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Larry Guth received a B.S. in mathematics from Yale University in
2000, and a Ph.D. in mathematics from the Massachusetts Institute of
Technology (MIT) in 2005 under the supervision of Tomasz Mrowka.
After getting his postdoctoral position at Stanford, he moved to the
University of Toronto as an assistant professor. In 2011, Guth was
appointed as professor of mathematics at the Courant Institute. Since
2012, he is a professor of mathematics at MIT, and in 2020 he was
made a Claude Shannon professor. Guth’s research interests are in

metric geometry, harmonic analysis and extremal combinatorics. In 2010, Guth won an Alfred
P. Sloan Fellowship. In 2013, the American Mathematical Society (AMS) awarded him the
Salem Prize in mathematics, for outstanding contributions to analysis. In 2014, he received
a Simons Investigator Award. In 2015, Guth received the Research Prize of the Clay Mathe-
matics Institute and was awarded the New Horizons in Mathematics Prize “for ingenious and
surprising solutions to long-standing open problems in symplectic geometry, Riemannian ge-
ometry, harmonic analysis, and combinatorial geometry.” In 2020, Guth received the Bôcher
Memorial Prize of the AMS and the Maryam Mirzakhani Prize in mathematics. He is a Fellow
of the AMS.

Mansour: Professor Guth, first of all, we
would like to thank you for accepting this in-
terview. Would you tell us broadly what com-
binatorics is?

Guth: Combinatorics is about studying finite
objects, like finite (abstract) sets, or a finite set
of numbers or a finite set of circles in the plane.
Questions from number theory, like questions
about prime numbers or questions about in-
teger solutions of equations, are finite in this
sense, but partly for historical reasons, they
are considered a separate field. In the 20th
century, people realized that there are many
other interesting questions about finite objects
outside of number theory. These questions and
the community of people working on them are
combinatorics.

People in combinatorics have made a partic-
ular effort to seek out questions that are easy
to state. There are many really difficult open
problems in combinatorics which high school

students can understand. In my opinion, this
is an important part of the culture of the field.

Mansour: What do you think about the de-
velopment of the relations between combina-
torics and the rest of mathematics?

Guth: Personally, I did not start out study-
ing combinatorics, and the only way I became
involved was because of some relations be-
tween combinatorics and other parts of math.
For instance, the Szemeredi-Trotter problem
is a combinatorial problem about the inter-
section patterns of finite sets of lines in the
plane, and the solution to the problem turns
out to involve topology. This connection be-
tween combinatorics and topology is one of
my favorite parts of combinatorics. The prob-
lem Szemeredi and Trotter solved is analogous
to some problems in harmonic analysis. Tom
Wolff discovered that analogy, and he learned
ideas from the combinatorics community and
applied them to study solutions of the wave
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equation. Along the way, he introduced a cir-
cle of problems and ideas from combinatorial
geometry to people working in harmonic anal-
ysis. I learned about these problems and ideas
from Nets Katz. That had a big impact on
my work. There are many other examples of
connections between combinatorics and other
parts of math.

Connections between one field and another
are always interesting and important, but I
think this may be especially true for combi-
natorics. On the one hand, combinatorics is
distinguished by searching for questions that
are very simple to pose. When those questions
get connected to other branches of math and
to more abstract structures, then I think it is
a good sign for both the question and the ab-
stract structure. It shows that the question
leads us somewhere and it shows that the ab-
stract structure connects to things.

Mansour: We would like to ask you about
your formative years. What were your early
experiences with mathematics? Did that hap-
pen under the influence of your family, or some
other people?

Guth: I was incredibly fortunate with the
mentors I had growing up. My father, Alan
Guth, is a physicist and very interested in
math, and we would talk a lot. He is a wonder-
ful teacher. He taught me many things, and he
was also happy to talk about questions he did
not know the answers to. We would guess what
the answer might be, and then we would try to
prove it. If that did not work, we would try to
disprove it. If that did not work, we would
try to prove it again. Now I teach students
myself, and it is very common that someone
tries to prove something, and it does not work,
and they get frustrated. Of course, it happens
to me too. But sometimes, when we are in the
right mood, we can say to ourselves, “That did
not work. That is interesting. I wonder why
it did not work...” I learned this mood when I
was a kid talking math with my father.

