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Abstract: Within the recursive subdivision of the n × n square, what characterizes a Hilbert-style space-
filling curve motif of length n2 when—under iterated, self-similar, pure edge-replacement—a sequence of always
self-avoiding lattice paths results? How many motifs are there and what do they look like? Such motifs are
composable elements of a monoid, where all such motifs map to a particular subset of Hamiltonian cycles on
the n× n toroidal grid-graph. We prove that for any odd n ≥ 1 each motif has a shape that falls into exactly
one of F(n−3)/2 boundary “zipping” modes, where Fi is the ith Fibonacci number; for even n no solution motifs
exist. Each mode is governed by a special palindromic Fibbinary bit sequence (i.e., having no adjacent 1 bits).
To varying degrees, each zipping mode emanates further combinatorial constraint inward from the square’s
boundary, especially at the corners. The zipping mode whose Fibbinary bits have the most consecutive 0s freezes
over half of the n2 edges of an order-n motif into only one distinct (either left- or right-handed) configuration.
Manual and machine enumeration for small n is significantly enhanced by these results. For n = 1, 3, 5, 7, 9, 11
there are 1, 0, 1, 7, 10101, 20305328 distinct, globally self-avoiding motifs, falling into F(n−3)/2 = 1, 0, 1, 1, 2, 3
zipping modes, respectively. For n ≥ 5, each such motif, when infinitely exponentiated within its monoid,
converges to an open-ended, square-filling, continuous curve.

Keywords: Fibonacci words; Fibbinary; Fractals; Monoids; Space-filling curves; Self-avoiding lattice paths;
Toroidal Hamiltonian cycles
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Introduction

Space-filling curves continuously and surjectively map every point in a line segment onto every point in a higher
dimensional region. Two-dimensional, “Hilbert-style” curves fill a square by connecting one corner to an adjacent
corner in an open-ended, infinitely long, continuous but non-differentiable curve. We will concern ourselves here
not with the limiting space-filling curves per se, but rather with the combinatorial constraints governing the
everywhere-repeated, edge-connected paths—called “motifs”—on the square lattice that generate increasingly
accurate—yet always self-avoiding—paths which, in the limit, converge to the self-similar, square-filling curve.

These constructions rely on a self-similar tiling property of the square: it can be subdivided into an array of
sub-squares, where each of the smaller sub-squares is geometrically similar to the whole. When these sub-squares
are suitably ordered and rotated so as to guarantee “threaded” connectivity, they form a sequence in which all
pairs of consecutive sub-squares are also adjacent—either by edge or only by corner—within the subdivision.

The Hilbert Curve [4], the Wunderlich Curve [22], and their usual order-n generalizations [13,15] are all based
on pure edge-adjacency: every sequential pair of threaded sub-squares shares an edge.1 Their approximations
are typically drawn as piecewise-linear, Hamiltonian paths on the dual edge-adjacency graph (Fig. 1, left),
whose vertices mark the centers of edge-adjacent sub-squares. Because it is Hamiltonian, a dual path is always
self-avoiding, and therefore unambiguously specifies the underlying sequence of all n2 sub-squares.

But when we permit corner-only adjacency, the underlying graph for an arbitrary Hamiltonian dual path
is no longer a square grid-graph, as illustrated in Fig. 1, right. Diagonal line segments are now possible when
drawing a picture of the dual path.

1Pure edge adjacency is also true of the original Peano Curve [16], but it relies on a non-Hilbert-style recursive traversal from
corner to diagonally opposite corner.
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Figure 1: Left: Adjacency graph (black) of subdivided square (gray) for dual paths of pure edge-adjacent motifs.
Right: Adjacency graph for dual paths where corner-only adjacency of consecutive sub-squares is permitted.

In contradistinction to the dual path, there is a second way, called the tile path, to specify and illustrate a
motif’s consecutive sub-squares. For Hilbert-style motifs, a tile path comprises a sequence of pairwise-connected,
sub-square edges, each edge bijectively bound to exactly one sub-square. Fig. 2 illustrates the tile and dual
paths for the well-known Hilbert Curve construction, for its first six iterations. Notice, though, that the edges
of the successive, piecewise-connected, approximation tile paths in the top row are regularly self-contacting.

Douglas McKenna

k = 0 1 2 3 4 5 6

Figure 2: The Hilbert Curve construction, for stages 0 ≤ k ≤ 6. Top: Approximating tile paths (self-contacting).
Middle: Approximating dual paths superimposed on the tile path. Bottom: Just the (self-avoiding) dual path.

In this paper, within only the space of 2-D Hilbert-style constructions,2 we focus on the shapes of motif tile
paths3 for any n ≥ 1 when we (a) prohibit any mirroring of replicated motifs, (b) allow consecutive sub-squares,
at least once and as needed, to be adjacent only at a corner, and (c) require piecewise-connected tile paths on
the square lattice at all finite recursive levels of space-filling curve approximation to be self-avoiding.

In Section 1, we define terms, including an edge-replacement composition operator that preserves salient
inside/outside parity information, and we show that these space-filling curve motifs are elements of a monoid H.

In Section 2, we show the results of hand and brute-force machine enumerations of all distinct motifs for
small n, including the interesting experimental discovery that all order-9 solutions fall into two boundary modes.

Motivated by this discovery, in Section 3, we prove the Fibbinary Zipper Theorem, which tells us how many
boundary modes there will be for a given n and what they look like.

In Section 4, we show how the Fibbinary zipping mode characterized by the most consecutive 0 bits emanates
significant constraint into the interior of the order-n square subdivision, freezing over half the sub-tile edges.

In Section 5, we show the results of manual enumerations of order-5 (1 zipping mode) and order-7 (1 mode)
distinct motifs, and machine enumeration for order-9 (all in the first mode, samples from second), samples of
all order-11 motifs in each of 3 modes, and a sample solution motif found from partial machine enumerations
within each of the 5 zipping modes for order-13.

Finally, in Section 6, we show that any one of these globally self-avoiding motifs can be composed with any
other such motif, resulting in a new globally self-avoiding motif with its own zipping mode, thereby demon-
strating that globally self-avoiding motifs are elements of their own submonoid Z ⊂ H.

2Peano-style curves continuously fill a square region from a corner to its diagonally opposite corner [11,16] and are constructible
only for odd n. Their self-avoiding approximation paths are built, like the Hilbert Curve’s, on the dual edge-adjacency graph.
McKenna has also described a third, completely asymmetric, purely recursive traversal style (that relies on mirroring), for any odd
or even n, that connects a square’s corner with the center of an opposite side [9, 10].

3In Hilbert-style constructions, we might call the tile path an edge path. But because there are other styles of square-filling
curve construction where line segments mapped bijectively to tiles are not tile edges, tile path is a more general term.
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1. Notation, Terminology, and Preliminary Observations

Definition 1.1. A tile T is a square with a bijection between itself and exactly one of its four edges, called its
“distinguished edge” or (more generally) its “segment,” which imparts an orientation (bottom, right, top, left).
To disambiguate which of two edge-sharing square tiles is associated with the distinguished edge of one of them,
we illustrate the bijection using a small mark into the interior of its tile, see Fig. 3.

Definition 1.2. For each tile orientation, we also assign a direction to the tile’s segment or, equivalently, a
“parity” to the tile itself. A counterclockwise segment imparts (arbitrarily) a “forward” parity to the tile; a
clockwise segment imparts a “backward” parity. We denote these eight possibilities as BottomForward, Right-
Forward, TopForward, LeftForward, BottomBackward, RightBackward, TopBackward, and LeftBackward; we also
use the shorthand labels B, R, T, L, b, r, t, and l, respectively, see Fig. 3. Different shading also distinguishes
parity, because sometimes a tile’s parity can be determined before we know which of its edges is distinguished.

Forward

Backward

Bottom

B

Right

R

Top

T

Left

L

Partial

b r t l

Figure 3: The eight orientation/parity combinations of a tile T .

Definition 1.3. When, due to nearby tile configurations or other constraints, a tile’s parity and orientation
can be only one of the eight possibilities, we say that the tile is “forced.” When all tiles in a group are forced, we
describe the group as “frozen.” If only the parity of a tile is known, the tile’s parity is “fixed.” If the orientation
of a tile is known, whether we know its parity or not, we say the tile and its edge are “bound” to one another.

Definition 1.4. For n≥1, Tn denotes square T subdivided into an n×n array of equal-sized sub-tiles, t1 . . . tn2 ,
without regard to those sub-tiles’ orientations or parities. Tn is the “supertile” for each of its sub-tiles ti.

Definition 1.5. A “thread” of length L within Tn is a sequence t1 . . . tL of sub-tiles where (a) no sub-tile appears
more than once in the sequence; (b) each pair [ti, ti+1] of consecutive sub-tiles in the thread shares a corner at
which the arrowhead of ti’s distinguished edge meets the arrowtail of ti+1’s distinguished edge, thereby creating
a piecewise-connected path of coherently directed edges along some portion of the square lattice comprising all
possible edges within Tn; and (c) the sequence has no disconnected parts: every ti in the thread can be reached
following distinguished edges from t1, thereby ensuring piecewise-connectedness of all L sub-tiles.

Remark 1.1. In general, within Tn there are six ways that [ti, ti+1] can be piecewise-connected, as shown in
Fig. 4 for a BottomForward sub-tile ti: one left turn, two straight ahead “turns,” two right turns, and one
180° U-turn. Two pairs are corner-only adjacent; four are edge adjacent. By symmetry, an equivalent set of
possibilities exists for the other seven orientation/parity combinations that any given ti might take on.

? :
B B l B B B

t
B

L
B
r

B

T

Figure 4: Six distinct ways to thread a second unique sub-tile in a thread’s consecutive pair.

In a thread, each of its ti’s occurs exactly once, but the distinguished edges of two sub-tiles (consecutive or not)
can contact one another in the lattice of edges and even fall on top of one another, as the final boxed pair above
in Fig. 4 shows, and as the Hilbert Curve’s tile path approximations in the top row of Fig. 2 illustrate. A thread
can thus include edge sequences that self-contact, or even that cross each other to create parity-inverted loops.

Definition 1.6. When a and b are two adjacent corners of square tile T, a Hilbert-style “motif” within Tn is
a thread of length n2 where the arrowtail of t1 begins at a and the arrowhead of tn2 ends at b.

Remark 1.2. A motif in Tn implicitly specifies a distinguished edge a→ b of T having one of four orientations
and one of two parities. Hence a motif can also be characterized as BottomForward, RightForward, TopForward,
LeftForward, BottomBackward, RightBackward, TopBackward, or LeftBackward with respect to Tn.
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Definition 1.7. The “reversal” T of a tile T flips its parity while maintaining its orientation. The “reversal” of
a thread t1 . . . tL is the thread tL . . . t1, which maintains the thread’s shape in Tn’s edge lattice while reversing the
direction of all the thread’s sub-tile arrows (i.e., all sub-tile parities). The “reversal” of a motif P is denoted P.

