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Abstract: We present an overview of an enumerative approach to topological graph theory, involving the

derivation of generating functions for a set of graph embeddings, according to the topological types of their

respective surfaces. We are mainly concerned with methods for calculating two kinds of polynomials:

1. the genus polynomial ΓG(z) for a given graph G, which is taken over all orientable embeddings of G, and

the Euler-genus polynomial EG(z), which is taken over all embeddings;

2. the partial-duality polynomials ∂E
∗
G(z), ∂E

×
G(z), and ∂E

∗×∗
G (z), which are taken over the partial-duals for

all subsets of edges, for Poincaré duality (∗), Petrie duality (×), and Wilson duality (∗×∗), respectively.

We describe the methods used for the computation of recursions and closed formulas for genus polynomials

and partial-dual polynomials. We also describe methods used to examine the polynomials pertaining to some

special families of graphs or graph embeddings, for the possible properties of interpolation and log-concavity.

Mathematics Subject Classifications: 05A05; 05A15; 05C10; 05C30; 05C31

Key words and phrases: Genus polynomial; Graph embedding; Log-concavity; Partial duality; Production

matrix; Ribbon graph; Monodromy

1. Introduction

We are concerned with two classes of enumerative invariants regarding the embeddings of graphs in surfaces
of arbitrarily high genus or crosscap number. One class is the embedding polynomials of a graph, as initiated
by [24]. The other is the partial-duality polynomials of a graph embedding, which are recently introduced
invariants [30–32], in which the authors have taken a special interest.

In this overview, we encounter three different paradigms for specifying a graph embedding.

1. Rotation systems — the dominant paradigm for combinatorial specification of embeddings; introduced by
Heffter [41] and Edmonds [17].

2. Ribbon graphs — used by Chmutov [16] to give a geometric definition of partial Poincaré duals.

3. Monodromy — the dominant paradigm in algebraic map theory; introduced by Jones and Singerman [43]

In general, we allow a graph to have loops and multi-edges. Each edge is construed to have two half-edges
(that meet midway along the length of the edge). We label the edges of a graph by the integers 1, 2, . . . , n, and
we denote the half-edges of edge j by j+ and j−. A direction of traversal of an edge may be given by specifying
the half-edge that is traversed first. A graph is taken to be connected, unless it is evident from context that
we mean otherwise. The genus of an orientable surface is denoted by γ(S). The orientable surface of genus j
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is denoted Sj and the non-orientable surface of crosscap-number k is denoted Nk. Some prior familiarity with
topological graph theory beyond planarity is assumed. Some recommended sources are [37] or [64].

Section 2 describes the paradigm of rotation systems. Section 3 presents methods used in their derivations for
the genus polynomials of what are called linear sequences and ring-like sequences of graphs. Section 4 describes
methods for other kinds of graphs, including some important non-linear families for which family-wide genus
polynomial formulas are known. Section 5 discusses some possible structural attributes of these embedding-
related polynomials, especially log-concavity. Section 6 describes the paradigms of monodromy and ribbon
graphs. Section 7 discusses all three kinds of duals of graph embeddings and their corresponding partial duals.
Section 8 presents formulas for the partial-dual polynomials of several sequences of ribbon graphs. Section 9
suggests a number of problems for investigation.

We have italics on various technical terms to indicate that their definitions appear later, usually along with
some developmental detail.

2. Rotation systems

A rotation at a vertex v of an oriented embedding of a graph G is a cyclic list of the half-edges incident at v,
in the order consistent with the orientation of the surface. The collection of rotations, one at every vertex, is
called a rotation system for G, commonly denoted by ρ. It has long been known that the oriented embeddings
of a graph G are in bijective correspondence with the set of all possible rotation systems for G. This has the
following immediate implication:

Proposition 2.1. The total number of oriented embeddings of a graph G equals∏
v∈V (G)

(δ(v)− 1)! (1)

where V (G) is the vertex set of G and δ(v) is its valence (or degree).

When we compose a rotation system ρ for an embedded graph with the full involution (commonly denoted by
λ) that reverses the directions of the edges, the result is a permutation whose cycles correspond to the boundary
walks for the faces of the embedding. Thus, the embedding could be reconstructed by fitting a polygon to each
of those cycles and pasting the polygons together.

Proposition 2.2. The face-boundary walks of an embedding with rotation system ρ are given by the compo-
sition ρλ. (The composition ρλ means λ is applied first.)

Given an embedding (called the primal embedding) of a graph in a surface, we form a Poincaré dual of G
and its embedding as follows:

1. place a dual vertex in the interior of each region of the primal embedding;

2. through each primal edge e (i.e., of the graph G), draw a dual edge e∗ that joins the dual vertex on one
side of e to the dual vertex on its other side. If a single face of the primal embedding is incident on both
sides of edge e, then the dual edge e∗ is a loop.

According to [1], knowledge of the duality between the cube and the octahedron, and between the dodecahedron
and the icosahedron goes back to the “fifteenth book of Euclid”, which [1] estimates as having originated in
the sixth century C.E. Poincaré developed algebraic consequences of a generalization of this topological form of
duality to higher dimensions.

Corollary 2.1. The rotation system for the Poincaré dual of an embedding with rotation system ρ is given by
the composition ρλ.

