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Abstract: In this note, we study two generalizations of the Catalan numbers, namely the s-Catalan numbers
and the spin s-Catalan numbers. These numbers first appeared in relation to quantum physics problems about
spin multiplicities. We give a combinatorial description for these numbers in terms of Littlewood-Richardson
coefficients, and explain some of the properties they exhibit in terms of Littlewood-Richardson polynomials.
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The purpose of this note is to study two generalizations of the well-known Catalan numbers and prove
some basic combinatorial properties of these numbers by characterizing them as Littlewood-Richardson coeffi-
cients of certain triples of partitions. These numbers first appeared in quantum physics problems about spin
multiplicities [7, 8], and have also been studied in special cases by Belbachir and Iguerofa [5].

We begin with the s-binomial coefficients, a generalization of the ordinary binomial coefficients.

Definition 1 (s-binomial coefficients). For positive integers n and s, and integer k with 0 ≤ k ≤ sn, the
s-binomial coefficient

(
n
k

)
s

is the coefficient of xk in the expansion of (1 + x+ x2 + · · · + xs)n:

(1 + x+ x2 + · · · + xs)n =

sn∑
k=0

(
n

k

)
s

xk.

The s-binomial coefficients were apparently first defined by De Moivre [9], and have since been studied by
a number of mathematicians, including Euler [11] in special cases as part of his investigations on generating
series, which are now a basic tool in combinatorics. Belbachir and Igueroufa [4] give an overview of the history
of the s-binomial coefficients∗ and their basic properties, including expansions of the s-binomial coefficients in
terms of the ordinary binomial coefficients; see also the monograph of Bondarenko [6].

André [1] was apparently the first to study s-binomial coefficients combinatorially for general s. Freund [13]
independently considered s-binomial coefficients combinatorially, in terms of restricted occupancy problems,
and we recall his combinatorial description (which is basically equivalent to the definition given in Definition 1,
and is similar to André’s description in terms of “regular combinations on words”).

Lemma 1 (Freund). The s-binomial coefficients
(
n
k

)
s

count the number of ways of placing k objects in n boxes,
provided each box contains at most s objects.

Other combinatorial descriptions of the s-binomial coefficients include a lattice-path description of Bazeniar,
Ahmia, and Belbachir [3] and a description in terms of up-oriented paths in hypergrids due to Belbachir and
Iguerofa [5].

In analogy with the ordinary binomial coefficients, we define the central s-binomial coefficients to be the
coefficients

(
2n
sn

)
s
. We can similarly define the s-Catalan numbers.

Definition 2 (s-Catalan numbers). Let n and s be positive integers. The nth s-Catalan number is the number(
2n

sn

)
s

−
(

2n

sn+ 1

)
s

.
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s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7
n = 1 1 1 1 1 1 1 1
n = 2 2 3 4 5 6 7 8
n = 3 5 15 34 65 111 175 260
n = 4 14 91 364 1085 2666 5719 11096
n = 5 42 603 4269 19845 70146 204867 518498
n = 6 132 4213 52844 383251 1949156 7737807 25593128
n = 7 429 30537 679172 7687615 56267133 303922983 1312660700
n = 8 1430 227475 8796188 158614405 1670963202 12281450455 69270071480

Figure 1: A list of s-Catalan numbers for 1 ≤ s ≤ 7 and 1 ≤ n ≤ 8.

We give a list of small s-Catalan numbers for s = 1, 2, . . . , 7 in Figure 1.
Belbachir and Iguerofa [5] defined the s-Catalan numbers only for odd positive integers s, but the definition

makes sense for all positive integers s. When s = 1, the s-Catalan numbers reduce to the ordinary Catalan
numbers, for which there are many known combinatorial interpretations [17]. Belbachir and Iguerofa [5] ask for
a combinatorial interpretation of the s-Catalan numbers.