Definition 1.8. A “composition” of an order-n motif J with an order-m motif H, denoted by J◦H or just JH,
replaces each of J’s sub-tiles ji with a scaled-by- 1

n copy of H having the same orientation/parity as ji.

Remark 1.3. Motif composition accomplishes what is called “edge-replacement,” enhanced with directional
coherence. Notice that composition is not commutative, as Fig. 5 shows, but is associative, as Fig. 6 shows.

J H JH

H J HJ

= =

= =

Figure 5: Composition of two different motifs is not commutative: J◦H 6= H◦J.

=( )
H J F

HJF

( ) =
Figure 6: Composition is associative: (HJ)F = H(JF) = HJF (result not drawn to scale).

Lemma 1.1. Under composition, Hilbert-style motifs are elements of a monoid H.

Proof. A monoid is an algebraic structure 〈Σ, ◦, I 〉 comprising a set Σ of elements where any two elements can
be composed using a binary operator ◦ to result in another member of Σ, and where Σ contains an identity
element I. Here, because composition maintains the directional coherence of all arrows in the resulting tile path,
an order-n motif composed with an order-m motif produces an order-nm motif, as Figs. 5, 6, and 54 illustrate.
As Fig. 7 shows, a BottomForward tile is an order-1 motif that acts as the monoid H’s identity element I. �

J

=
I I J

=
J

Figure 7: Composing the order-3 motif J with the identity motif I in either order results in that same motif J.

Lemma 1.2. For any motif P 6= I, Pk converges as k →∞ to a self-similar, square-filling, continuous curve.

Proof. This follows directly from a straightforward generalization (for any n) of the usual Hilbert Curve proof
of continuity for any space-filling curve construction where recursively nested bounding boxes apply [18,20]. �
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Definition 1.9. A “locally self-avoiding” motif has no two sub-tile segments coinciding in Tn’s edge lattice, and
no more than one arrowhead (arrowtail) arriving at (leaving from) a lattice vertex. H, J, and F in Fig. 6 are
each an example of a locally self-avoiding motif, whereas the result of composing any two of them is not.

Definition 1.10. A “globally self-avoiding” order-n motif G is one for which Gk is a locally self-avoiding
order-nk motif, for any integer k≥0. By convention, G0 = I.

Remark 1.4. The idempotent identity motif I = Ik is both locally and globally self-avoiding: no vertex in the
1 × 1 lattice for I has more than one arrowhead or arrowtail leaving or arriving at that vertex. Also notice
that Gk must itself be a globally self-avoiding motif. But for G 6= I, k must be finite, because when k→∞, the
limiting space-filling curve (to which the sequence of tile paths converges) is surjective (a form of self-contact).

Definition 1.11. A “distinct” motif refers to a BottomForward motif P and its seven other orientation/parity
variants having the same shape, as well as P’s mirror image Pand its seven orientation/parity variants having
the same shape. To count distinct motif shapes is to ignore orientation, mirrors, and reversals.

Remark 1.5. The purpose of discounting mirror images is because in any machine enumeration, there is no
point expending resources looking for mirror images of already-found motifs. As it turns out, there are no
bilaterally symmetric, globally self-avoiding Gs, so a count of distinct motifs will always be half of the number
of motifs otherwise blindly enumerated.

2. Enumerating Globally Self-Avoiding Motifs For Small n

Motif composition replicates its right operand’s shape everywhere that a tile’s distinguished edge appears in
the left operand, so disregarding the self-avoiding shape of the left operand, self-avoidance of any composition’s
result depends at the very least upon the right operand’s shape and how it interacts with adjacent copies of
itself in variously oriented, multiple instances. The simplest form of composition is exponentiation of a single
motif G, so we focus on Gk to better understand the constraints on self-avoidance under composition in general.

Because Gk =Gk−2G2 (for k≥2), if G2 is not locally self-avoiding, then G cannot be globally self-avoiding.
In other words, once self-contact muddies a tile path’s waters, iterated motif composition leaves those waters
forever muddied with congruent replicas of that self-contacting tile path.

The simplest distinct motif for T2 is the Hilbert Curve’s H=[ l B B r ], see Fig. 8; H is locally self-avoiding,
bilaterally symmetric, and unique, but it is not globally self-avoiding. And for T3 there are just two locally
self-avoiding, motifs: J= [ l B l R t L L r B ] and its mirror J= [ B l R R t L r B r ]. So again there is only one
distinct, locally self-avoiding motif, as shown in Fig. 9. But Jk is, like Hk, self-contacting when k ≥ 2.

Figure 8: The Hilbert Curve construction Hk for 0 ≤ k ≤ 6, where H = [ l B B r ]. Self-contacting tile paths
(circled) occur on T2k for all k ≥ 2.

1

l

B l

R t L

L

r B

2 3 4

Figure 9: J1, J2, J3, and J4 for the locally, but not globally, self-avoiding order-3 motif J = [ l B l R t L L r B ].

An exhaustive, brute-force computer backtrack enumeration,4 for locally self-avoiding, distinct motifs for T4

and T5 finds exactly 7 and 138 solutions, respectively. Fig. 10 shows all seven for T4; Fig. 11 shows all those
for order-5. These are distinct solutions, so their otherwise-valid mirror images are not shown.

There are no globally self-avoiding motifs for T4, but for T5, McKenna [8, 17] found that exactly one of
the 138 distinct, locally self-avoiding motifs, E = [ l l B L t l R b R R t L t B B r T b r B L b r B B ] (Fig. 12),

4As related in an endnote in [8], McKenna first performed this search in 1978. It required an hour of CPU time on a PDP-20
mainframe computer.
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Figure 10: Top: the seven distinct locally self-avoiding motifs for T4. Bottom: One exponentiation for each
shows that none is globally self-avoiding, although the rightmost, which has the fewest tile segments along T4’s
perimeter, comes tantalizingly close.

Figure 11: 138 distinct, locally self-avoiding motifs for T5 (mirror images not shown). Exactly one of them
(highlighted, third row/column from bottom/left) is globally self-avoiding (see also Fig. 9 of [8]).

is globally self-avoiding.5 The same computer search finds 5690 distinct, locally self-avoiding motifs on T6,
but, perhaps unexpectedly, none is globally self-avoiding [8].6 This paper reports that based on exhaustive
enumerations of T7 and T8, there are respectively exactly 484,760 and 85,942,455 distinct, locally self-avoiding
motifs. Of the 484,760 for T7, only seven are globally self-avoiding when exponentiated, which comports with
an unpublished drawing of Kim [5] made during discussions with the author in 1983. There are no globally
self-avoiding motifs on T8. By the next sections’ results, we construct E and prove it unique, and we construct
the seven order-7 distinct motifs, all without resorting to computer enumeration (see Figs. 46 and 47 below).

Figure 12: Left: The only distinct, globally self-avoiding motif E for T5. Left middle: The tile path of E1 with
its dual-path superimposed (in blue). Right: E2 and E3, whose tile paths are self-avoiding on the lattice.

For T9, the number of distinct, locally self-avoiding motifs is not yet known, but a combinatorial explosion of
distinct globally self-avoiding motifs begins in full force, with exactly 10,101 found using two different backtrack
graph searching algorithms, neither of which relied on the Fibbinary Zipper Theorem proved below.

5Mandelbrot, with whom the author corresponded about this discovery in 1979, once proposed to call this construction the
Peano-McKenna curve, although its mention did not make it into [7]. The E motif (in mirror form) was later independently
described by Dekking [2] as a “Gosper-style” construction (because Gosper’s “Flowsnake” curve is a self-avoiding tile path based on
the hexagonal tiling using pure edge replacement without mirroring). This resulted in an inadvertent misattribution via a musical
composition’s title [14].

6A typographic error in [8] reported the count as 5960. This enumeration, first performed by the author in 1980 on a 3081
mainframe computer at IBM Research, took approximately 50 hours of CPU time.
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3. Fibbinary Zippers

A browsable visual display of all 10,101 distinct, globally self-avoiding motifs for T9 revealed something un-
expected: they fall into just two visual “rhythmic” modes, each strikingly different from the other. Fig. 13
illustrates an example of each mode. Motifs in the second mode are more visually “energetic.” They evince, for
example, a much higher frequency of right or left tile path turns. Indeed, it is impossible, upon seeing this for
the first time while scrolling through the entire solution space in enumerated lexicographic order, not to wonder
whether one is witnessing some kind of “phase transition” in a discrete solution space, which is why the word
mode is appropriate. Every member of a mode is characterized by exactly the same perimeter, or boundary,
tiles as the others in that mode, a discovery that begged for further investigation of its “crystalline” nature.
Additionally, one mode had an order of magnitude fewer solution motifs in it (660 vs. 9441), indicating—all
else being equal—significantly less combinatorial freedom (i.e., the system is somehow more constrained) than
does the second mode. And the absence of any solutions for n = 2, 4, 6, 8 naturally led to the conjecture that
when n is even, no globally self-avoiding motifs exist, which is proved in Lemma 3.27 below.

Figure 13: A sample globally self-avoiding G and G2 (as path and filled in on one side, thereby showing parities)
within T9, one for each of two modes into which all 10,101 distinct, globally self-avoiding motifs fall.

3.1 Edge contact combinations within motifs

When any motif P is composed with another motif Q, in PQ a reduced, oriented, sometimes reversed, copy
of Q’s shape replaces each of P’s distinguished edges. Thus, two copies of Q’s tile path will contend for
portions of the same shared supertile edge. So P’s global self-avoidance under exponentiation depends on how
the segments in Tn’s outermost layer of 4(n−1) perimeter sub-tiles are arranged with respect to other variously
oriented copies of themselves along the shared edges and at the corners of supertiles. These perimeter tiles are
where the motif’s tile path has the opportunity to make contact with a neighboring copy of itself, but must not.

Given two edge-adjacent square tiles, each with four possible orientations (Bottom, Right, Top, or Left), there
are 42 =16 ways one tile can share an edge with its neighbor. But as Fig. 14 shows, of these sixteen combinations
only ten are distinct, because any pair’s combination is invariant as the pair is rotated together through a
multiple of 90°. For example, a Right-Right pair (upper right entry) creates the same contact combination as a
Left-Left pair (lower left entry), regardless of the pair’s 180° difference in rotation.7

L, l T, t B, b R, r

R, r

B, b

T, t

L, l

top
top

top
top

to
p

to
p

to
p

to
pleft right

bo
tto

m

left left left right left

bo
tto

m

left

right rightleft right right

bo
tto

m right

bottom

left

bottom right

bottom

bo
tto

m

bottom

Figure 14: Of the sixteen possible ways two threaded—but not necessarily consecutive—tiles (regardless of
parity) can be edge adjacent, six pairs (below diagonal, in gray) are invariant under 180° rotation to their
counterparts reflected across the diagonal, and one (circled) represents a touching tile path.