The minimum genus of a graph G, denoted γ
min

(G) is the smallest genus of a surface in which G can be
embedded. The maximum genus, denoted γmax(G) is the largest genus of a surface in which G can be cellularly
embedded , which means embedded so that the interior of every region is homeomorphic to an open disk. The
genus polynomial of the graph G, as defined by [24], is the formula

ΓG(z) =

γmax (G)∑
j=γ

min
(G)

gj(G)zj , (2)

where gj(G) is the number of embeddings of G in the orientable surface Sj . Two analogous polynomials have
been defined subsequently [7]:

1. the crosscap-number polynomial XG(z), which enumerates embeddings of G in non-orientable surfaces Nj ,
according to crosscap number j; and

2. the Euler-genus polynomial EG(z), which enumerates embeddings of G in all surfaces, according to Euler
genus.
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3. Genus polynomial formulas for linear graph families

This section begins with a description of methods that have been used for derivation of formulas for the genus
of graphs that are grouped into a linear sequence. We follow this with discussion of ring-like sequences, in which
each graph is obtained by some kind of self-amalgamation of a graph in a corresponding linear sequence.

Two embeddings of a graph G are topologically equivalent if one can be obtained from the other by ambient
isotopy. When a graph is embedded in a surface, the induced rotation at a vertex means the cyclic ordering of
half-edges that are encountered as we traverse a small circle surrounding the vertex. If the surface is oriented,
then we traverse each such circle in the direction consistent with the orientation. Then the induced rotation
system is the set of such vertex rotations. It has long been known that two embeddings of a graph are
topologically equivalent if and only if their induced rotation systems are the same.

If the embedding surface is non-orientable, then we choose a spanning tree T , and then choose the vertex
rotations so that any two vertex rotations are consistent whenever the two vertices are endpoints of the same
tree edge. A co-tree edge in either embedding of G is said to be twisted whenever the rotations at its endpoints
are inconsistent. Then two embeddings are topologically equivalent if and only if they have not only the same
rotation systems but also the same sets of twisted edges, relative to a spanning tree T . See [37] for further
details.

3.1 Linear sequences of graphs

A linear sequence of graphs is a sequence constructed recursively, as now introduced via an example. By a
ladder graph (or simply ladder), we mean the cartesian product graph of a path graph with the complete graph
K2. The genus polynomials of ladder graphs were derived by [19]. Figure 1 illustrates the ladder sequence and
the ingredients of their recursive construction.

. . .

L0 L1 L2 H

(a) (b)

Figure 1: (a) Sequence of ladder graphs. (b) Subgraph for the recursion.

The base graph for a recursive construction is the ladder L0, a vertical copy of K2. We construct the ladder
Ln by amalgamating the two vertices at the left end of the subgraph H to the two endpoints of the rightmost
rung of the ladder Ln−1.

According to Formula (1), the ladder Ln has 2n−2 embeddings. In order to construct their genus polynomials,
the key step is partitioning the embeddings into two types. An embedding of type d has two different face-
boundary walks incident on its rightmost edge. An embedding of type s has the same face-boundary walk
twice incident on that edge. We define the numbers dj(Ln) and sj(Ln) to be the numbers of type-d and type-s
embeddings of Ln, of genus j, respectively, which leads to the type-d and type-s partial genus polynomials

DLn
(z) =

n∑
j=0

dj(Ln)zj (3)

SLn
(z) =

n∑
j=0

sj(Ln)zj . (4)

Figure 2 illustrates the four ways that subgraph H can be added to a ladder of type-d or of type-s. We seek to
convert such a figure into a simultaneous recursion.

H
(s)

Ln

Ln

H
(d)

Figure 2: (d) Adding H to a type-d ladder. (s) Adding H to a type-s ladder.
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In row (d), we see that the first and fourth ways of adding subgraph H to ladder Ln add two vertices,
three edges, and one face, for no change to the Euler characteristic or genus. We see also that two different
face-boundary walks are incident on the new rung, indicating a type-d embedding. The second and third ways
of adding subgraph H both add two vertices and three edges, while decreasing the number of faces in the
configuration by one, for a net change of −2 to the Euler characteristic and a genus increment of one. We see
also that two face-boundary walks are incident on the new rung, which is type-s. We summarize this analysis
by the production

dj(Ln)→ 2dj(Ln+1) + 2sj+1(Ln+1). (5)

Row (s) of Figure 2 yields the production

sj(Ln)→ 4dj(Ln+1). (6)

From these two productions, it follows that the partial genus polynomials DLn(z) and SLn(z) satisfy the
simultaneous recursion

DL0(z) = 1 and SL0(z) = 0

Dn+1(z) = 2Dn(z) + 4Sn(z) for n ≥ 2

Sn+1(z) = 2zDn(z) for n ≥ 2, with

ΓLn
(z) = Dn(z) + Sn(z) =

bn/2c∑
j=0

gi(Ln)zn

Using the PGD-vector Vn(z) = [Dn(z) Sn(z)]T (where PGD stands for “partial-genus distribution”) and a
production matrix M(z), we have

M(z) =

[
2 4
2z 0

]
V1(z) =

[
1
0

]
and this matrix form of the simultaneous recursion

Vn+1(z) = M(z)Vn(z), for n ≥ 1.

Applying the recursion yields these polynomials for the ladders L1, L2, ..., L5.

n DLn
(z) SLn

(z) ΓLn
(z)

1 1 0 1
2 2 2z 2 + 2z
3 4 + 8z 4z 4 + 12z
4 8 + 32z 8z + 16z2 8 + 40z + 16z2

5 16 + 96z + 64z2 16z + 64z2 16 + 112z + 128z2

Solution to this recursion, given by [19], is

gj(Ln) =

{
2n−1−j

(
n+1−j

j

)
2n+2−3j
n+1−j forj ≤ bn+1

2 c
0 otherwise

An application of the Cayley-Hamilton theorem in [12] leads to a method to derive a single recursion for
the genus polynomials of the graphs in a linear sequence, rather than simultaneous recursions. In that single
recursion the coefficients of zn are polynomials in z, whose degrees might possibly be as large as the number of
different embedding types in a partition. A highly general formal definition of linear sequence of graphs is also
given by [12].