Now I am a father. My children are four
years old and two years old. When I watch
them building a block tower or working on a
jigsaw puzzle, I often think about doing math
research and about the different moods that I

go through when I am doing it. Sometimes,
they are in a mood where they really want the
tower to be tall. In that mood, they get frus-
trated when it falls down. But other times
they build in a more curious mood, and when
the tower falls down, they laugh and they start
again. In the more curious mood, their hands
are steadier and the towers are taller.

I also learned a lot from my father about
writing and teaching. I remember, when we
were talking, some times he would write down
what we were talking about, and sometimes I
would write down what we were talking about.
When he wrote down what we were talking
about, you saw the first thought and then the
second thought and then the third thought.
The pages were numbered and you could read
it over later and see just what we thought.
When I wrote down what we were talking
about, the second thought was in the bottom
right corner and the third thought was diago-
nally across the top left and the fourth thought
was sideways along the right margin... It took
me something like ten years to learn how to
write thoughts down one at a time.
Mansour: Your father, Alan Guth, is an
eminent theoretical physicist and cosmologist.
Have you ever hesitated when choosing be-
tween mathematics and physics to pursue your
research career?
Guth: I did not actually. We talked about
physics too, but I remember our math conver-
sations more vividly. Our conversations mostly
followed what I was interested in talking about,
and my interests went in a more mathematical
direction.
Mansour: Were there specific problems that
made you first interested in combinatorics?
Guth: When I was a postdoc, I learned about
the Szemerdi-Trotter theorem1,2 from Matt
Kahle, and I found it very interesting. I was
interested in the Kakeya problem from har-
monic analysis. Around that same time, Zeev
Dvir3 proved the finite field Kakeya conjec-
ture. The argument used ideas from error-
correcting codes, and it was connected to com-
binatorics. I was very interested in that and I
spent a long time trying to adapt those ideas
to other problems. I met Nets Katz around

1E. Szemerédi and W.T. Trotter, Extremal problems in discrete geometry, Combinatorica 3(3–4) (1983), 381–392
2E. Szemerédi and W.T. Trotter, A combinatorial distinction between the Euclidean and projective planes, European J. Combin.

4(4) (1983), 385–394.
3Z. Dvir, On the size of Kakeya sets in finite fields, J. Amer. Math. Soc. 22 (2009), 1093–1097.
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that time, and he introduced me to a bunch
of problems in combinatorial geometry that
have some analogy or connection to the Kakeya
problem. These problems included the joints
problem, the unit distance problem, the dis-
tinct distance problem, and analogues of the
Szemeredi-Trotter theorem using other kinds
of curves in place of lines. Those are the prob-
lems that got me into combinatorics, and I still
think they are very interesting.

Mansour: What was the reason you chose
MIT for your Ph.D. and your advisor, Tomasz
Mrowka?

Guth: I liked the atmosphere among the stu-
dents at MIT, and I also liked being in Boston
and close to my family. Coming out of under-
grad, I was most interested in Fourier analysis,
which I had learned about from Peter Jones
and Ronald Coifman, but I really was not sure
what I wanted to work on. MIT was not ac-
tually the best place for Fourier analysis, but
there was clearly a lot of good math and it felt
like a good place for me.

When I was a first-year Ph.D. student, I
was not really able to understand what any of
the professors were working on. Tom had a
group of six or seven students. I knew some of
them and I liked the community of this group.
We had a weekly seminar meeting where we
took turns reading papers and presenting them
to each other, and that was a great experi-
ence for me. I had never read a math paper
as an undergrad, or as a first year grad stu-
dent. Learning to read a paper and digest it
and present it was challenging and exciting.
My first presentation had about one mistake
every ten minutes, and Tom pointed them out
with gentle questions. I had not learned how
much work it took me to digest a piece of math
and understand it. After that, I wrote about
eight pages of notes for each presentation, and
I wrote more than one draft of the trickiest
parts.

Mansour: What was the problem you worked
on in your thesis?

Guth: In Gromov and Lawson’s work on
scalar curvature4, they bring up mappings
between n-dimensional Riemannian manifolds
that decrease all the 2-dimensional areas. I got
very interested in these mappings and I wrote

my thesis about them.

Mansour: What would guide you in your re-
search? A general theoretical question or a
specific problem?