7Compare with Fig. 2 in [12], re Hilbert-style curves with always edge-adjacent sub-tiles that require top:top combinations.
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Definition 3.1. The possible ways that a globally self-avoiding motif G might interact with copies of it-
self in a self-avoiding manner along shared supertile edges are called “contact combinations.” They depend
on G’s shape and orientation, but not on parity. Reading across and down the upper half of the 4 × 4 ma-
trix, we denote these ten contact combinations as: top:top, left:top, right:top, bottom:top; left:left,
right:left, bottom:left; right:right, bottom:right; and bottom:bottom. But bottom:bottom represents
a self-contacting tile path, and is therefore not a possible edge-adjacency pair of two sub-tiles in any self-avoiding,
much less globally self-avoiding, motif.

With respect to globally self-avoiding motifs, the rub, so to speak, is that it is not a priori obvious which
of the nine possible contact combinations occur in Gk>0. Any given pair of edge-adjacent tiles in Tnk are not
necessarily consecutive nor even sequentially close to one another along the motif’s threaded tile path. Worse,
under exponentiation, the placement of pairs of copies of G is self-referentially governed by the shape of G
itself, so there might be different distributions of contact combinations based on myriad different motif shapes.
And if a contact combination of supertiles were never to occur for some shape or under some condition, this
might relax the perimeter boundary conditions in some way to permit some self-avoiding shape that otherwise
might not be possible during composition. So a convincing proof of the following theorem must examine each
of these nine contact combinations to determine which of them—regardless of overall motif shape—always (or
never) occur, which are merely optional, and then explore the consequences of the mandatory constraints.

Because Gk≥2 = Gk−1G = Gk−2G2, we can look for these contact combinations among pairs of tiles in
either G or G2. If we can show that some combination always occurs somewhere in either G or G2, it must
occur in all Gk≥2. A sufficient “covering” of required contact combinations leads to our main result.

3.2 Fibbinary Zipper Theorem

Theorem 3.1. For all odd n≥1, the tile path of any globally self-avoiding motif G has a shape whose four-sided
boundary, comprising 4(n − 1) sub-tiles of Tn, is frozen by exactly one of F(n−3)/2 zipping modes, where Fi is
the ith Fibonacci number (F−1 = 1, F0 = 0, F1 = 1, and Fi = Fi−1 + Fi−2). Each mode is characterized by an
n-bit, palindromic, Fibbinary bit pattern (i.e., in which no 1 bits are adjacent) whose central bit is a 1 and,
when n ≥ 5, whose first and last two bits are 0s. When n is even, there are no globally self-avoiding motifs.

We prove this by defining or proving lemmas representing mostly prohibitive constraints.8 In the figures, a
(red) circle indicates where an impossible or contradictory condition occurs.

Lemma 3.1. OneToOneNess. By Definition 1.1, in G = [ t1, . . . , tn2 ] there is a bijective correspondence
between each sub-tile ti and ti’s distinguished edge.

Lemma 3.2. ArrowHeads. By Definitions 1.5 and 1.6, each consecutive pair [ ti, ti+1 ] of tiles in G has tile
edges that are pairwise-connected, whose arrowheads connect only with arrowtails, and vice-versa, and with t1’s
arrowtail at a and tn2’s arrowhead at b.

Lemma 3.3. LongestDistance. By Definition 1.6, G’s tile path within Tn must be n2 in length.

Lemma 3.4. SelfAvoidance. By Definition 1.9, no tile’s corner has more than one tile segment arrowhead
leading to it, nor more than one tile segment arrowtail leading away from it.

Lemma 3.5. NoPlanarCycles. By Definition 1.5, G cannot contain a disconnected cycle in the plane.

Lemma 3.6. InsideIsNotOutside. Because G is a globally self-avoiding motif, two edge-adjacent, though not
necessarily consecutive, tiles in Gk are of opposite parity if and only if exactly one of them has its distinguished
edge along the two tiles’ shared edge in Tn’s edge lattice.

Proof. This follows directly from the polygonal version of the Jordan Curve Theorem [3], because G is assumed
a BottomForward self-avoiding piecewise-connected path, whose open ends at a and b can always be extended in
the plane into a closed, oriented, self-avoiding loop. If a counterclockwise (clockwise) loop closure, all Forward
(Backward) tiles will be on the outside of the loop, and all Backward (Forward) tiles will be on the inside. �

8These constraints, whether by construction or proved, are numbered sequentially as lemmas as well as identified with descriptive
phrase names in CamelCase. Because they are about to be referred to ubiquitously, later references forego using the words
definition, lemma, or constraint in favor of providing the reference number as an innocuous subscript to a more memorable name.
This concisely enhances readability and memorability while still allowing the reader to find the reference in this exposition.
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Lemma 3.7. FourCorners. The first tile t1 and the last tile tn2 in a motif G can each be only one of
two possible orientation/parity combinations: tile t1 is either LeftBackward or BottomForward, and tn2 is either
BottomForward or RightBackward. Similarly, the upper left and upper right corner tiles in G can each be only
one of two possible orientation/parity combinations: the upper left corner tile can be either RightForward or
BottomForward, and the upper right corner tile can be either BottomForward or LeftForward.

Proof. As Fig. 15 shows, a segment can leave a or arrive at b in only two ways. A segment cannot arrive at an
upper left or right corner of Tn and still continue the tile path without violating OneToOneNess3.1. �

l or

R or

B

B

B or

B or

r

L

a a b b

Figure 15: Each of G’s four corner tiles can be in only one of two orientation/parity combinations. The upper
left and right corners of Tn (circled) are not available to any tile path.

Remark 3.1. For G = I (n = 1), these four corner tiles all collapse into only one possible BottomForward tile.

Lemma 3.8. PerimeterForces. If in G a sub-tile ti’s segment travels along an edge of its supertile Tn, then ti
is forced into only one orientation and parity. Similarly, if ti’s segment travels parallel to the perimeter but one
sub-tile width into the interior, ti is also forced. The same holds for G, but with all parities reversed.

Proof. A segment on or near Tn’s perimeter must be bound to a perimeter sub-tile ti of Tn. So ti can have only
one orientation, all shown in Fig. 16. But for each orientation, only one parity is possible. For each perimeter ti,
its reversal ti precludes the tile path from reaching b without violating SelfAvoidance3.4. �

l
t

r

B
a b

R
B

L

t
a b

Figure 16: In order for b to remain reachable from a without violating SelfAvoidance3.4 or ArrowHeads3.2,
a sub-tile whose distinguished edge is on, or one sub-tile width away from, Tn’s perimeter is forced.

Lemma 3.9. PerimeterFlow. If the arrowhead of a sub-tile’s segment arrives at the perimeter of Tn from
somewhere within its interior, the orientation/parity of that sub-tile is forced. If the arrowtail of a sub-tile’s
bound edge leaves from the perimeter of Tn into somewhere in Tn’s interior, that sub-tile is forced. For a
BottomForward motif G, the “flow” is thus always clockwise for the left, top, and right edges of Tn, and always
counterclockwise along its bottom.

Proof. See the left half of Fig. 17 for perimeter arrivals and the right half for departures. Consider a tile path
with a segment that heads into the left side of T, somewhere above the corner a (which is precluded from
being the endpoint by FourCorners3.7). There are two possible orientation/parity combinations for that tile
segment: TopForward or BottomBackward. If the tile were BottomBackward (i.e., the tile labeled b), the next
segment of the path would not be able to make the right turn required by PerimeterForces3.8. G’s path from
a would therefore never be able to reach its destination at b without violating SelfAvoidance3.4. Recalling
that by FourCorners3.7 b cannot be an endpoint of a tile segment arriving from the interior of T, a similar
argument holds for the other three sides of T. �

Lemma 3.10. BottomToTopParity. If two edge-adjacent sub-tiles form a bottom:top combination, then
they must have opposite parity.

Proof. This follows directly from InsideIsNotOutside3.6. See Fig. 18. �
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?
?
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a b

Figure 17: Tiles with segments that arrive at (left) or depart from (right) Tn’s perimeter are forced so that the
tile path can continue on to eventually reach b from a.

Can’t happen: Must be:

Figure 18: Every bottom:top contact combination requires opposite parities.

Lemma 3.11. PerimeterBottomToTops. If a sub-tile’s segment travels along the perimeter of Tn and not
through a or b, then the edge-adjacent sub-tile on the other side of the perimeter in some adjacent copy of G
or its reversal G (in whatever orientation) in G2 must have the same orientation but opposite parity, thereby
creating a bottom:top contact combination.

Proof. This follows from BottomToTopParity3.10 in G2. See Fig. 19. FourCorners3.7 precludes a tile
segment from traveling along Tn’s edge into or away from either Tn’s upper left or upper right corner. Elsewhere
along the perimeter, if the parities are the same, BottomToTopParity3.10 is violated in G2. Of the four
remaining possible orientations for an edge-adjacent, cross-perimeter tile, three of them would create self-
contact at the perimeter boundary. The only remaining possibility is the tile with the same orientation, but
with necessarily opposite parity, so that the two tile segments are parallel, creating a bottom:top combination.

�

L l

T
t

Rr

b
B

Figure 19: Tiles with segments on Tn’s perimeter (but not the lower left or lower right tiles) induce bottom:top
combinations with their cross-perimeter neighbors in an adjacent copy of G.

Lemma 3.12. RightLeftContact. Any G must have at least one right:left contact combination in some
pair of edge-adjacent, necessarily consecutive, tiles in Tn.

Proof. Ignoring n = 1 (remarked upon below), and recalling that there are no Gs for n = 2 or n = 3, consider
n ≥ 4. Assume no right:left contact combination in G occurs. This is equivalent to asserting that no two
consecutive threaded tiles have the same orientation and parity. So consider a motif’s tile tm (for some m)
situated at the upper left corner of Tn, labeled D in Fig. 20. By FourCorners3.7, there are two cases: D can
be either RightForward or BottomForward. In both cases, under our assumption, a variety of later and earlier
tiles in the thread become forced, such that in G2, self-contact occurs, violating SelfAvoidance3.4. �

Remark 3.2. At first glance, this condition would not appear to apply to I for T1. But once we show below
that globally self-avoiding motifs map to toroidal cycles, the left and right sides of T1 become edge-adjacent.
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Figure 20: When assuming that no right:left contact combination occurs, both upper left corner tile possi-
bilities (RightForward or BottomForward) create a group of frozen tiles that lead to self-contact in G2.