3.2 Ring-like graphs

As depicted in Figure 1, a ring-like graph is obtained from a graph Gn in an H-linear sequence by identifying
some subgraph in the graph G0 to an isomorphic subgraph in the iterated graph H, which is called a self-
amalgamation on Gn. Figure 3 illustrates three different ways of constructing a ring-like sequence from ladders.

In Row (a) of Figure 1, the two end-rungs of the ladder L3 are thickened to indicate that they will be
amalgamated. If they are amalgamated without a twist, the result is the circular ladder CL3. With a twist, the
result is the Möbius ladder ML3. Formulas for the genus polynomials of circular ladders and Móbius ladders
were first derived by [47]. In Row (b), the graph L′0 replaces L0 as the initial graph, and amalgamating the two
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L0 L3

CL3

H

L'0 L'3H

(a)

(b)

ML3

RL4

Figure 3: The circular ladder CL3, the Möbius ladder ML3, and the Ringel ladder RL4 as ring-like con-
structions.

thickened subgraphs in L′3 yields the Ringel ladder RL4. The graphs RLn were introduced by Gustin [38] as
current graphs and used to spectacular advantage by Ringel and Youngs [55] in their solution to the Heawood
map-coloring problem. A formula for the genus polynomials of Ringel ladders was derived by [60].

The effects of the topological operation of self-amalgamating a graph G on a single vertex and on a single
edge on the genus polynomial of G are derived by [20] and [52], respectively. A more general study of the effects
on genus polynomials and crosscap polynomials of the conversion from linear sequences to ring-like sequences
is given by [7].

We recall (e.g., [56]) that Chebyshev polynomials of the second kind are defined, for n ≥ 0, by the formula

Un(cos θ) =
sin(n+ 1)θ

sin θ
.

Equivalently, Un(x) is a polynomial of degree n in z with integer coefficients, given by the recurrence

U0(z) = 1,

U1(z) = 2z, and

Un(z) = 2zUn−1(z)− Un−2(z).

We further recall that the generating function for the Chebyshev polynomials is given by∑
n≥0

Un(z)tn =
1

1− 2zt+ t2
. (7)

Using Chebyshev polynomials, the genus polynomials of Ringel ladders and of circular ladders were rederived
by [34] and [10], respectively, and the log-concavity of the polynomials in both sequences was established.

The non-orientable embedding distributions for ladders and a couple of other sequences of graphs were
derived by [5] by using the rank of the overlap matrix of [48]. Non-orientable embedding distributions for
Ringel ladders were obtained by [15].

4. Non-linear families

There are two kinds of non-linear families of graphs whose genus polynomials are known. In a family of the
first kind, the graphs typically have only one or two vertices of increasing valence. A member graph of four of
these families is shown in Figure 4. Discussion of families of the second kind appears in §4.2.

bouquet B3 dipole D4 wheel W6fan F5

Figure 4: A bouquet, a dipole, a fan, and a wheel.

4.1 One or two vertices of high valence

The genus polynomials for several families of graphs with only one or two vertices of increasing valence have
been calculated by counting the number of certain kinds of permutations with a given number of cycles. We
denote the symmetric group on m symbols by Σm. We denote the number of cycles of a permutation π by |π|.
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The graph with one vertex and n loops (like the leftmost graph in Figure 4) is called a bouquet and is
denoted by Bn. We label the edges of Bn by the integers 1, 2, . . . , n, and for 1 ≤ k ≤ n, we label the half edges
of edge k by k+ and k−. Each cycle of the half-edges of Bn represents a rotation system of Bn. Each cycle of
the composition of a rotation system ρ with the full involution

λ = (1+ 1−)(2+ 2−) · · · (n+ n−)

traces the boundary walk of a face of the embedding. Thus, the number of faces of the corresponding embedding
is |ρλ|.

Starting with the Euler polyhedral formula |V | − |E|+ |F | = 2− 2γ, we calculate that the number of faces
in an embedding of Bn of genus j is n+ 1− 2j. We combine these observations by this theorem.

Theorem 4.1. The number gj(Bn) of embeddings of the bouquet Bn of genus j equals the number of permu-
tations π ∈ Σ2n such that |πλ| = n+ 1− 2j.

Based on a formula that Jackson [42] obtained by using group character theory, Theorem 4.2 was derived
by [36], where Table 1 also appears.

Theorem 4.2. The numbers gj(Bn) satisfy the recurrence

(n+ 1)gj(Bn) = 4(2n− 1)(2n− 3)(n− 1)2(n− 2)gj−1(Bn−2) (8)

+ 4(2n− 1)(n− 1)gj(Bn−1), for n ≥ 3

with the initial conditions

gj(Bn) = 0 if j < 0 or n < 0,

g0(B0) = g0(B1) = 1 and gj(B0) = gj(B1) = 0 for j ≥ 1,

g0(B2) = 4, g1(B2) = 2, and gj(B2) = 0 for j ≥ 2.

Table 1: Some values of gj(Bn).

gj(Bn) j =0 1 2 total

n = 0 1 1=0!
1 1 1=1!
2 4 2 6=3!
3 40 89 120=5!
4 672 3,360 1,008 5,040=7!
5 16,128 161,280 185,452 362,880=9!