Guth: In that thesis research, I was guided
by analogies. There is a lot known about map-
pings that decrease all 1-dimensional lengths.
I would work through those ideas and try to
adapt them to mappings that decrease all the
2-dimensional areas. For example, there is a
fundamental theorem in the area called the
Lipschitz extension theorem, which says that
if S ⊂ Rn is any set, and f : S → R is a
distance-decreasing map, then f extends to a
length-decreasing map from Rn to R. I wanted
to know if there was some analogue of this the-
orem involving 2-dimensional areas instead of
1-dimensional lengths.

I worked on that for a while, but did not
make any progress, and got frustrated. Even-
tually, I decided to give up and just work out
some simple examples of area-decreasing maps.
It seemed natural to me that among all the
maps from one n-dimensional box to another
n-dimensional box, the linear map would have
the best area-decreasing properties. I did not
think it would be that hard or that interesting,
but I figured I would work on that and at least
I would prove something. So I gave up on my
“real” problem, and I tried to prove that little
conjecture about rectangular boxes. That lit-
tle conjecture turned out to be false! My thesis
problem was figuring out which map has the
best area-decreasing properties. (I was able to
do this in some dimensions – the general prob-
lem is still open.)

The moment I figured out that my little
conjecture was false was an important mo-
ment for me becoming a math researcher. The
analogies I had started with were not all that
helpful. Once I discovered that my intuition
about this little conjecture was wrong, there
were a lot of followup questions and I had a
lot of concrete things to do that helped me un-
derstand the area better.

Sometimes in research, I am guided by
something that bothers me. I once went to
a panel discussion about mentoring gradu-
ate students, and Ingrid Daubechies said that
she teachers her students to “be ornery read-

4M. Gromov and H.B. Lawson, Jr., Spin and scalar curvature in the presence of a fundamental group. I, Ann. of Math. 111:2
(1980), 209–230.
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ers”. In other words, she encourages them to
read papers and pay attention to what both-
ers them. Recently, I have been working a
lot on decoupling theory in Fourier analysis,
following the work of Bourgain and Demeter.
Their proof of the decoupling conjecture for
the paraboloid5 came as a complete shock to
me, and I have been studying it and work-
ing in the area ever since. A key idea in the
proofs is to combine information from different
scales. There are a bunch of different tricks for
doing this. The proof of decoupling involves
four distinct tricks for combining information
from different scales. And in applications, the
decoupling theorem itself is used at different
scales. Combining information from many dif-
ferent scales seems natural and important to
me. But having five different tricks for doing
so does not feel natural – it bothers me. I feel
like we have not yet found the clearest way of
understanding it. I have been thinking about
that for the last several years.

Mansour: When you are working on a prob-
lem, do you feel that something is true even
before you have the proof?

Guth: Yes, I do. And sometimes I am wrong.

Mansour: What three results do you consider
the most influential in combinatorics during
the last thirty years?

Guth: I do not feel qualified to answer this
question. I only know a very narrow part
of combinatorics. But I will mention a few
things that I find exciting and that I would
like to learn. I would like to learn about Gow-
ers’s work6, 7 on arithmetic progressions using
higher-order Fourier analysis. I would like to
learn about the Green-Tao theoremm8. The
Green-Tao theorem is related to a lot of things,
but one, in particular, I would like to learn
about is the analogue of Szemeredi’s regular-
ity lemma9 in the context of sparse graphs. I
am not sure if this counts as combinatorics ex-
actly, but I would like to learn more about the
PCP theorem and hardness of approximation.

Mansour: What are the top three open ques-

tions in your list?

Guth: The problems I have spent the most
time wondering about are the Kakeya prob-
lem10,11 and its cousins. In combinatorics, one
of my favorite questions is the inverse problem
for the Szemeredi-Trotter theorem. I recently
learned about an open problem in additive
combinatorics about the size of the sum set of
a convex set. If f(x) is a convex function, then
the sequence of numbers f(1), f(2), . . . , f(n) is
a convex set of size n. If A is a convex set of
size n, how big does the sum set A+A need to
be? There was some striking fairly recent work
by Schoen and Shkredov12, but we are far from
fully understanding.

Mansour: What do you think about the dis-
tinction between pure and applied mathemat-
ics that some people focus on? Is it meaningful
at all in your own case? How do you see the
relationship between so-called “pure” and “ap-
plied” mathematics?

Guth: So far I have only done pure math. I
would really like to learn more applied math,
but it is hard to find time for everything...

Mansour: Would you tell us about your in-
terests besides mathematics?