Lemma 3.13. NoDoubleLeftRights. The first tile t1 of G cannot be LeftBackward at the same time as the
last tile tn2 is also RightBackward.

Proof. By RightLeftContact3.12, both the first and last tile segments will coincide in G2 along the shared
border of some right:left contact combination of supertiles, violating SelfAvoidance3.4 (see Fig. 21). �

right left

A Z A Z

Figure 21: G’s first and last tile cannot both have vertical tile segments or self-contact will occur in G2.

Lemma 3.14. BottomTopContact. Any G must have at least one bottom:top contact combination in some
pair of edge-adjacent tiles.

Proof. Again, we need only consider n ≥ 4. Assume G has no bottom:top contact combinations among any
edge-adjacent pair of tiles in Tn. By FourCorners3.7, there are two cases: the mth tile tm (for some m) in the
upper left corner, labeled tile D in Fig. 22, is either (1) RightForward or (2) BottomForward.

In case (1), PerimeterForces3.8 requires E to be TopBackward. tm−1 leading to D must have a vertical
distinguished edge, otherwise PerimeterFlow3.9 or our no bottom:top assumption is violated. So tm−1 is
either A, or C (sub-case (a) or (b)). But in either sub-case, further tiles are frozen such that in sub-case (a)
self-contact occurs in G2 between adjacent motifs at tiles EE and CA, or in sub-case (b) our assumption of no
bottom:top contact is violated after going through the possible ways that various tiles become frozen.

In case (2) (bottom of Fig. 22) choose D as BottomForward. But a mirror of the case 1 argument used above
applies to the upper right tile if that corner tile is assumed LeftForward. Therefore neither upper left nor upper
right corner tiles can be vertical tile segments. Both must be BottomForward, which results in the tile path
touching the right and left sides of Tn the same distance above its base, creating self-contact somewhere by
RightLeftContact3.12. Hence, our initial assumption must be false. �

Remark 3.3. Again, as in RightLeftContact3.12, BottomTopContact3.14 would not appear to apply to I.
But it does because toroidally the top and bottom sides of T1 are edge-adjacent. See ToroidalCycles3.17 below.
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Figure 22: bottom:top must always occur. Otherwise, either self-contact in G2 or a contradiction occurs.

Lemma 3.15. NoDoubleBottoms. When G 6= I, G’s first tile t1 cannot be BottomForward at the same time
as the last tile tn2 is also BottomForward.

Proof. Assume that t1 and tn2 (AD and ZD in Fig. 23) are both BottomForward. By BottomTopContact3.14
and SelfAvoidance3.4, the upper two corner sub-tiles (CD and DD) must be the same orientation and parity
as AD and ZD. But by RightLeftContact3.12, there will be self-contact at FD and EC. �

A Z

right left

top
bottom

C
E

D
F

A Z

A

C
E

D

Z

C

Figure 23: A motif G’s first and last tile cannot both be BottomForward or self-contact occurs in G2.

Lemma 3.16. Handedness. Left-handed Gs end with a BottomForward sub-tile; right-handed begin with a
BottomForward sub-tile. The identity motif I is thus ambidextrous, and G 6= I cannot be bilaterally symmetric.

Proof. This follows from NoDoubleLeftRights3.13 and NoDoubleBottoms3.15, see Fig. 24. �

A Z A Z

Figure 24: Every globally self-avoiding, left-handed motif has a right-handed (chiral) mirror image.
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Lemma 3.17. ToroidalCycles. G’s tile path maps to a Hamiltonian cycle on the n×n toroidal grid-graph Tn.

Proof. By BottomTopContact3.14 and RightLeftContact3.12, tile vertices in the threaded tile path along
any given side of Tn are coincident at least once in G2 with their translationally respective vertices on the
opposite side of Tn. So a tile path in G2 can only comply with SelfAvoidance3.4 when exactly one or the
other vertex—but not both—is included in the tile path. Hence we can map integer corner coordinates (i, j)
of Tn to (i mod n, j mod n) on Tn, the n× n toroidal grid graph, without violating SelfAvoidance3.4.

By FourCorners3.7, t1’s distinguished edge can only leave from a and tn2 ’s can only arrive at b. But all
four corner points of T map toroidally to the origin a = b. Thus the mapped motif becomes a cycle among Tn’s
vertices with ArrowHeads3.2 applying at a = b no differently from other lattice points: [ tn2 , t1] is now a
consecutive, adjacent pair of threaded tiles in a single self-avoiding loop. Because Tn has exactly n2 vertices,
and self-avoiding G comprises exactly n2 distinguished edges, G is a Hamiltonian cycle on Tn. �

Definition 3.2. We call any 2 × 2 group of sub-tiles that are all the same parity a “nodule.” A nodule has a
lattice point in the nodule’s center where four sub-tile corners meet.

Lemma 3.18. NoNodules. A nodule in a motif G or in G2 prevents G from being globally self-avoiding.

Proof. By InsideIsNotOutside3.6, no distinguished edge in G’s tile path can pass through a nodule’s central
point when all sub-tiles are the same parity. This leaves only n2 − 1 lattice points in the rest of Tn available
for G’s tile path to pass through, which violates ToroidalCycles3.17. �

Can’t happen

Nodules preclude global self-avoidance

Only three distinct arrangements of all 2x2 neighborhoods
(ignoring rotations and reversed parities) are possible

Figure 25: A globally self-avoiding motif must pass through every lattice point in a toroidal Hamiltonian cycle.

Remark 3.4. For any exponentiated motif (self-avoiding or not) of length n2, the number of vertices where self-
contact occurs in the toroidal grid-graph equals the number of nodules. So the existence of at least one nodule
implies self-contact elsewhere in a tile path. For instance, ignoring the highlighted E motif in Fig. 11, each of
the remaining 137 distinct, non-globally-self-avoiding, order-5 motifs has—either directly or when exponentiated
once—at least one nodule.

Lemma 3.19. TopEdgeTouched. For G 6=I, there must be a TopBackward sub-tile in Tn’s top row.

J K

E F

... F E

right left

J K

J K

Figure 26: The assumption that a motif can avoid the top edge of Tn leads to self-contact in G2.

Proof. Assume that no sub-tile in the top row of Tn has a TopBackward distinguished tile edge. All of those
sub-tiles must then, by PerimeterForces3.8 and PerimeterFlow3.9, be BottomForward (Fig. 26, top left),
with E and F also forced. RightLeftContact3.12 then causes self-contact in G2 (Fig. 26, top right, circled). �

Remark 3.5. This is one reason why Hk≥2 (the Hilbert Curve’s exponentiated tile path) is self-contacting.
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Lemma 3.20. BottomRightContact. Any G 6= I must have a bottom:right contact combination in some
pair of edge-adjacent tiles.

Proof. By TopEdgeTouched3.19 and PerimeterForces3.8, at least one TopBackward tile segment must pass
along the top edge of Tn (Fig. 27, left). By PerimeterFlow3.9, the tile path’s necessary right turn creates a
bottom:right contact combination. �

Lemma 3.21. BottomLeftContact. Any G 6= I must have a bottom:left contact combination in some pair
of edge-adjacent tiles.

Proof. By TopEdgeTouched3.19 and PerimeterForces3.8, at least one TopBackward segment must pass along
the top edge of Tn (Fig. 27, right). By PerimeterFlow3.9, the tile path’s turn away from the last TopBackward
segment creates a bottom:left contact combination. �

...... ...

bo
tto
m right

bottom

left

Figure 27: Arrival and departure for at least one required tile segment along the top edge of Tn induces
bottom:right and bottom:left zipping, respectively.

Lemma 3.22. NoLowerCornerTurns. In any G 6= I, neither [ t1, t2 ] nor [ tn2−1, tn2 ] can have consecutive
tile segments that form a turn, i.e., both [ t1, t2 ] and [ tn2−1, tn2 ] must form a right:left contact combination.

Proof. Again, we can assume n ≥ 4. For each of the first and last consecutive tile pairs in G, there is only one
way to make a right turn. Consider first the lower left corner of Tn, and assume that G’s first two tiles, t1 and t2
(labeled A and E respectively in Fig. 28) make a right turn: G=[ l B . . . ]. Tiles E and A thus form a bottom:left

contact combination. Within G2, whatever arrangement of tiles that have been composed into E must also occur
in A, rotated 90° clockwise but with all parities (arrows) reversed because t1’s parity is Backward, whereas t2’s
is Forward. But G2 is, by assumption, a globally self-avoiding motif itself, so by ToroidalCycles3.17 we can
wrap G2 around the n2 × n2 toroidal grid-graph. This guarantees that every supertile has all eight possible
edge- and corner-adjacent neighbors.

A
E A

E

A Ea

A

E
A
E

A E

A

E
W

Y
X

A
E

A E

A

E
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Y
X

F

F

A
E

A E

A

E
W

Y
X

F H

J

F
H

J

Figure 28: An initial right turn in the lower left corner of G forces a nearby nodule in G2.

Because threaded tiles AA and AE have tile segments that connect (at point a), tile W’s tile segment must
avoid AE’s, and so by InsideIsNotOutside3.6 tile W must be LeftForward. No segment can separate W from X
(or it would collide at a), so SelfAvoidance3.4 forces X to be BottomForward. This in turn forces Y to be
RightBackward along its supertile’s perimeter. PerimeterBottomToTops3.11 forces Y’s neighbor tile FA to be
RightForward, which means that FE must be TopBackward. Tile HE cannot be a Forward tile, because for it to be
Forward, InsideIsNotOutside3.6 requires there be a tile segment between it and FE. The only possible choice
for HE would then be LeftForward, violating PerimeterFlow3.9. For the exact same reason, tile JA must also
be a Backward tile. But this leaves the four tiles, FE, HE, JA, and EA forming a 2 × 2 nodule of Backward tiles
that violates NoNodules3.18, thereby guaranteeing self-contact somewhere else in G2.

Next consider G’s lower right corner, and assume that G’s last two tiles, tn2−1 and tn2 form a right
turn: G = [ . . .B r ]. But this configuration is a symmetric right-left flip of the above: it mirrors the lower left
corner (albeit with parities reversed), and hence a cross-perimeter nodule will again be created.

In the second case, we consider left turns. Again, for each pair of tiles, [ t1, t2 ] or [ tn2−1, tn2 ], there is only one
way to make a left turn. Consider the lower left corner first, and assume G=[B l . . . ]. BottomLeftContact3.21
requires that there be a bottom:left contact combination in two edge-adjacent tiles somewhere along the top
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row of tiles in Tn (see Fig. 27). Call these two tiles C and D, as shown in Fig. 29. As supertiles in G2, the two
left turns composed into them connect at the supertiles’ shared corner, forming a configuration essentially the
same (mirrored across the upper-left to bottom-right diagonal) as we found above for right turns: the four tiles,
FC, HC, JD, and ED form a nodule.