The dipole Dn is the graph with two vertices that are joined by n edges, as shown second from the left in
Figure 4. A recursion for its genus polynomials was derived using group characters both by [54] and [45]. A
closed formula for a special case is given by [63]. Polynomials are given by [29] for a generalization of dipoles
that allows a single loop at either or both vertices.

The fan graph Fn is obtained by joining a single vertex u to the path graph Pn with n vertices v1, v2, . . . , vn.
The graph F5 is third from the left in Figure 4. The fan graphs were generalized by [14] so as to allow
replacement of the edge joining u with the vertex vj by a multi-edge of multiplicity tj , for 1 ≤ j ≤ n, and their
total embedding distributions were calculated.

The wheel graph Wn (often, wheel), shown rightmost in Figure 4, is obtained by joining a single vertex
with the vertices in the n-cycle graph Cn. A multi-wheel is obtained from a wheel by replacing any (or all)
of its spokes by multi-edges. The region-number distributions of wheels was derived by [11], along with the
region-number distributions for multi-wheels and for several other generalizations of wheels that have only one
vertex of increasing valence, using a formula of [65].

Non-orientable distributions for bouquets and dipoles were derived by [46].

4.2 Planar graphs of low treewidth

In a non-linear family of known genus distribution of the second kind, the graphs are of low maximum valence
and low treewidth. Three such families, all planar, are illustrated in Figure 5. Rather than a closed formula or
a recursion for their genus distributions, we have quadratic-time algorithms.

An outerplanar graph is a graph G that has an embedding in the sphere S0, in which the boundary-walk of
some face that we will call f∞ contains every vertex of G. Then f∞ is called the exterior face, and the fixed
embedding represented is called an outerplane embedding .
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s t

cubic outerplanar cubic series-parallel graphcubic Halin graph

Figure 5: A cubic outerplanar graph, a cubic Halin graph, and a cubic series-parallel graph.

The algorithm [21] for the genus polynomial of a cubic outerplanar graph G is inspired by the observation
regarding the Poincaré dual of an outerplane embedding, that when the region f∞ and the dual vertex within it
are deleted, what remains of the outerplane embedding is a disk subdivided into simply connected regions, and
what remains of the dual graph is a tree T . We may choose any vertex of T as its root vertex. The algorithm
proceeds by reassembling these regions according to a post-order traversal of the tree. The genus polynomial is
calculated by iterative application of the productions derived by [50] for the effect of amalgamating two graphs
G1 and G2 along an edge that has 2-valent endpoints in each of the amalgamands.

A Halin graph [40] is constructed from a plane tree T with at least four vertices and no 2-valent vertices by
drawing a cycle thru the leaves of T in the order they occur in a preorder traversal of T . The outer cycle of a
Halin graph is the cycle corresponding to the traversal of the leaves of the inscribed tree. In the Halin graph of
Figure 5, the outer cycle has length eight.

The algorithm [22] for the genus polynomial of a cubic Halin graph begins by drawing the Halin graph
embedding so that the edges are straight lines and so that the complement of the exterior face is a convex
polygon. Roughly, here’s how the algorithm continues. A new vertex is inserted at the midpoint of each edge of
the boundary cycles of the polygon, and every region of the polygon is triangulated by drawing new edges from
its midpoint vertex to other vertices on the boundary of the region. Each such triangle is paired with the unique
triangle which it meets along a tree-edge, thereby forming a quadrangle. Then the polygon is reassembled by
iteratively pasting three quadrangles together at a tree-vertex. There are productions derived for the effect on
the genus polynomial of each such 3-way merger.

A series-parallel graph G is specified via a recursively defined structure (G, s, t), in which the graph G has
two distinct vertices s (“source”) and t (“target”).

• The graph K2 with vertices s and t is a series-parallel graph.

• If (G1, s1, t1) and (G2, s2, t2) are disjoint series-parallel graphs, then so is the graph formed from them by
(series operation) amalgamating vertices t1 and s2, and then using s1 and t2 as source and target or by
(jackknife operation) amalgamating vertices t1 and s2, and then using s1 and t1 as source and target.

• If (G1, s1, t1) and (G2, s2, t2) are disjoint series-parallel graphs, then so is the graph formed from them by
(parallel operation) amalgamating vertices s1 and s2 as new source and amalgamating vertices t1 and t2
as new target.

Once again, the genus polynomial is calculated by a reassembly algorithm [25].

4.3 Automated calculation for bounded treewidth

Since calculating the minimum genus of a graph is an NP-hard problem [61], even for cubic graphs [62], it
follows that calculating genus polynomials is NP-hard. However, bounding the treewidth has been shown to
lead to polynomial-time algorithms for minimum genus and for genus polynomials.

The usual definition of treewidth is based on the concept of tree decomposition. These concepts are both
due to Robertson and Seymour [57]. An excellent exposition is given by [2]. For applications of treewidth to
topological graph theory, see [49]. We now proceed with the definition of treewidth.

Let G be a graph and T a tree with nodes 1, 2, ..., s. Let Ξ = {Xi | 1 ≤ i ≤ s} be a family of subsets of
V (G) (associated with the respective nodes 1, 2, ..., s) whose union is V (G) such that

• the induced graph on the set of images in the tree T of each vertex of V (G) is a subtree of T ;

• for every edge uv in the graph G, there is a node i in the tree T such that both u and v are members of
Xi.

