π and πeven be the sequence of the even entries of π, and mark the relevant bonds, i.e., if πi is a
marked separator in π, then (πi−1πi+1) is a marked bond in πodd or in πeven. We denote by α the permutation
with marked bonds obtained by πodd, followed by πeven. We know that α can be uniquely presented as an
arrowed composition of n, together with a permutation of the number of parts m.

Example 6.4. π = 271̂863̂549. We apply the sequences πodd = (21659) and πeven = (7834) to produce
α = 216597834. This permutation can be presented as α = σ[λo, λe], where λo = (1, 1, 2 ↓, 1) and λe = (2 ↑, 1, 1)
with σ = 2157634.

6.3 Calculating the generating function for vertical separators

Recall that our goal is to find the function h(z, u), which is the generating function for the number of ver-
tical separators. To do so, we first calculate the generating function for the number of marked vertical
separators. Denote by bn,m the number of permutations of Sn with m marked vertical separators, and let
g(z, u) =

∑
n≥1

∑
m≥0 bn,mz

num.
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As demonstrated above, there is a correspondence between the number of marked bonds and the number
of marked vertical separators; thus, we construct the generating function g(z, u) by separately calculating the
generating functions for the marked bonds of the odd and even parts of each permutation. The requirement that
the odd and even parts of a permutation must have (almost) the same size will be met by using the well-known
Hadamard product (element-wise) of polynomials and series.

Definition 6.2. Let R be a ring and let f(x) =
∑
n∈N anx

n, g(x) =
∑
n∈N bnx

n ∈ R[[x]] be two power series
in x. The Hadamard product of f(x), g(x) is f(x) ∗ g(x) =

∑∞
n=0 anbnx

n.

Example 6.5. (2 + 3x− 4x2) ∗ (5 + x+ 7x2) = 10 + 3x− 28x2.

In order to form the generating function of the marked separators, g(z, u), let us observe the permutations
π ∈ Sn for a fixed n. We would like to find the monomial contribution of each π = πodd � πeven ∈ Sn using the
monomial corresponding to the marked bonds of πodd and πeven.

Let n = 2k; in this case, πodd, πeven are sequences of order k; we therefore use the Hadamard product to
combine the two monomials. Each π ∈ S2k contributes to g(z, u) a monomial of the form umz2k, where the
monomials corresponding to the marked bonds of πodd and πeven are fo(z, u) = um1zk and fe(z, u) = um2zk,
respectively, where m = m1 +m2. If we view these monomials as functions of the variable z, then we may easily
note that the coefficient of z2k in g(z, u) should be the product of the coefficients of zk of the odd and even
parts. Therefore, it is necessary to substitute z2 instead of z in the monomoials of πodd and πeven to obtain

fo(z
2, u) ∗ fe(z2, u) = um1(z2)k ∗ um2(z2)k = umz2k.

Example 6.6. Returning to Example 6.3, the monomial corresponding to the marked bonds of πodd = (3654) is
fo(z, u) = z4u2. Similarly, the monomial corresponding to the marked bonds of πeven = (2178) is fe(z, u) = z4u.
Thus fo(z, u)∗fe(z, u) = z4u3. However, the monomial corresponding to the marked separators of π = (3654)�
(2178) = 3261̂57̂4̂8 should be z8u3. Note that if we take fo(z

2, u) ∗ fe(z2, u), we obtain exactly the necessary
formulation.

Similarly, if n = 2k+1, then each π = πodd�πeven ∈ Sn contributes a monomial of the form umz2k+1 where
the monomial of πodd is fo(z, u) = um1zk+1 and the monomial of πeven is fe(z, u) = um2zk, m = m1 + m2.
Thus, (

1

z
fo(z

2, u)

)
∗
(
z fe(z

2, u)
)

=

(
1

z
um1(z2)k+1

)
∗
(
z um2(z2)k

)
= umz2k+1.

Example 6.7. Let π = 25̂3̂4176. Then, πodd = (2316) and πeven = (547). Then fo(z, u) = uz4 and fe(z, u) =
uz3. Thus, (

1

z
fo(z

2, u)

)
∗
(
zfe(z

2, u)
)

=

(
1

z
u(z2)4

)
∗
(
zu(z2)3

)
= u2z7,

as required.

Using the above explanations, and the generating function version for the inclusion-exclusion principle, we
obtain the following calculation of the generating function of vertical separators, h(z, u).

Theorem 6.1.

h(z, u) =
∑

mo,me≥0

(mo +me)!

((
z2mo

(
1 + z2(u− 1)

1− z2(u− 1)

)mo
)
∗
(
z2me

(
1 + z2(u− 1)

1− z2(u− 1)

)me
))

+
∑

mo,me≥0

(mo +me)!

((
z2mo

(
1 + z2(u− 1)

1− z2(u− 1)

)mo 1

z

)
∗
(
z2me

(
1 + z2(u− 1)

1− z2(u− 1)

)me

z

))
,

where ∗ is the Hadamard product in Q[[u]][[z]].

Proof. Let us denote for each m ∈ N

pm(z, v) = (z + 2z2v + 2z3v2 + · · · )m = zm
(

1 + zv

1− zv

)m
.

Then pm(z, v) counts the number of possible procedures to construct an arrowed composition λ of m parts. We
relate to n even and n odd separately. To construct a permutation of S2k with marked separators, we must
choose two arrowed compositions of k, including λo of size mo, and λe of size me. We also choose a permutation
σ ∈ Smo+me

. It is easy to see that this contributes to the function (mo+me)!pmo
(z2, v)∗pme

(z2, v). For S2k+1,
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we obtain (mo + me)!
[
1
zpmo(z2, v))

]
∗
[
z pme(z2, v)

]
. Going over all the values for mo and me for both n even

and n odd, we obtain the generating function of the marked vertical separators.

g(z, v) =
∑

mo,me≥0

(mo +me)!

((
z2mo

(
1 + z2v

1− z2v

)mo
)
∗
(
z2me

(
1 + z2v

1− z2v

)me
))

+
∑

mo,me≥0

(mo +me)!

((
z2mo

(
1 + z2v

1− z2v

)mo 1

z

)
∗
(
z2me

(
1 + z2v

1− z2v

)me

z

))
.

Now, we can use this generating function to obtain h(z, u). The variable v represents the marked vertical
separators, whereas u represents all vertical separators . Because every vertical separator can either be marked
or unmarked, it follows that by replacing v + 1 with u, we obtain that the generating function of the vertical
separators is h(z, u) = g(z, u− 1).

7. A direction for further research

In Section 6.1, we introduced a generating function for vertical separators. An interesting direction for continuing
this research may be to present for each n ∈ N a three-variable generating function as follows.

F (z, u, v) =
∑
k>0

∑
m>0

∑
l>0

ak,m,lz
kumvl,

where ak,m,l is the number of permutations of order n with k vertical separators, m horizontal separators, and
l separators of both types. One interesting result for such a function might be the distribution of the total
number of separators in a permutation of order n. The function G(z) = F (z, z, 1z ) calculates this distribution.
This distribution affects, among other things, the structure of the poset of permutations under containment,
because each separator of a permutation π ∈ Sn, decreases the number of permutations σ ≺ π of order n − 2
by 1.
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