C D
C D

AE A
E

C D
W

AEJ
F
H

A
E

J
F H

YX

Figure 29: An initial left-right turn in G creates a nodule in G2 as a result of the bottom:left zipping that
must occur along the top of G between tiles C and D.

Finally, as before, by reflective symmetry, the lower right corner cannot have a final left turn among the last
two tiles. The same configuration will appear when C and D are chosen to be the two edge-adjacent tiles that
form the required bottom:right contact combination along the top row of Tn. �

Remark 3.6. Composability makes the area near the toroidal origin a = b so constrained that global self-
avoidance under composition can’t occur until the tile path has traveled at least two sub-tile widths along the
perimeter of Tn, as the simplest E motif demonstrates (Fig. 12). In the terminology of [19], elements of this par-
ticular class of composable Hamiltonian cycles on the 2-D toroidal grid-graph can never be “bent” (having a turn
at every vertex; this is also due to RightLeftContact3.12). Perhaps even more counterintuitively, it turns out
as a consequence of the Fibbinary Zipper Theorem (now under construction) that all solution motifs for order-7
must begin with three tile segments along the boundary. We will also later see that NoLowerCornerTurns3.22
is crucial to guarantee that any two globally self-avoiding motifs, one order-n and the other order-m, when
composed result in an order-nm globally self-avoiding motif, see Theorem 6.1 below.

Lemma 3.23. FrozenCorners. In every left-handed G 6= I, there are at least 14 frozen tiles, 3 each in the
upper left and right corners, and 4 each in the lower left and right corners, with 6 additional tiles of fixed parity.

Proof. We know that there are no Gs for n = 2, 3, so assume n ≥ 4.
By Handedness3.16 and NoLowerCornerTurns3.22, a distinct G begins with a pair of tiles, A and B, and

ends with a pair of tiles, X and Z, each having a right:left contact combination (Fig. 30(a)). These two pairs
toroidally surround the point a = b at a supertile pair’s connection point in G2, where Z’s tile segment meets
A’s (Fig. 30(b)). PerimeterBottomToTops3.11 and SelfAvoidance3.4 then force tiles E and F adjacent to X
and Z, as well as tile Y above Z, into just one orientation and parity (Fig. 30(c)). ArrowHeads3.2 then forces
tiles W and G (Fig. 30(d)), and SelfAvoidance3.4 and ArrowHeads3.2 in turn force tiles H, J, and K into their
only possible orientations and parities (Fig. 30(e)). PerimeterBottomToTops3.11 forces tile C, and tile D is
forced by ArrowHeads3.2 (Fig. 30(f)).

Finally, by BottomToTopParity3.10, two tiles, each labeled Q in Fig. 30(f), must have parities opposite
to their bottom:top forced neighbors E and J. Four more tiles (each labeled P ) are then required to have the
same parity as a forced edge-adjacent neighbor, because were they to be the opposite parity of that neighbor,
by InsideIsNotOutside3.6 there would have to be a tile segment between the two. But in every case, such a
segment would violate SelfAvoidance3.4 across a supertile edge.

We can then unmap the dissection from the torus back to the plane, recalling that the parities of all the
tiles in the top two corners must be reversed, because supertiles in any bottom:top contact combination must
by PerimeterBottomToTops3.11 have had opposite parities. The frozen and fixed corner areas are shown in
Fig. 30(g). �

Definition 3.3. Along the shared edge of two edge-adjacent supertiles, a “gap” is a sequence of w ≥ 0 pairs of
tiles, one within each supertile, all having the same parity.

Lemma 3.24. PerimeterGaps. When G’s tile path leaves from or arrives at the perimeter of Tn, those parts
of the path in the cross-perimeter neighbor G (regardless of orientation/parity) that arrive at or leave from the
same perimeter create a single pair of cross-perimeter, edge-adjacent tiles having the same parity.

Proof. Gaps are created when a motif turns into or away from Tn’s boundary. As can be inferred from Fig. 30(g)
for FrozenCorners3.23, at least one such turn must occur in a motif on each of the four sides of Tn, for n ≥ 5.
Consider the turn from tile E to tile F (Fig. 31, center left), or from tile X to tile Y (Fig. 31, center right).
SelfAvoidance3.4, InsideIsNotOutside3.6, PerimeterFlow3.9, PerimeterForces3.8, and NoNodules3.18
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Figure 30: All distinct, globally self-avoiding motifs have 14 frozen tiles in the toroidal neighborhood (i.e., all
four corners) of the toroidal origin a = b, with six more, labeled P and Q, of fixed parity. Circles show four
tiles that are forced into two right:left and two bottom:top combinations, thereby guaranteeing that G’s
four corners will be toroidally identical (without any rotation) at least once.

force the configuration shown in the center: a gap of one tile width along Tn’s left side. Thus perimeter gaps in
any G can only be of length 1. The same situation holds for all other turns onto or away from T’s perimeter
on other sides, in various parities and orientations, and regardless of overall handedness. �

E
F
IJ

H X
Y

WV
Z

Figure 31: Left: Gaps of width 0 violate SelfAvoidance3.4 in G2. Middle: A motif’s departure from (middle
left) or arrival at (middle right) an edge of T requires an adjacent supertile’s tile path to depart or arrive one
tile width away. Right: Gaps greater than one tile width violate NoNodules3.18 in G2.

Lemma 3.25. LeftLeftContact. For G 6=I, a left:left contact combination must occur at least once in G2.

Proof. FrozenCorners3.23 requires each distinct motif to make one final turn onto and along the bottom edge
of Tn, creating a final run of m BottomForward files (Fig. 32). By PerimeterFlow3.9, the (m+ 1)st tile in that
bottom row (counting from the right) must be RightBackward. By BottomTopContact3.14, this bottom row
of G’s tiles must come in contact at least once with the top row of tiles in the supertile below it. Therefore,
the (m + 1)st tile from the right, in both the top and bottom rows, will form a gap having left:left contact
combination in G2. Parities can be swapped (arrowheads reversed) without affecting the conclusion. �

Remark 3.7. Had we chosen in Handedness3.16 to focus on right-handed motifs, this constraint would concern
right:right contact combinations. Handedness isn’t an issue, however, with regard to covering all contact
combinations; it turns out that the right:right contact combination must occur also.

Lemma 3.26. LeftTopContact. When G 6= I, a left:top contact combination must occur at least once
in G.

Proof. This follows from the same sub-tile configuration as in LeftLeftContact3.25, as Fig. 32 shows. �
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Figure 32: The rightmost gap in a bottom:top contact combination forms a left:left contact combination.

Lemma 3.27. NoEvenOrders. There are no globally self-avoiding motifs when n is even.

Proof. Assume n is even. LeftLeftContact3.25 requires that there be in G2 at least one pair of left:left
neighbor tiles having either of the configurations shown on the left of Fig. 33. Without loss of generality, consider
the top pair in the figure. In each of the two tiles’ places, a Forward copy of G will be composed in G2, one
upside down with respect to the other. Consider the central two tiles, E and F, along the left side of G in Tn.
Any distinguished edge for either of these tiles that passes along the perimeter must pass through the central
corner point. But in an even order n dissection, by LeftLeftContact3.25, this point will coincide with itself,
and thus there is cross-perimeter self-contact in G2. Hence, tile F can only be BottomForward or RightForward,
and tile E can only be RightForward or TopForward. By InsideIsNotOutside3.6 and the parity rules of motif
composition, however, there can be no parity difference in G2 between the two supertile neighbors from which
the left:left combination is derived. Thus, the central four tiles violate NoNodules3.18. A similar argument
applies to right:right combinations had we chosen in Handedness3.16 to focus on right-handed motifs. �

left : left
E
F

F
E

Figure 33: When n is even, some left:left pair results in a nodule in G2 at the center of G’s left side.

Lemma 3.28. NoPerimeterTopTops. No two tile segments, one on each side of the shared edge of two
edge-adjacent, supertile neighbors in G2, can both travel parallel to the perimeter of T while both are one tile
width away from the perimeter.

Proof. Without loss of generality, consider two tiles, D and E, that are edge-adjacent neighbors in G2 across a
supertile edge (Fig. 34, left). The constrains ArrowHeads3.2, FourCorners3.7, InsideIsNotOutside3.6, and
PerimeterFlow3.9 force tiles H and J to be the same parity as D and E, which violates NoNodules3.18. �

E

D

EJ E J
or

DH D H

J E E J
or

H D D H

Figure 34: Two edge-adjacent neighbors in G2 whose edges are parallel to T’s perimeter force a nodule.

Lemma 3.29. CentralPerimeterGap. The central tile on the left side of Tn (for odd n) forms a gap.

Proof. By LeftLeftContact3.25, the left side of G must be self-avoiding when placed next to itself ro-
tated by 180°. On an odd-order dissection, the central tile F is the only tile that is a cross-perimeter self-
neighbor under 180° rotation, and thus any tile segment along the perimeter will coincide with itself, creating a
bottom:bottom combination that violates SelfAvoidance3.4 (Fig. 35, left). Similarly, F can’t have a vertical
segment but not along the perimeter (e.g. RightForward) because NoPerimeterTopTops3.28 is then violated
(Fig. 35, center). So the central tile must be half of a pair forming a gap, in one of two possible configurations. �

Lemma 3.30. UpperLeftColumnForces. All (n − 1)/2 tiles above the central gap tile of the left-most
column of tiles in Tn, for odd n, are forced into exactly one configuration (in reverse order) by the arrangement
of orientations and parities of the (n− 1)/2 tiles below the central gap tile in that column.
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Figure 35: Central left side perimeter tile on odd order-n must be part of a perimeter gap.

Proof. Consider the column of n tiles up the left side of Tn (Fig. 36, left). By PerimeterForces3.8 and
PerimeterFlow3.9, there are only four possible tile orientations and parities, three Forward and one Backward,
that any tile in the column can take on. These are labeled as tiles A, C, D, and J, having LeftBackward,
BottomForward, RightForward, and TopForward tile segments, respectively. By LeftLeftContact3.25, in G2 these
tiles will occur—in the same parity but oriented upside-down (Fig. 36, middle)—as cross-perimeter neighbors
of other tiles (labeled W, X, Y, and Z) in the same column. By PerimeterBottomToTops3.11, tiles Z and X
are forced into only one possible orientation and parity by their respective cross-perimeter neighbors A and D.
And tiles Y and W are also each forced, by PerimeterGaps3.24, into just one orientation and parity by their
respective cross-perimeter neighbors C and J (Fig. 36, upper right). For example, tile Y cannot be RightForward
because were it RightForward its lower left corner would then be the center of a cross-perimeter nodule of
Forward tiles. Hence, a tile along Tn’s shared left perimeter m tile widths below the central gap tile will force
its counterpart tile along Tn’s left perimeter m tile widths above the central gap tile. �
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X
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ZA
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D
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Figure 36: A required left:left contact combination means that all tile orientations and parities above the
central perimeter gap are forced by the arrangement of tiles below the central gap tile.