Then the pair (Ξ, T ) is called a tree decomposition of G, and the tree T is called a decomposition tree for G.
The width of a tree decomposition (Ξ, T ) equals

max
{
|Xi|

∣∣∣ 1 ≤ i ≤ |VT |
}
− 1
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The treewidth of a graph G is the smallest k such that G has a tree decomposition of width k.
For graphs of fixed treewidth and bounded valence, a quadratic-time algorithm is given by [23]. A linear-time

algorithm for the minimum genus of a graph of bounded treewidth is given by [44]. Describing the recursive
step (of adding a copy of the iterated subgraph H) in the construction of the graphs in a linear sequence by the
addition of a set of paths led to an algorithm [26] for automated calculation of the production matrix whose
execution time is proportional to the square of the number of embedding types.

4.4 Digraph embeddings

An Eulerian digraph is a digraph that has a directed Eulerian circuit that traverses every edge, or equivalently,
such that at every vertex, the in-valence and the out-valence are equal.

A cellular embedding of an Eulerian digraph D into a closed surface is said to be a directed embedding if the
boundary of each face is a directed closed walk in D. The directed genus polynomial of an Eulerian digraph D
is the polynomial

ΓD(x) =
∑
h≥0

gh(D)xh

where gh(D) is the number of directed embeddings into the orientable surface Sh of genus h, for h = 0, 1, . . .
. The sequence {gh(D)|h ≥ 0}, which is called the directed genus distribution of the digraph D, is known for
very few classes of graphs, compared to the genus distribution of a graph.

Some fundamental results were established by [3]. They include an interpolation theorem, that if there are
directed embeddings of the digraph D in the surfaces Sp and Sq and if p ≤ r ≤ q, then there is a directed
embedding of D in Sr. They also show that the gap between the minimum directed genus and the maximum
directed genus of a digraph can be arbitrarily large. Obstructions to planarity were derived by [4]. The directed
genus of the deBruijn graph was obtained by [39].

5. Log-concavity and other possible attributes

A polynomial a0 + a1z + a2z
2 + · · ·+ anz

n is said to be log-concave if the inequality

aj−1aj+1 ≤ a2j

holds for 1 ≤ j ≤ n − 1. The following conjecture [36], which has been affirmed for many graphs, is known as
the Log-Concavity Conjecture for Genus Distributions (or by the initials LCGD) is now over 30 years old:

Conjecture 5.1 (LCGD). Every graph has a log-concave genus distribution.

An easily derived variant definition of the log-concavity of a sequence is that the successive ratios of con-
secutive elements of the sequence are non-increasing. Proof that the genus polynomials for ladders are log-
concave [19] was obtained by applying this variant to a closed form for the coefficients of the genus polynomial.
Proof that the genus polynomials for bouquets are log-concave [36] follows inductively from the definition and
the recurrence (8).

A well-known theorem of Newton asserts that if the coefficents of a polynomial are non-negative and all
the roots are real, then the polynomial is log-concave. It is proved by [59] that the genus polynomials derived
in [19] and [36] are real-rooted and then conjectured, after examination of a few more genus polynomials, that
all genus polynomials are real-rooted. However, a counterexample was found by [13].

Whereas the product p(z)q(z) of two log-concave polynomials p(z) and q(z) is log-concave, it is easy to
construct examples in which the sum p(z) + q(z) is not log-concave. To expand the range of methods of
establishing the log-concavity of genus polynomials, relations called synchronicity and ratio-dominance were
introduced by [33] as an aid to proving the log-concavity of linear combinations that correspond to some
frequently used graph operations.

Two non-negative sequences A and B are said to be synchronized , denoted by A ∼ B, if both are log-concave
and if they satisfy the inequalities

aj−1bj+1 ≤ ajbj and aj+1bj−1 ≤ ajbj for all j.

The following theorem of [33] is fundamental.

Theorem 5.1. Let A and B be synchronized sequences, and let u, v > 0. Then the sequence uA + vB is
log-concave.
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Let A = (aj) and B = (bj) both be non-negative synchronized sequences. Then B is said to be ratio-
dominant over A, denoted by B & A or A . B, if

aj+1bj ≤ ajbj+1 for all j.

That the convolution operator ∗ preserves log-concavity is well-known. The following theorem is used in
proofs of log-concavity of the genus polynomials of graphs that are constructed by amalgamating two different
graphs.

Theorem 5.2 ( [33]). Let A,B,C,D be four non-negative log-concave sequences without internal zeros, such
that A . B and C . D. Then the convolution sequences A ∗D and B ∗ C are synchronized.

The directed genus distribution of a 4-regular outerplanar digraph was derived and proved by [8] to be
log-concave. Indeed, the corresponding genus polynomial is real-rooted.

6. Monodromy and Ribbon graphs

The flags of an embedded graph G are the faces of a barycentric subdivision of the embedding. We observe
that every flag is 3-sided and that there are four flags incident on every edge of G. The canonical flag-labeling
convention has a couple of uncomplicated rules, introduced in [31], for labeling the edges and flags of an
embedded graph G with n edges. These rules simplify the algorithms for computations.

1. Label the edges of G by the integers 1, 2, . . . , n.

2. Label the flags incident on edge j by the integers 4j–3, 4j–2, 4j–1, 4j, so that flag 4j–2 is on the same
side of edge j as flag 4j–3 and so that flag 4j lies immediately opposite flag 4j–3 on the other side of edge
j.

Figure 6 illustrates this configuration. Artifacts of the barycentric subdivision are shown with broken straight-
edges and hollow vertices.

v

edge j

4j-3 4j-2

4j-14j

Figure 6: The canonical labeling of the four flags incident on edge j.