As we mentioned in the opening, motivation for studying the s-Catalan numbers comes from certain problems
in physics. Specifically, Cohen, Hansen, and Itzhaki [7] and Curtright, van Kortryk, and Zachos [8] were
interested in spin multiplicities that occur in spin s n-fold tensor products. That is, given a Lie group G (in [7],
this Lie group is SO(3); in [8], it is SU(2)), one is interested in determining the multiplicity of the irreducible
representation [j] in the tensor product [s]⊗n, where s can be any nonnegative half-integer (i.e., s = t/2 for
some nonnegative integer t). In the case that j = 0, the multiplicities calculated by Cohen, Hansen, and Itzhaki
are given by a generalization of the s-Catalan numbers, which we call the spin s-Catalan numbers.

Definition 3 (spin s-Catalan numbers). Let n be a positive integer, and let s be a half-integer (i.e., a positive
integer divided by 2). The nth spin s-Catalan number is the number(

n

sn+ s

)
2s

−
(

n

sn+ s+ 1

)
2s

.

If n is even and s is not an integer, then we consider the nth spin s-Catalan number to be 0.

A table of small spin s-Catalan numbers is given in Figure 2.
Curtright, van Kortryk, and Zachos produced a table similar to the one in Figure 2 and noted that the rows

of the table are polynomials. Indeed, if we ignore the 0 entries in Figure 2, then the rows are polynomials and
we will show that these rows are certain Littlewood-Richardson polynomials.

We now give representations of the s-Catalan numbers and spin s-Catalan numbers as certain Littlewood-
Richardson coefficients. As the Littlewood-Richardson coefficients have a well-known combinatorial interpreta-
tion, which we recall shortly, this also provides one answer to the question of Belbachir and Iguerofa. Let us
recall the definition of the Littlewood-Richardson coefficients (see, for example, Barcelo and Ram [2]).

s = 1
2 s = 1 s = 3

2 s = 2 s = 5
2 s = 3 s = 7

2

n = 1 1 1 1 1 1 1 1
n = 2 0 1 0 1 0 1 0
n = 3 2 3 4 5 6 7 8
n = 4 0 6 0 16 0 31 0
n = 5 5 15 34 65 111 175 260
n = 6 0 36 0 260 0 981 0
n = 7 14 91 364 1085 2666 5719 11096
n = 8 0 232 0 4600 0 33922 0
n = 9 42 603 4269 19845 70146 204867 518498
n = 10 0 1585 0 86725 0 1251460 0

Figure 2: A list of spin s-Catalan numbers for 1
2 ≤ s ≤ 7

2 and 1 ≤ n ≤ 10.

Definition 4 (Littlewood-Richardson coefficients). Let V µ and V ν be irreducible polynomial representations of
the group GL(n). The Littlewood-Richardson coefficients cλµ,ν are the coefficients

V µ ⊗ V ν =
∑
λ

cλµ,νV
λ.

∗Belbachir and Iguerofa refer to the s-binomial coefficients as bisnomial coefficients.
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As is well-known, the Littlewood-Richardson coefficients amazingly have a combinatorial interpretation in
terms of Littlewood-Richardson tableaux (see, for instance, Fomin’s appendix to Stanley’s book [12] or the book
of Manivel [15]).

Recall that for partitions λ and µ, the skew shape λ/µ is the set-theoretic difference of the Young diagrams
of λ and µ. If ν = (ν1, ν2, . . .), then the shape is defined to have content ν if, in a filling F of λ/µ, there are
exactly νi is in F for each i. A tableau on the shape λ/µ is semistandard if the associated filling is weakly
increasing along rows and strictly increasing along columns. Finally, a word a1a2 · · · an is a ballot word if, for
each initial segment a1a2 · · · aj , the number of as appearing in the word is at least the number of bs appearing
in the word whenever a < b.

Theorem 1 (Littlewood-Richardson coefficients (Combinatorial interpretation)). For a triple of partitions
(λ, µ, ν), the Littlewood-Richardson coefficient cλµ,ν is equal to the number of semistandard skew tableaux of
shape λ/µ and content ν, and for which the associated word obtained by reading the reversed rows concatenated
together is a ballot word (or Yamanouchi word, or lattice permutation).

For example, we have c
(3,2,1)
(1),(3,2) = 1, because the only valid Littlewood-Richardson tableau is

1 1

1 2

2

Note that the row-reversed word of the above tableau is 11212. It is this combinatorial interpretation of the
Littlewood-Richardson coefficients that we subsequently use in our proofs.