Definition 3.4. A Fibonacci binary, or “Fibbinary,” 9 bit sequence consists of n ≥ 0 bits, each either 0 or 1,
in which there occurs no two adjacent 1s.

Definition 3.5. An assignment of Fibbinary bits up Tn’s left sub-tile column is called the motif ’s “zipper bits.”

Lemma 3.31. LeftColumnZipperBits. For odd n ≥ 1, the number of ways to arrange the n tiles in the left
column of a left-handed G is F(n−3)/2, where Fi is the ith Fibonacci number. Each zipper bits arrangement is
determined by a palindromic, n-bit Fibbinary bit sequence whose central bit is a 1 and, when n ≥ 5, whose first
two and last two bits are 0s.

Proof. For each of the n edge-adjacent tiles, T1, . . . ,Tn, from the bottom to the top of the left column, assign
a 1 to each tile with a horizontal tile segment, and a 0 to each remaining tile with a vertical tile segment. So,
at least initially, for each 0 there are two possible ways to be vertical and for each 1 there are two ways to be
horizontal. Consider the base cases for n = 1, 3, 5, 7, and then deal with the remaining general case for n ≥ 7.

The exponentiated identity motif Ik = I is a globally self-avoiding motif: although it doesn’t converge to a
space-filling curve (I is idempotent), it still conforms to SelfAvoidance3.4 for all k. So for n=1 there is only
one distinct way to arrange the tiles in T1’s “left column.” Its palindromic zipper bits are a single 1.

For n=3, CentralPerimeterGap3.29 requires the second (central) tile T2 in the left column to create a gap,
either BottomForward or TopForward. But the bottom two tiles must both be LeftForward along the perimeter,

9Marc LeBrun coined this portmanteau word in 2002, according to Sloane’s A003714, see [21]; see also [6].
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by NoLowerCornerTurns3.22. Although the zipper bits 010 are Fibbinary, palindromic, and have a central 1
bit, the two constraints cannot simultaneously be satisfied for T3. So for n = 3 the number of ways to arrange
the tiles in the left column is 0.

When n ≥ 5, the first two required LeftBackward tiles at the bottom are 0s. The central gap tile (either
BottomForward or TopForward) is a 1. Let (Tj ,Tj+1) be two edge-adjacent—though not necessarily consecutively
threaded—tiles in the column, where Tj+1 is directly above Tj . As the left side of Fig. 36 shows, tile Tj can
only be one of LeftBackward, BottomForward, RightForward, or TopForward. Consider each of these four cases:

• If Tj is LeftBackward (a 0), then by ArrowHeads3.2 tile Tj+1 above it can only be either LeftBackward or
BottomForward (a repeated 0 or a change to a 1).

• If Tj is BottomForward (a 1), then by PerimeterGaps3.24 Tj+1 can only be RightForward (a change to 0).

• If Tj is RightForward (a 0), tile Tj+1 can only be either RightForward or TopForward (a repeated 0 or a
change to a 1) because PerimeterFlow3.9 or InsideIsNotOutside3.6 precludes any Backward tiles for
Tj+1, because ArrowHeads3.2 precludes BottomForward, and PerimeterForces3.8 precludes LeftForward.

• And if Tj is TopForward (a 1), then by PerimeterFlow3.9 Tj+1 can only be LeftBackward (a change to 0).

In other words, (a) any sequence of tiles up the column all with vertical (0) tile segments must all have the
same orientation and parity, and therefore be consecutive (pairwise threaded); (b) no two edge-adjacent tiles
in the column can both have horizontal (1) tile segments; (c) any single horizontal 1 tile is forced by the 0 tile
below it into only one possible orientation and parity; and (d) the 0 tile directly above a 1 is forced into only one
possible orientation and parity, depending on that of the 1 tile below it. The 1s (i.e., gaps) are thus self-avoiding,
in that each 1 is always surrounded by a 0 on each side. In particular, this means that tile T(n−1)/2 (just below
the central gap tile) must be a 0 (either LeftBackward or RightForward). NoLowerCornerTurns3.22 requires
both tiles T1 and T2 to be 0s, and tiles T(n−1)/2 and T(n+1)/2 must be 0 and 1, respectively, as shown in Fig. 37.

0
0

0
1

or

...
...

n + 1
2 4 }

0
0

0
1

...
...

central tile gap
   (two possibilities)

free for other gaps

vertical
vertical (left-handed)

Figure 37: Tiles between the 00 pair at the bottom and 01 pair ending at the central gap are where all remaining
combinatorial freedom in the left column can be found. The left or right possibility is dependent on n.

For n= 5, T2 and T(n−1)/2 collapse into the same LeftBackward (0) tile, and therefore these constraints can
be satisfied in exactly one way: a left-handed G for T5 begins as G = [ l l B . . . ], with zipper bits 00100.

Now consider the general case up the left column of left-handed Tn for odd n ≥ 7. Between the two
anchoring pairs of tiles, one of which pairs must be 00 at the bottom and the other 01 at mid-column, there
are m = (n + 1)/2 − 4 = (n − 7)/2 tiles available to which a 0 or 1 might be assigned. Thus when m = 0,
corresponding to n= 7, there are zero tiles between the two anchor pairs. InsideIsNotOutside3.6 precludes
the second possibility shown in Fig. 37 on the right, so all left-handed, globally self-avoiding motifs for T7 must
begin in just one way: G = [ l l l B . . . ], with palindromic zipper bits 00 010 00.

The number of ways to assign values to m > 0 bits is 2m. But this includes values whose bit sequences
contain adjacent 1s, corresponding to gaps wider than one tile width that would violate PerimeterGaps3.24
upon which the above cyclic constraints rely. Thus, we need to count how many m-bit integers from 0 to 2m−1
have binary representations in which there occurs no pair of adjacent 1s, i.e., the Fibbinary integers (sequence
A003714 in [21]). The number of (m + 2)-bit Fibbinary integers is just the sum of the number for (m + 1)-bit
Fibbinary integers, where each integer’s bit sequence is prepended with a 0, plus the number of m-bit Fibbinary
integers, where each integer’s bit sequence is prepended with a 10. Hence, for a given bit length m, the number
of possible Fibbinary integers is Fm+2, where F0 = 0, F1 = 1, and Fm+2 = Fm+1 + Fm.

Finally, while initially there can be in general two states (two horizontal tile segments or two vertical tile
segments) for each bit value, this is not true for the bottom two tiles in the left column, which are LeftBackward.10

10Recall that we are focusing on left-handed motifs, whereas for (indistinct) right-handed motifs, we would now be making the
same analysis, mirrored, of Tn’s right column, which would end in two RightBackward tiles.
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Therefore, for any Fibbinary bit sequence of 0s and self-avoiding 1s, there is only one possible orientation and
parity for tile Tj+1, given the state of Tj underneath it, determined by the constraints running up the left column
from the bottom. If the number of 1s up to and including the central tile T(n+1)/2 is odd, then the central tile
on the left side of Tn is BottomForward; if the number of 1s is even, the central tile is TopForward.

Returning to our base cases, the number of arrangements for n = 1, 3, 5, 7 are 1, 0, 1, 1, respectively, so
the formula nicely simplifies to F(n−3)/2 for odd n ≥ 1. This works even for the identity motif I, where n= 1
produces F−1 = 1. Figure 38 illustrates the number of ways to arrange the left-side column of tiles for T1

through T17. It also highlights those Fibbinary mode bits that embody the primary combinatorial freedom
between the two anchoring pairs of tiles from the bottom 00 to the center 01 of the left column.
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Figure 38: A left-handed G’s palindromic zipper bits arrange the left column of tiles of a globally self-avoiding
motif for Tn, here for odd n ≤ 17. Those mode bits that have any freedom to vary (starting at order-9) are
highlighted in color. The 13 columns on the right omit mode bits to make it easier to see the Fibbinary patterns.

As the constraint cycle rises up past the central gap tile, there must be palindromic counts for all runs of 0
tiles, by UpperLeftColumnForces3.30. So the zipper bits in the column form an n-bit palindromic Fibbinary
bit sequence, whose central bit must be a 1, and, when n ≥ 5, begins and (necessarily) ends with two 0s. �

Lemma 3.32. ZipperModes. The parities and orientations of all 4(n−1) outermost perimeter sub-tiles of Tn

are frozen by G’s left column zipper bits.

Proof. Not only must the left side of any left-handed G self-avoidingly zip with itself under 180° rotation, but
by RightLeftContact3.12, BottomLeftContact3.21, and LeftTopContact3.26, the left side must also zip at
least once with each of the other three sides in some pair of neighbor tiles in G or G2. As Fig. 39 illustrates for
n = 15, the number and placement of all perimeter gaps must be such that SelfAvoidance3.4 is maintained.
Hence our combined constraints literally zip each side of G together with its other three sides,11 in a way that
guarantees that Hamiltonian NoNodules3.18 is preserved everywhere along the wraparound boundary (for odd
n ≥ 5). So the pattern of tile segments and gaps along the outermost boundary layer of Tn’s 4(n− 1) perimeter
tiles is frozen. The same situation, in mirrored form, occurs in right-handed motifs. �

Q.E.D. (Fibbinary Zipper Theorem)

Definition 3.6. Because the zipper bits are palindromic (or perhaps, “ambidextrous”), they operate identically
for both right- and left-handed motifs. For classification labeling purposes, we will ignore the upper (n − 1)/2
bits, and use just the first (n + 1)/2 of them, which we call its “mode bits,” as a subscript of the order n, e.g.,
5001 or 130010101. The central 1 bit thus becomes the low-order bit in the mode specification. Mode bits then
correspond to the odd Fibbinary integers (sequence A022341 in [21]). Fig. 39 shows the result using the seventh
Fibbinary mode of T15, 1500100101, corresponding to zipper bits 00 1001 010 1001 00.