We now proceed with descriptions of the three paradigms mentioned in Section 1 for specifying a graph
embedding: rotation systems, monodromy, and ribbon graphs.

6.1 Monodromy

Jones and Singerman [43] showed how a graph embedding could be specified by a set of three fixed-point-free
involutions {r0, r1, r2}, called the monodromy of the embedding , on the set of flags. The group that they
generate is called the monodromy group. Using the canonical labeling of the flags, the involutions r0 and r2 for
any embedded graph with n edges are always the following:

r0 = (1 2)(3 4)(5 6)(7 8) · · · (4n–3 4n–2)(4n–1 4n) (9)

r2 = (1 4)(2 3)(5 8)(6 7) · · · (4n–3 4n)(4n–2 4n–1). (10)

To describe the involution r1, we observe that the flags of any graph embedding are partitionable into cycles in
which two consecutive flags lie in the same face of the embedding, with two flags in each corner of every face of
the corresponding map. We define r1 as the full involution that transposes every flag with the other flag in the
same corner of the map. It should be clear that if we visualize each transposition in any of these involutions as
a rule for pasting two flags together, we can reconstruct the embedding from its monodromy.

Proposition 6.1. Let {r0, r1, r2} be the monodromy of a graph embedding, and let λ = r0r2. Then the
Poincaré dual embedding has the monodromy

{r∗0 = r0λ, r∗1 = r1, r∗2 = r2λ}. (11)

We observe that under the canonical labeling convention, we have

λ = (1 3)(2 4)(5 7)(6 8) · · · (4n–3 4n–1)(4n–2 4n). (12)
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6.2 Ribbon graphs

Formally, a ribbon graph, as defined by [53], is equivalent to a band decomposition as defined by [37], that is,
a collection of disks and bands assembled as in Figure 7. Topologically, it is a surface with holes. The graph
that it specifies is obtained by envisioning a vertex in the interior of each disk and an edge traversing each
band, which joins the vertices in the disks at the opposite ends of the band. Any such ribbon graph has an
implicit imbedding that is obtained by attaching the boundary of a disk to each of the boundary components. In
discussion of ribbon graphs, including in this paper, the same phrase “ribbon graph” may refer to the implicit
graph embedding.

Figure 7: A ribbon graph whose embedding surface is the projective plane.

7. Partial dualities

In this section, we define and discuss Petrie duality and Wilson duality. We recall from Subsection 6.1 that the
Poincaré duality operator is denoted by ∗. Propositions 6.1 and 7.1 give the transformation on the monodromy
of a ribbon graph G corresponding to ∗-duality and partial ∗-duality, respectively. The Petrie and Wilson
duality operators are denoted by × and ∗×∗, respectively.

Chmutov [16] invented a way to define the Poincaré partial-dual of a ribbon graph G, in which one can
dualize any edge-subset A of G, in terms of a topological modification of the ribbon graph G. Since we denote
the Poincaré dual of G by G∗, we denote the partial-dual on A by G∗|A . Although the full Poincaré dual has the
same surface as the primal graph, partial-dualizing can change the surface type. For instance, partial-dualizing
on one edge of a 2-cycle C2 in the sphere S0 results in an embedding of the bouquet B2 (a single vertex with
two loops) in the torus S1. This partial-dual construction was extensively developed by [18].

To define G∗|A in terms of permutation algebra, we begin with the definition

λ|A =
∏
j∈A

(4j–3 4j–1)(4j–2 4j) (13)

of λ|A as the restriction of λ to the edge-set A. This facilitates the computationally tractable definition of the
partial dual of the embedded graph with monodromy {r0, r1, r2}, as the embedded graph with monodromy

{r∗|A0 = r0λ|A, r∗|A1 = r1, r
∗|A
2 = r2λ|A}. (14)

Proposition 7.1. The monodromy transformation given by (14) is equivalent to Chmutov’s geometric con-
struction of a partial-∗ dual.

The partial-dual genus polynomial ∂Γ∗
G(z), for the Poincaré dual, as introduced by [30], is given by

∂Γ ∗
G(z) =

∑
A⊂E(G)

zγ(G
∗|A). (15)

The Petrie dual was originally conceived as a geometric construction. Its generalization to an operation on
embedded graphs, and also the corresponding partial dual, are easily expressed in terms of a ribbon graph. The
Petrie duality operator is indicated by ×.

• The Petrie dual of a ribbon graph G is the ribbon graph G× obtained by giving every ribbon a half-twist.
Of course, the Petrie dual of an orientable ribbon graph may be non-orientable.

• The partial Petrie dual of a ribbon graph G on an edge set A is the ribbon graph G×|A obtained by giving
a half-twist to each ribbon whose corresponding edge lies in the edge-set A.

Proposition 7.2. Let {r0, r1, r2} be the monodromy of a graph embedding, and let λ = r0r2. Then the Petrie
dual embedding has the monodromy

{r×0 = r0r2, r×1 = r1, r×2 = r2}. (16)
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Analogous to the definition (13) of λ|A, we now define

r2|A =
∏
j∈A

(4j–3 4j)(4j–2 4j–1). (17)

Proposition 7.3. Let {r0, r1, r2} be the monodromy of a graph embedding. Then the partial Petrie dual on
the edge-subset A has the monodromy

{r×|A0 = r0r2|A, r
×|A
1 = r1, r

×|A
2 = r2}. (18)

The Wilson dual is the iterated composition ∗×∗ of Poincaré and Petrie duals.