Guth: When I was younger I was interested in
acting and in theater. When I was in college,
I spent a semester studying acting in Moscow
and I did another workshop the summer after
my first year of graduate school. My family
used to go to the theater when I was grow-
ing up and there were many plays around our
house that I used to read. For me, it was also a
way of exploring different life experiences and
trying out different ways of connecting with
people. Once in a while I still have friends
over and read a play out loud.

I started taking some tai chi classes in
graduate school. I got interested in it partly
through theater and partly because I used to
have a little knee pain and back pain, and I
think it helped with that. I really like the med-
itative side of it, and I still like to do a little
bit when I get into the office in the morning.

5J. Bourgain and C. Demeter, The proof of the l2 Decoupling Conjecture, Ann. of Math. 182 (2015), 351–389.
6T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11(3) (2001), 465–588.
7T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, Ann. of Math. 166(3) (2007), 897–946.
8B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167 (2008), 481–547.
9B. Green, T. Tao and T. Ziegler, An inverse theorem for the Gowers Us+1[N ]-norm, Ann. of Math. 176 (2012), 1231–1372.

10A.S. Besicovitch, On Kakeya’s problem and a similar one, Math. Z. 27:1 (1928), 312–320.
11T. Tao, From Rotating Needles to Stability of Waves: Emerging Connections between Combinatorics, Analysis and PDE,

Notices of the AMS. 48(3) (2001), 297–303.
12T. Schoen and I.D. Shkredov, On sumsets of convex sets, Combin. Probab. Comput. 20:5 (2011), 793–798.
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Mansour: Before we close this interview, we
would like to ask some more specific math-
ematical questions. You have worked on
problems from different fields of mathematics
throughout your career. In your survey pa-
per “Unexpected applications of polynomials
in combinatorics,” you write “I am a big ad-
mirer of hard problems that are simple to state.
The most exciting - in my opinion - is a sim-
ply stated problem that is hard for a new rea-
son.” Would you elaborate more about this and
give some examples of such problems? Are you
working on a problem recently which is hard
for a new reason?
Guth: There are many hard questions about
primes that are simple to state, such as the
twin primes conjecture. I think that is a very
striking fact. In hindsight, because prime num-
bers are defined by crossing out numbers with
factors and looking at what is left, it is hard to
get a handle on what happens when we add
prime numbers etc. Once one knows about
this, it is not so hard to produce other simple
questions about primes that are also hard to
answer. Even though the definition of a prime
number is simple, testing whether a number
is prime is quite complicated, and so in hind-
sight, perhaps it is not so surprising that it is
hard to know how often n and n + 2 are both
prime.

Erdős posed the unit distance problem13,14

in the 1940s, and it remains wide open and
looks hard. The reason it is hard is not re-
lated to the reason the twin primes conjecture
is hard. As far as I know, there was not a
previous problem that was hard for a similar
reason. In fact, I have some trouble articulat-
ing why I believe the problem is hard. Actually
I think a hard problem is the most interesting
in this situation – when it is not so clear why
it is hard. Then our research has two opposite
goals: either to make progress on the problem
or to explain why it is hard to make progress.

The unit distance problem asks for the max-
imum possible number of unit distances among
n points in the plane. Since we have 2n de-
grees of freedom, it is not hard to get about
2n unit distances. Examples with more than
that many unit distances are rare, and they all
have some special lattice structure. Those ex-

amples only have slightly more unit distances,
still less than n1+ε asymptotically. Valtr15 dis-
covered that the unit distance conjecture is
false for other smooth convex norms. The
examples still have lattice structure! So per-
haps there is some general principle that ex-
amples with many unit distances must have
some kind of lattice structure. That would
be very striking – and reminiscent of several
other problems in combinatorics and Fourier
analysis where the known examples have a lot
of lattice structure, such as examples for the
Szemeredi-Trotter theorem and examples for
the Bourgain-Demeter decoupling theorem. If
a set has a lot of unit distances, what kind of
structure does it need to have, and how do we
know it is there?
Mansour: Between 2006-2013, several very
difficult combinatorial problems have been
solved in an unexpected way using high de-
gree polynomials. For instance, the finite field
Nikodym and Kakeya problems, and Erdös dis-
tinct distance problem. You have already writ-
ten a wonderful survey paper and a book on
the topic called “Polynomial methods in Com-
binatorics.” Would you tell us about the main
ideas behind the polynomial method? Why is
it so powerful?
Guth: In these problems and related prob-
lems, the extreme examples have polynomial
structure. For example, a set of points is con-
tained inside of a surface defined by (fairly low
degree) polynomials. The polynomial method
is a set of tools that helps figure out when ex-
treme examples for different types of problems
need to have this kind of polynomial structure.
Mansour: You, with Nets Katz, introduced
a variation of the polynomial method, often
called polynomial partitioning, in your solu-
tion to the Erdös distinct distances problem in
the plane. Would you tell us about the prob-
lem, polynomial partitioning method, and the
higher dimensional cases?
Guth: For example, suppose we have a set of
points P in 3-dimensional space and a set of
lines L in 3-dimensional space, and we want to
estimate the number of incidences of P and L
(the number of pairs p ∈ P and ` ∈ L with
p ∈ `). The worst case occurs when all the
points and lines lie in a plane. Nets and I