3.3 Tidying Up

The foregoing proof of the Fibbinary Zipper Theorem depends upon showing, for left-handed motifs, that each
of five of the nine possible contact combinations must occur either in G (bottom:top, right:left, left:top,
bottom:left) or in G2 (left:left),12 with appropriately mirrored (swapping right and left) combinations in

11This is sometimes called conic wraparound.
12Based on examination of machine-enumerated motifs for small n, it is almost certainly true that every G (as opposed to G2)

must have both a left:left and a right:right contact combination also. But that remains a conjecture.
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Figure 39: The mode bits (in purple/bold), when rotated 180° by a left:left contact combination, force all
remaining zipper bits up the left side of T. The palindromic zipper bits then appear in neighbor tiles along the
other three sides of G at least once in G or G2, leaving all perimeter tiles in G frozen into one configuration by
the original mode bits. Here, in T15, all 4(n − 1) = 56 of G’s perimeter tiles are determined by T15’s seventh
(out of eight) Fibbinary mode, 1500100101.

right-handed motifs. The bottom:right contact combination was proved but not needed. For completeness,
two more are also mandatory, but the one remaining contact combination, top:top, is not.

Lemma 3.33. RightTopRightRightContact. G 6= I has at least one right:top contact combination and
G2 has at least one right:right contact combination, in some pair of neighboring tiles.

Proof. FrozenCorners3.23 requires that the lower left and upper left corner of every left-handed G must have
certain forced tiles (Fig. 40, left). The tiles labeled A and C create a right:top contact combination (Fig. 40,
middle), and BottomTopContact3.14 implies that right:right contact must occur also. �
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Figure 40: Both right:top and right:right contact combinations always occur in any G or G2.

Lemma 3.34. TopTopContactOptional. A motif G is not required to have a top:top contact combination
in order to be globally self-avoiding.

Proof. By NoPerimeterTopTops3.28, a top:top contact combination cannot occur along the shared edge of
two edge-adjacent supertiles for globally self-avoiding motifs G. So we need only examine pairs of edge-adjacent
tiles within G. To show that the top:top combination is optional, it suffices to find a counterexample G with
no internal top:top neighbors. Orders 5 and 7 motifs offer no aid. But consider the two T9 motifs shown in
Fig. 41, one for each of the two possible zipping modes. By inspection, no two edge-adjacent sub-tiles form a
top:top contact combination. �

Remark 3.8. In motifs where all threaded sub-tiles are edge-adjacent, such as the Hilbert Curve and its pure
edge-adjacent sub-tile generalizations, top:top combinations are not only required, they are ubiquitous (see [12],
Fig. 2, or Ch. 7 of [13], describing “half-domino curves,” of which the Hilbert Curve is a degenerate case).
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Figure 41: Left: A mode 900001 motif G and G2 containing no top:top neighbors. Right: A mode 900101 motif G
and G2 containing no top:top neighbors.

4. The Highly Constrained First Fibbinary Zipping Mode

For any given odd n, the first Fibbinary zipping mode has zipper bits that are all 0s except for the central 1.
For a given odd n ≥ 5, we denote this family as n0...01 = n001, e.g., 5001, 70001, 900001, 11000001, etc.

When n ≥ 9, there are at least two Fibbinary zipping modes governing possible motifs. For order 9, several
brute force enumerations—made without any knowledge of the Fibbinary boundary conditions—found that only
660 of the 10,101 distinct motif solutions (all shown in Section 5 below) had boundaries governed by this first
Fibbinary mode. In short, all else being equal, the 900001 boundary creates significantly more constraint than
does the 900101 boundary. The same is true for a brute-force enumeration of all order 11 solutions. Only 58,936
of the 20,305,328 total are governed by the 11000001 boundary. The next several lemmas explain why.

As Fig. 38 illustrates, left-handed motifs subject to the first Fibbinary mode will have nothing but Left-
Backward tiles below the central gap tile on the left side of Tn (for right-handed motifs, it would be RightBackward
tiles along the right side). A mode n0...01 motif, by virtue of having only one (central) perimeter gap per side,
thus has a boundary that maximizes the number of tile segments in its tile path that travel along the edges
of Tn. The resultant long lines of identical consecutive tiles “emanate” constraint into the interior of Tn, both
directly and toroidally across wraparound boundaries.

Lemma 4.1. TripletForces. (a) On the toroidal grid-graph, a thread containing a triplet of consecutive tiles
[ tm−1, tm, tm+1 ] that either (1) has colinear tile segments or (2) forms a 3 × 1 group of tiles, forces the edge-
adjacent neighbor tile on the other side of the middle tile tm’s segment into the same orientation as tm, but
with opposite parity. (b) If the three tiles are all the same orientation and parity, the middle tile tm’s remaining
edge-adjacent neighbor is also forced into the same orientation as tm, but with opposite parity.

Proof. The first case (a) follows from SelfAvoidance3.4 and BottomToTopParity3.10 (Fig. 42, left). To
show (b), consider three connected BottomForward tiles (Fig. 42, right). If tile E is Forward, it cannot be
BottomForward, for that violates InsideIsNotOutside3.6. Nor can it be LeftForward, TopForward, or Right-
Forward, because NoNodules3.18 requires tiles D and F to be Backward, one or the other of which then violates
OneToOneNess3.1 or InsideIsNotOutside3.6. Therefore, E must be Backward. But it can only be Bottom-
Backward because any other orientation will also violate InsideIsNotOutside3.6. A similar argument holds
for all other orientations and parities that the original triplet might take on. �

E D E F

Figure 42: Left: Three consecutive tiles force the middle tile’s cross-tile segment neighbor into just one possible
orientation and (opposite) parity, regardless of the various ways that tile segments can be arranged among the
first and third tiles, and regardless of the middle tile’s parity. Right: If three consecutive tiles are all the same
orientation and parity, the middle tile’s remaining edge-adjacent neighbor is forced into just one orientation and
(opposite) parity.

Remark 4.1. Like the next, this lemma is qualified as “on the toroidal grid-graph” to avoid considering boundary
conditions. It is essentially true on the unwrapped Tn, except that we would have to include a caveat that it
only holds for those triplets whose middle tiles’ neighbors exist within Tn. On Tn, they always exist.
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Lemma 4.2. WeddingCakes. On the toroidal grid-graph, a thread containing R≥1 consecutive tiles, all the
same parity and orientation, forces a “wedding layer cake” pattern with WR = b(R+ 1)2/4c tiles in it, or, when
counting layers on both sides, a diamond pattern with DR = b(R2 + 1)/2c tiles.

Proof. The formulas hold for R= 1, 2. For R ≥ 3, consider the repeated application of TripletForces4.1, one
for each of R−2 (overlapping) triplets. The counts follow from simple summations. �

Figure 43: Consecutive tiles all having the same orientation and parity force successive shorter-by-2, adjacent
layers of tiles, each layer alternating in parity. On the right, R = 9 tiles in a row create a frozen double-wedding
cake of D9 = 41 forced tiles.

Lemma 4.3. ModeOneHalfFrozen. In every order-n G whose boundary is governed by the first Fibbinary
zipping mode n0...01, the number of initially frozen tiles is (n2 + 11)/2.

Proof. Distinct (left-handed) motifs governed by mode n0...01 each begin with a sequence of n−1
2 LeftBackward

tiles. By ZipperModes3.32 and WeddingCakes4.2, these, in turn, create eight wedding cakes growing inward
from the perimeter, see Fig. 44. At each corner there are two wedding cakes, one for k = n−1

2 and the other
for k − 1 = n−3

2 tiles, that mesh together. It is a straightforward summation to determine that the number of
forced tiles is (n2 + 11)/2. Because n is only odd, this sum is always an integer. Thus, over half of the n2 tiles
in Tn are frozen when the boundary zipping mode is n0...01. �
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Figure 44: All initially forced tiles for zipping mode n0...01 for T15 can be counted as eight wedding cakes, along
with four forced central gap tiles (labeled with 1s), as well as two additional forced-by-NoNodules3.18 tiles
(labeled F), found in the upper half of Tn when (n− 1)/2 is odd, and in the lower half when it is even.

Remark 4.2. Fig. 44 shows this count for n = 15. After just one exponentiation of any mode n0...01 motif,
each supertile lattice point must be surrounded—toroidally—by a rough-shaped diamond of frozen tiles (Fig. 45),
where the composed Hamiltonian path passes through the super-lattice point in the center. It is as if constraint
emanates from the lattice points, freezing those tiles within a “taxicab-geometry ball” of radius r ≈ n/2.

Remark 4.3. FrozenCorners3.23 is essentially a special case of ModeOneHalfFrozen4.3. The latter enables
manual enumeration of all distinct, globally self-avoiding motifs for n=5 and n=7, confirming earlier machine
results. A hand enumeration, especially for T7 as below in SevenOrder7s5.2, additionally gives a feel for how
our various named constraints act locally to mold the asymmetric shapes of these handed motifs.

Remark 4.4. Any G2 cannot itself be a mode n0...01 motif.
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Figure 45: In a mode n0...01 motif Gk (a portion shown here for n = 15), over half of all tiles surrounding every
supertile lattice point (central dot) in Gk+1 are forced. Because this particular 2× 2 sample (on left) toroidally
surrounds a central point with each of the four “frozen wedding caked” corner areas of the motif, the number
of forced sub-tiles in the right-hand circle for n=15 is ((152 + 11)/2 = 118.

5. Globally Self-Avoiding Motifs for Orders 5 through 13

Lemma 5.1. ECurveUnique. There is only one distinct globally self-avoiding motif for T5.

Proof. There is only one zipping mode for T5, denoted 5001. By ModeOneHalfFrozen4.3, (52 + 11)/2 = 18
tiles are initially forced (Fig. 46, top left): the 16 perimeter tiles of T5 as well as tiles H and K, with seven
inner tiles remaining to be examined. Applying our various lemmas appropriately, all other tiles are forced.13

By InsideIsNotOutside3.6 (via FrozenCorners3.23), we know that tiles A and C must both have Backward
parities. SelfAvoidance3.4 requires tile J to be LeftBackwardand further requires that there be a tile segment
between tiles D and A whose arrow head connects with the path traveling up into the top left area of T5. Tile D
must be Forward and ArrowHeads3.2 then requires A to be the tile to which that separating tile segment
belongs (hence A must be BottomBackward). D must then be RightForward, as no other sides are available for
its tile segment. SelfAvoidance3.4 then requires tile B to be TopBackward. Tile E must be Backward parity
because of tile D being Forward. Tiles C, E, and F are then forced into their final orientations and parities
by LongestDistance3.3 and NoNodules3.18. Thus, all 25 tiles are completely forced by the initial boundary
mode, and can be arranged in just one distinct (right- or left-handed) way. �
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Figure 46: There is only one distinct (left-handed), globally self-avoiding motif for T5.

13McKenna [8] called this the “E” Curve because its left-handed motif resembles a block letter E.
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Lemma 5.2. SevenOrder7s. There are exactly 7 distinct, globally self-avoiding motifs for T7.