Proposition 7.4. Let {r0, r1, r2} be the monodromy of a graph embedding, and let λ = r0r2. Then the
Wilson dual embedding has the monodromy

{r∗×∗0 = r0, r∗×∗1 = r1, r∗×∗2 s = r2r0}. (19)

Analogous to the definitions (13) and (17), we now define

r0|A =
∏
j∈A

(4j–3 4j − 2)(4j–1 4j). (20)

Proposition 7.5. Let {r0, r1, r2} be the monodromy of a graph embedding. Then the partial Wilson dual on
the edge-subset A has the monodromy

{r∗×∗|A0 = r0r2|A, r
∗×∗|A
1 = r1, r

∗×∗|A
2 = r2}. (21)

The following theorem indicates a close relationship between the partial-∗×∗ and partial-× polynomials:

Theorem 7.1. Let G be a ribbon graph. Then

∂E∗×∗G (z) = ∂E×G∗(z). (22)

8. Some partial-duality polynomial formulas

Partial-dual polynomials formulas for a number of sequences of ribbon graphs were derived in [31]. Four of
these sequences are represented by graphic images in Figure 8. These four sequences and two related sequences,
both quite easily visualized, are listed immediately below the figure.

e1 e1

e1

e1
e1

e5

e2
e2

e2

e2

e2

e3
e3

e3

e3

e4

e4

en

en

en

(2) Dn    S0  >

(5) Bn     N1  > (6 odd) B3     S1  >

a

b

c

d

a

a

a

a a

b

b

b

c

c

c

d

>(3 odd) D5    S2

e1

e1

e5

e2

e2

e3

e3

e4

e4

e6

a

b

c

d

a

b

c

d

>(3 even) D6    S2

e1

e1
e1

e2

e2

e2

e2

e3
e3

e3
e3

e4

e4

a

b

c

d

a

b

c

d

>(6 even) B4     S2

e1

Figure 8: Representatives of some embedding sequences with known partial-dual polynomial formulas.

1. Cn → S0 is the n-cycle Cn in the sphere S0.
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2. Dn → S0 is the dipole Dn in the sphere.

3. Dn → Sp(n)/2, where p(n) =

{
n− 1 if n odd

n− 2 if n even

is the dipole Dn is the orientable surface of genus p(n)/2.

4. Cn → N1 is the n cycle in the projective plane N1.

5. Bn → N1 is the n-bouquet in the projective plane.

6. Bn → Sq(n)/2, where q(n) =

{
n− 1 if n odd

n if n even

is the bouquet Bn in the orientable surface of genus q(n)/2.

Table 2 gives the formulas for the partial-∗,×, and ∗ ×∗ polynomials for each of the first six sequences. For
convenience, we refer to columns 3, 4, and 5 of that table according to the duality operator ∗,×, ∗×∗ to which
they correspond. We refer to a row according to its entry in column 1. Thus, the notation (2×) in row (1),
column ∗×∗ indicates (as we explain below) that the formula for the partial-∗×∗ polynomials for the ribbon
graph sequence Cn → S0 equals the formula in row (2), column ×, that is, the same as the formula for the
partial-× polynomials for the ribbon graph sequence Dn → S0.

Table 2: Partial-∗,×, ∗×∗ polynomial formulas for six families of ribbon graphs. We define p(n) = n–1 for
odd n and p(n) = n–2 for even n. We define q(n) = n–1 for odd n and q(n) = n for even n.

row embedding ∂E
∗
(z) ∂E

×
(z) ∂E

∗×∗
(z)

(1) Cn → S0 2 + (2n − 2)z2 2n−1(1 + z) (2×)

(2) Dn → S0
q (1 + z)n − zn + zp(n) (1×)

(3 oddn) Dn → S(n−1)/2 2nzn−1 q (5×)

(3 evenn) Dn → S(n−2)/2 2n−1(zn−2 + zn) q (2×)

(4) Cn → N1 2z + (2n − 2)z2 (1×) (4×)=(1×)

(5) Bn → N1
q z(1 + z)n − zn+1 + zq(n) (4×)=(1×)

(6 oddn) Bn → S(n−1)/2 (3 oddn ∗) q (2×)

(6 evenn) Bn → Sn/2 (3 evenn ∗) q (5×)

As demonstrated in [31], these sequences are interrelated according to two principles:

(a) For each of the dualities • = ∗,×, ∗×∗, a ribbon graph and any of its partial-• duals have the same
partial-• polynomial.

(b) For any ribbon graph G, we have ∂E∗×∗G (z) = ∂E×G∗(z). This is Theorem 7.1.

For instance, the ribbon graph (2) Dn → S0 is the full ∗-dual of (1) Cn → S0, so by principle (a), they have
the same partial-∗ polynomial. Moreover, since (2) Dn → S0 is the full ∗-dual of (1) Cn → S0, it follows from
principle (b) that the partial-∗×∗ polynomial of (1) Cn → S0 equals the partial-× polynomial of (2) Dn → S0.

8.1 Ladders

In this subsection, we present partial-∗, ×, and ∗×∗ polynomials for the ladder graphs.