13P. Brass, W.O. Moser and J. Pach, Research problems in discrete geometry, Springer, 2005.
14P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.
15P. Valtr, Strictly convex norms allowing many unit distances and related touching questions, preprint, 2005.
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proved that if not too many points or lines lie in
a single plane, then there are significantly bet-
ter estimates. It turns out that to analyze this
problem, one should first check that the worst
case occurs when most of the points and lines
lie in a low degree algebraic surface. Then one
analyzes the different surfaces, and one finds
that only planes and degree 2 surfaces matter.
Since only planes and degree 2 surfaces matter,
why introduce all the higher degree surfaces in
the proof? I think the reason is that there is a
more robust phenomenon – for a broad range
of problems in this spirit, the worst case occurs
when most of the objects involved lie in an al-
gebraic variety of fairly low degree. It so hap-
pens that for points and lines in 3-space, only
planes and sometimes degree 2 surfaces mat-
ter, but this last point is a little bit of a coinci-
dence. The more general robust phenomenon
does involve higher degree varieties, and the
more general and robust phenomena are often
easier to prove.

This estimate about lines in 3-space was the
main step in realizing an approach to the dis-
tinct distance problem that was invented by
Sharir and Elekes16.

There are many higher dimensional versions
of these problems. One can ask about inci-
dences between lines in n-space and more gen-
erally between low degree varieties in n-space.
The higher dimensional distinct distance prob-
lem leads to incidence problems of this kind.
Most of these higher dimensional versions are
open, although Miguel Walsh recently made a
lot of progress on them.

Mansour: Is there a connection between Noga
Alon’s combinatorial Nullstellensatz and the
polynomial method?

Guth: They have a somewhat similar flavor
because they both involve doing linear alge-
bra on the space of polynomials. There are a
number of other cool theorems and proofs in
combinatorics that also involve linear algebra
on the space of polynomials – one good source
for them is the book ‘Linear algebra methods
in combinatorics’ by Babai and Frankl. The
recent breakthrough in the cap set problem17

by Croot, Lev, and Pach18 is another example.
Mansour: Would you list a few open ques-
tions from combinatorics such that in their
solutions you expect that polynomial method
will play an important role?
Guth: For several years, people used to ask
me if this or that problem might be related to
the polynomial method. I was not very good
at guessing the answer – and the answer was
usually no. Unless the problem was very sim-
ilar to a problem that had been solved using
the polynomial method, I had no special in-
sight. I would tell people that a problem was
a good candidate if the worst known example
had some polynomial structure.

In the last ten years, two of the most ex-
citing applications of the polynomial method
were the work on finite field sum-product esti-
mates using Rudnev’s19 point-plane incidence
bound and the work of the cap set problem by
Croot, Lev, and Pach. In these cases, there
is not any interesting example with polyno-
mial structure, so my criterion would not have
guessed that the polynomial method should be
useful!
Mansour: Terence Tao has the following com-
ment on the polynomial method: “What I
would like to see more of in the future is more
development of the somewhat vague idea of the
“Zariski complexity” of various sets, by which I
mean something like the least degree of a non-
trivial polynomial which vanishes on that set.
One can view the polynomial method as the
strategy of comparing upper and lower bounds
on the Zariski complexity of sets to obtain non-
trivial combinatorial consequences. I have the
vague feeling that ultimately, such notions of
complexity should play as prominent a role in
these sorts of combinatorial problems as exist-
ing notions of “size” for such sets, such as car-
dinality, dimension, or Fourier uniformity.”20

Would you elaborate on this comment to make
it more accessible to a researcher who is new
to the field? What are your thoughts in this
direction?
Guth: Suppose F is a field. If X ⊂ Fn is
a set, we can define Deg(X) as the smallest

16G. Elekes and M. Sharir, Incidences in three dimensions and distinct distances in the plane, Combin. Probab. Comput. 20:4
(2011), 571–608

17J.A. Grochow, New applications of the polynomial method: The cap set conjecture and beyond Bull. AMS 56:1 (2019), 29–64.
18E. Croot, V.F. Lev and P.P. Pach, Progression-free sets in Zn

4 are exponentially small, Ann. of Math. (2) 185:1 (2017),
331–337.