Proof. There is just one mode for the order-7 dissection: 70001. By ModeOneHalfFrozen4.3, there are
(72 + 11)/2=30 initially forced tiles, with 19 inner tiles remaining to be examined, see Fig. 47(a). Using
our various lemma constraints as we did in ECurveUnique5.1, the figure shows the several logical pathways
to enumerating the seven solutions (and implicitly their right-handed mirror images). �
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Figure 47: The seven distinct (left-handed), globally self-avoiding motifs for T7.

Remark 5.1. The motif in the bottom center of Fig. 47 was manually found by McKenna in 1979 and later
described as a “squarecurve” (square recursive curve) in [8] (see also mention of its right-handed mirror in [17]).

ECA 2:2 (2022) Article #S2R13 25



Douglas M. McKenna

On higher odd orders beginning with T9, hand enumeration is no longer feasible as the expected combi-
natorial explosion begins. Several computer enumerations of all distinct, globally self-avoiding motifs for T9

each find exactly 10,101 motifs. These motifs fall into F(9−3)/2 = F3 = 2 boundary modes, 900001 and 900101.
As Fig. 48 shows, each mode forces several more inner tiles into their final orientations and parities. Modes
900001 and 900101 yield 660 and 9441 distinct motifs, respectively. Fig. 49 shows all 660 mode 900001 motifs in
one particular lexicographic enumeration order. Fig. 50 shows a sampling of 280 of the 9441 motifs governed
by mode 900101, also from top to bottom.
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Figure 48: Left: Boundary tiles of left-handed motifs for each of T9’s two Fibbinary modes, 900001 and 900101.
Right: Further forced or constrained tiles or path segments for each mode, where tiles labeled P have known
parity, by ModeOneHalfFrozen4.3, InsideIsNotOutside3.6, and/or NoPlanarCycles3.5.

For T11, exhaustive machine enumeration14 found exactly 20,305,328 globally self-avoiding, distinct (left-
handed) motifs. These fall into F(11−3)/2 = F4 = 3 boundary modes, 11000001, 11000101 and 11001001, as shown in
Fig. 51. For each of these boundary modes there are exactly 58,936; 19,854,452; and 391,940 motifs respectively.
Fig. 52 shows an ordered sampling of motifs from each of the three boundary modes. And again, we see that
the first boundary mode, with its much higher initial set of frozen tiles, is significantly more constrained than
the others, leading to the lowest motif count.

For T13 there are F(13−3)/2 = F5 = 5 boundary modes (130000001, 130000101, 130001001, 130010001, 130010101),
whose initial boundary conditions are shown in the top row of Fig. 53. The next number in the series 0, 0, 1, 7,
10101, 20305328, . . . is not currently known. But partial computer enumeration of each mode using standard
backtracking methods was performed. The middle row of Fig. 53 shows a sample motif, plucked randomly
out of the first few thousand found, for each of the five Fibbinary zipping modes in the top row. Different
lexicographic search strategies were used for different modes, so as to be able to find an initial set of solutions
quickly. The bottom row shows G2 for each motif, but filled by coloring Forward and Backward sub-tiles with
white and black, respectively.

14This enumeration required 147 hours of CPU time on a circa-2004 450MHz personal computer to accomplish.
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Figure 49: All 660 distinct globally self-avoiding motifs for mode 900001. Forward tiles are black, and Backward
tiles are white. Each motif’s tile path is drawn in blue. Bijection marks are suppressed.

Figure 50: A sampling of the 9441 distinct globally self-avoiding motifs for mode 900101. Forward tiles are black,
and Backward tiles are white. Each motif’s tile path is drawn in blue. Bijection marks are suppressed.
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Figure 51: Top: Three boundary modes for T11: 11000001, 11000101, and 11001001. Bottom: Boundary tiles for
each mode force a few more inner tiles and segments. Inner tiles with only known parity are labeled with a P.

Figure 52: Left: A sampling of the 58,936 globally self-avoiding motifs for mode 11000001. Middle: A sampling of
the 19,854,452 globally self-avoiding motifs for mode 11000101 (between each adjacent motif are approximately
100,000 motifs in lexicographic order not shown). Right: A sampling of the 391,940 globally self-avoiding motifs
for mode 11001001. Bijection marks are suppressed.
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Figure 53: Top: The initially frozen tiles, and those tiles with fixed parity (marked with a P), for each of the
five boundary modes governing globally self-avoiding motif boundaries for T13. Middle: A sample motif G for
the mode above it. Bottom: G2 shown with Forward sub-tiles colored white, Backward sub-tiles black.

6. The Submonoid Z of Globally Self-Avoiding Motifs

In the monoid H of all Hilbert-style motifs, for every pair of motifs that each have a given property, if that
property is preserved by the motif composition operator, then that property serves to distinguish a submonoid
of motifs having that property, as long as the identity motif has it too. In particular:

Theorem 6.1. Globally self-avoiding motifs form a submonoid Z ⊂ H under the motif composition operator.15

Proof. The identity motif I is globally self-avoiding: no vertex of Ik has more than one arrowhead arriving at,
nor more than one arrowtail leaving from, that vertex.

Next, we must show that if F on Tm and G on Tn are each a globally self-avoiding motif, then F ◦G is also
a globally self-avoiding motif on Tmn. This is trivially true when either F or G is the identity, so we need only
consider odd m,n ≥ 5 (by the Fibbinary Zipper Theorem there are no globally self-avoiding motifs for even
n,m or for n = 3 or m = 3).

Recall that composition is associative and that it replicates the shape of its right-hand operand in a variety
of orientations according to the “instructions” embodied by the threaded tiles of its left-hand operand. In short,

(FG)k =((FG)k−1F) ◦G,

which is to say that (FG)k consists of nothing but m2k · n2(k−1) threaded, congruent copies of G’s shape.16

But G’s shape is globally self-avoiding, and zips with itself in all nine possible supertile contact combinations
(eight required, one optional). Thus no matter what the orientations, each individual G in (FG) will zip with
copies of itself, just as it would in Gk. At consecutive supertile connection points when two connected copies
of G are placed in a pair of supertiles, by Handedness3.16, FourCorners3.7, and ToroidalCycles3.17, the
in-degree and out-degree of the two supertiles’ shared point are invariant (they remain each 1) after composition
with G. This occurs regardless of which of the five possible ways (Fig. 4) that two consecutive supertiles can
connect in a self-avoiding manner.

Additionally, consider the Fibbinary bit sequence of 0s and 1s along any side of the composition’s result.
That sequence starts its formation as just the concatenation of m copies of the Fibbinary bits of the right
operand in the composition. Such a concatenation is guaranteed to remain Fibbinary because each set of bits
always starts and ends with a 0. But motif composition doesn’t just concatenate the palindromic bit patterns.
Two consecutive copies of the motif can be in the same or in different orientations. Because of this the last
bit of the zipper bits next to the first bit of a concatenated copy can be ..0 0.., ..0 1.., ..1 0.., but not ..1 1..,
based on whether the composed tile path is leaving or arriving at the perimeter where that 1 appears. But the
Fibbinary zipper bits always start or end with two 0 bits, so a change of just the first or last bit from 0 to 1
cannot introduce two adjacent 1 bits, thereby maintaining the Fibbinary zipper bits in the composed result. �

Remark 6.1. NoLowerCornerTurns3.22 is thus the cornerstone of preserving Fibbinary bit self-avoidance
during composition. Fig. 54 demonstrates the composition of two globally self-avoiding motifs, one with zipper

15We use Z for “zipping.”
16Also recall that motif composition is not commutative, therefore in general (FG)k 6= FkGk .
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bits 001010100 and the other with 0001000, resulting in a composite globally self-avoiding motif on T63=9×7 with
palindromic zipper bits 0001001 0001001 0001000 1001000 1001001 0001001 0001000 1001000 1001000 (the under-
lined 1s are where a first or last 0 in the nine initially concatenated order-7 zipper bits has changed to a 1).

=

Figure 54: A composite globally self-avoiding motif on T63 composed from two globally self-avoiding motifs,
one on T9 and one on T7, each subject to a different mode (magnified result not drawn to scale).

7. Conclusions

The simplest, non-trivial, globally self-avoiding motif, E, for Hilbert-style space-filling curves using pure edge-
replacement is a window into a fascinating combinatorial world: a monoid Z of composable Hamiltonian cycles
on the two-dimensional toroidal grid-graph. Imparting a slight asymmetry to a square by distinguishing one
directed edge, and requiring continuity and self-avoidance during edge-replacement composition, ramifies into
a space with interesting and elegant constraints that significantly affect how we might enumerate motifs.

The toroidal nature of the solution space is not an assumed convenience; it is induced by the requirements of
self-avoidance, square-fillingness, and the one-to-one binding between a square and exactly one of its edges, under
the monoid Z ⊂ H’s composition “growth” operator (especially self-similar growth). Interestingly, chirality and
rotational symmetry emerge in the solution space while bilateral symmetry (à la the Hilbert Curve) disappears.

In this case, performing an exhaustive enumeration by machine in order to be able to better visualize an
entire space of solutions led to an elementary, essentially visual, proof of an elegant boundary structure, thus
demonstrating the utility of computers as a research/visualization tool in combinatorics.

A holy grail of any parameterized-by-n, constrained, combinatoric space is to find a closed formula f(n),
such as a generating function g(n), that delivers or encodes the number of solutions for a given n. But the
present result, for a very simple set of constraints, shows that a single formula is not likely, given that (a) each
Fibbinary zipping mode creates differing amounts of constraint-based on a set of different boundary conditions,
and (b) the number of such zipping modes increases without bound as n→∞.

Understanding and enumerating certain self-avoiding lattice paths can be enhanced by maintaining parity
information, equivalent to knowing locally which side of an edge in a path is “outside” or “inside.”

With path self-avoidance as a fundamental constraint governing the problem, the appearance of a Fibonacci-
related boundary condition is perhaps (in hindsight) not surprising (see, e.g., [1], [23]). But these constraints
apply only to a subset of Hamiltonian cycles on the toroidal grid-graph: those that contact but do not cross
the wraparound boundaries, i.e., when unwrapped, an order-n tile path remains bounded by a minimal n × n
square. While self-avoidance characterizes all Hamiltonian paths and cycles, it is really the self-avoidance on
both sides of a required, one-dimensional, shared, wraparound “cut” that induces the Fibbinary constraints.

Regardless, the submonoid Z of a particular set of Hamiltonian cycles on the toroidal grid-graph—in which
the cycle’s graph edges are bijectively bound to graph faces—embodies a beautiful combinatorial space that
evinces an intriguing struggle between symmetry and asymmetry, and between order and disorder.
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