Theorem 8.1. [30] Let pn(z) = ∂Γ∗Ln
(z) and qn(z) = ∂Γ∗Qn

(z). Then the resulting polynomials satisfy the
simultaneous recurrence:

pn+1(z) = 6zpn(z) + qn(z) (23)

qn+1(z) = (6z + 4z2)pn(z) + (1 + 2z)qn(z) (24)

Theorem 8.2. [30] The polynomial ∂Γ∗Ln
(z) for the ladders is given by

∂Γ∗Ln
(z) = 2(

√
8z)n−1

(
1 + 6z + z2

2
√

2z
Un−2(t)− Un−3(t)

)
,

where t = 1+8z
4
√
2z

and Um(t) is the mth Chebyshev polynomial of the second kind.
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Theorem 8.3. [31] The ladder graph Ln (embedded in the 2-sphere S0, as shown in Figure 9) has the partial-×
polynomial recursion

∂E×L0
(z) = 2

∂E×L1
(z) = 8 + 8z

∂E×Ln
(z) = (2 + 4z)∂E×Ln−1

(z) + (16z2)∂E×Ln−2
(z) for n ≥ 2.

with the closed form

∂E×Ln
(z) = 2(4iz)n

(
1 + z

iz
Un−1

(
1 + 2z

4iz

)
− Un−2

(
1 + 2z

4iz

))
, (25)

where i2 = −1 and Un(t) is the nth Chebyshev polynomial. The polynomial ∂E×Ln
(z) is log-concave.

e5e4e3e2e1

Figure 9: Embedding of the ladder L5 in the sphere S0.

Lemma 8.1. [31] Let e be any edge of a ribbon graph G. Let H be obtained from G by adding an edge
parallel to e and then trisecting it by adding two vertices of valence two. Then

∂E∗×∗H (z) = (1 + 3z + 4z2)∂E∗×∗G (z).

Theorem 8.4. [31] The ladder Ln has the partial-∗×∗ polynomial

∂E∗×∗Ln
= (1 + z)(1 + 3z + 4z2)n.

Proof. The ladder L0 consists of a single edge, so ∂E∗×∗L0
= 1 + z. Since Ln is obtained from Ln−1 by adding a

trisected parallel edge, this follows from Lemma 8.1.

8.2 A family of series-parallel graphs

The family of restricted series-parallel ribbon graphs, abbreviated RSPG, is recursively constructed, beginning
with the trivial ribbon graph K1. It is closed under the following operations: (1) adding a parallel edge or a
trisected parallel edge; (2) ribbon-joins; (3) bar-amalgamations. All trees and ladders are in RSPG, but so are
ribbon graphs like the one shown in Figure 10.

Figure 10: An RSPG graph that is not a tree or a ladder.

Theorem 8.5. [31] Let G be any ribbon graph in RSPG. Then

∂E∗×∗G (z) = ∂E
×
G∗(z) = 2k(1 + z)m(1 + 3z + 4z2)n,

where k is the number of parallel edges, m is the number of bar-amalgamations, and n is the number of trisected
parallel edges used in the construction of G.

9. Some research problems

We are concerned here with the derivation of methods for calculating genus polynomials and partial-duality
polynomials for a number of graphs and embeddings of general interest. An attractive common feature of the
examples we present in this section is that each of them has a plane embedding or a plane projection with
circular symmetry.

ECA 1:1 (2021) Article #S2S1 13



Jonathan L. Gross and Thomas W. Tucker

9.1 Anti-prisms

The n-anti-prism is the graph formed from two concentric n-gons so that each vertex of one of the n-gons are
joined to the endpoints of an edge the other n-gon, as illustrated in Figure 11. Each anti-prism graph is the
1-skeleton of the Archimedean solid from which its name is taken, in which all of the 3-sided faces are equilateral
triangles.

4-antiprism 5-antiprism

Figure 11: Two anti-prism graphs.

Problem 9.1. Derive the genus polynomials for the sequence of anti-prism graphs.

Problem 9.2. Derive the partial-dual polynomial of the spherically embedded anti-prism graphs for any or all
of the dualities ∗,×, ∗×∗.

9.2 Truncated pyramid

The truncated n-pyramid is the 1-skeleton of the solid formed by truncating all the corners of the pyramid with
an n-gon as its base. (In some contexts other than graph theory, the apex of the pyramid would be truncated,
but not the corners of its base.)

truncated 3-pyramid truncated 4-pyramid

Figure 12: Two truncated-pyramid graphs.

Problem 9.3. Derive the genus polynomials for the sequence of truncated-pyramid graphs.

Problem 9.4. Derive the partial-dual polynomials of the spherically embedded truncated-pyramid graphs for
any or all of the dualities ∗,×, ∗×∗.

9.3 Ring-like ladder graphs

Problem 9.5. Derive the partial-dual polynomials of the spherically embedded ladder graphs for any or all of
the dualities ∗,×, ∗×∗.

Problem 9.6. Derive the partial-dual polynomials of the Möbius ladder graphs embedded in the projective
plane N1 for any or all of the dualities ∗,×, ∗×∗.

9.4 Circulant graphs

A circulant graph circ(n;X) is defined for a positive integer n and a subset X of the integers 1, 2, . . . bn/2c,
called the connections.

• The vertex set is Zn, the integers modulo n.

• There is an edge joining the vertices i and j if and only if the number |j − i is one of the connections.

For instance, the graph circ(5, {1, 2}) is isomorphic to the Kuratowski graph K5 (and not to the cicular ladder
CL5). Corresponding to the sequence of circulant graphs circ(n, {1, 2}) for n ≥ 5, there is a sequence of toroidal
embeddings, as shown in Figure 13.

Problem 9.7. Derive the partial-∗,×, ∗×∗ polynomials for the toroidally embedded circulant graphs circ(n, {1, 2})
for n ≥ 5.
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0 0432

0432

1

21

0 05

5

432

0432

1

21

...

Figure 13: A sequence of toroidal embeddings of circulant graphs circ(5, {1, 2}), circ(6, {1, 2}), . . . .
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