19M. Rudnev, On the number of incidences between points and planes in three dimensions, Combinatorica 38 (2018), 219–254.
20See, https://mathoverflow.net/a/43549
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degree of a non-zero polynomial that vanishes
on X. This definition plays a big role in the
polynomial method, especially in some of the
early work. For a random set X ⊂ Fn, Deg(X)
is approximately |X|1/n. If Deg(X) is much
smaller than this, then we can say informally
that X has some algebraic structure. Many
proofs in the polynomial method begin by sup-
posing that X has some interesting combinato-
rial geometric property, and then showing that
Deg(X) is small. Once this happens, we know
that X has some algebraic structure, and we
can often learn more about X by applying tools
from algebraic geometry.

So Deg(X) is an important player in the
polynomial method. But it is not the final
word, especially when n is large. If X is con-
tained in an (n − 1)-plane in n-space, then
Deg(X) = 1. But a set contained in a 9-plane
can still be pretty complicated. If a set is con-
tained in a 2-plane, should not it be simpler
than a set that is just contained in a 9-plane?
They both have Deg(X) = 1. So we should
refine Deg(X) by taking into account not just
algebraic hypersurfaces but algebraic varieties
of all dimensions. This is done in a somewhat
ad hoc way in various papers. Walsh’s21 recent
work is a big step towards studying varieties of
all dimensions in a systematic way.
Mansour: You are the first winner of the
Maryam Mirzakhani Prize in mathematics for
mid-career mathematicians given by the Na-
tional Academy of Sciences. The citation
states that the award is for “developing sur-
prising, original, and deep connections between
geometry, analysis, topology, and combina-
torics, which have led to the solution of, or
major advances on, many outstanding prob-
lems in these fields.” What do you think about
the importance of being competent in differ-
ent branches of mathematics? Do you have a
concrete example in your research career where
you made a significant progress on a research
problem by using ideas or techniques from a
completely different field?
Guth: On the one hand, dividing math into

fields is somewhat artificial, and there are
many relations between “different” fields. So
knowing different parts of math is certainly
helpful. On the other hand, learning things
well takes time, and none of us has time for
everything.

The idea of polynomial partitioning that we
mentioned above was partly suggested by work
of Gromov in metric geometry, a rather differ-
ent part of math from combinatorics or from
harmonic analysis. If you take two open sets in
the plane, then there is always a line that bi-
sects both sets. You can kind of convince your-
self of that by imagining a line continuously
rotating and shifting. At each angle, there is a
shift that bisects the first set, and as we change
the angle, the line sweeps across the second set
until it bisects it as well. This idea is a spe-
cial case of the ham sandwich theorem. Fol-
lowing Gromov, I was using variations on the
ham sandwich theorem to study problems in
metric geometry. Then the idea played a role
in my work on harmonic analysis and combi-
natorics, especially in the work with Nets on
polynomial partitioning.
Mansour: Your initial work was on the sys-
tolic geometry. Is there a connection between
combinatorics and systolic geometry?
Guth: Well, I was very excited by the appli-
cation of ham sandwich theorems in combina-
torics. I learned the ham sandwich theorem in
the context of metric geometry (a broader area
that includes systolic geometry). After that, I
looked for more connections between the fields.
I personally did not find any other connection.

Gromov found another interesting con-
nection between metric geometry and com-
binatorics: he found an analogy between
“point-selection” theorems in combinatorics by
Barany and others and the waist theorem in
Riemannian geometry proven by Almgren and
Gromov.
Mansour: Professor Larry Guth, I would like
to thank you for this very interesting interview
on behalf of the journal Enumerative Combi-
natorics and Applications.

21M.N. Walsh, The polynomial method over varieties, Invent. Math. 222 (2020), 469–512.
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