For a partition λ, we will use s ∗ λ to denote the partition obtained from λ by a stretching factor of s. For
example, if λ = (3, 2, 1) and s = 3, then s ∗ λ = (9, 6, 3).

The Littlewood-Richardson coefficients exhibit a remarkable stretching property: for any triple of partitions,
λ, µ, ν, the coefficients cN∗λN∗µ,N∗ν are polynomials in the stretching factor N ; that is, there is a polynomial Pλµ,ν
with rational coefficients such that

cN∗λN∗µ,N∗ν = Pλµ,ν(N).

We will refer to any such polynomial as a Littlewood-Richardson polynomial. The polynomiality of these
stretched Littlewood-Richardson coefficients was first conjectured by King, Tollu, and Toumazet [14], and sub-
sequently established independently by Derksen and Weyman [10] and Rassert [16]. King, Tollu, and Toumazet
also conjectured that the coefficients of Littlewood-Richardson polynomials Pλµ,ν are nonnegative, but this re-
mains open.

We can represent both the s-Catalan and spin s-Catalan numbers as Littlewood-Richardson polynomials (in
s), providing an explanation of the polynomiality of the rows in Figure 1 and Figure 2. To state these theorems,
for every positive integer n define the partitions λn = (n, n− 1, . . . , 1) and αn = (2n, 2n− 2, . . . , 2) = 2 ∗ λn.

Theorem 2. Let s and n be positive integers. Then,

cs∗λ2n

s∗λ2n−1,s∗(n,n) =

(
2n

sn

)
s

−
(

2n

sn+ 1

)
s

.

Theorem 3. If n and s are positive integers, or if s = k/2 for some odd positive integer k and n is an odd
positive integer,

cs∗αn

s∗αn−1,s∗(n+1,n−1) =

(
n

sn+ s

)
2s

−
(

n

sn+ s+ 1

)
2s

.

The proofs of Theorems 2 and 3 both follow by counting the number of Littlewood-Richardson tableaux of
the appropriate shape and content and using Lemma 1 to give a bijection to the s-Catalan numbers and spin
s-Catalan numbers. As the reflection principle argument is essentially the same for both, we omit the details
for Theorem 3, and only give the proof for Theorem 2.

Proof of Theorem 2. In the skew shape s∗λ2n/s∗λ2n−1, the condition that the filling must be strictly increasing
on columns is automatically satisfied because there are no two cells in the shape which are in the same column.
Now it is straightforward to see from Lemma 1 that the number of possible fillings is

(
2n
sn

)
s
, by looking at the

placement of the 1s in any such filling.
We now show that the number of such fillings of sn 1s and sn 2s into the shape s ∗ λ2n/s ∗ λ2n−1 which do

not satisfy the ballot condition is equal to
(

2n
sn+1

)
s
. We do this by exhibiting a bijection to the number of valid

fillings (i.e. those that weakly increase along rows) of sn+ 1 1s and sn− 1 2s into the shape s ∗ λ2n/s ∗ λ2n−1.
Let F be a filling whose word does not satisfy the ballot condition. There must be a first position k where

the number of 2s read in the word exceeds the number of 1s. We form a filling F ′ with sn + 1 1s as follows:
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replace each 1 in position 1 through k (inclusive) by a 2, and replace each 2 by a 1, adjusting the rows so that
the 1s weakly precede the 2s. We can reverse this process as follows: Given a filling F ′ of sn + 1 1s into the
shape s ∗ λ2n/s ∗ λ2n−1, begin reading the word as follows: within each row, read the order of the word in
reverse order, that is, reading the 1s before the 2s. Stop reading at the first position j where the 1s exceed the
2s. As before, replace every 1 in positions 1 through j with a 2, and every 2 with a 1, adjusting rows as needed
to fulfill the weakly increasing condition. An example of the bijection is given in Figure 3.

1 1 1

2 2 2

2 2 2

1 1 1

2 2 2

1 1 1

1 2 2

1 1 1

Figure 3: An example of the bijection in the proof of Theorem 2 with s = 3, n = 2.

Let us consider the relation between the s-Catalan and spin s-Catalan numbers a little more closely. Observe
that, for odd integer n, row n in the table for spin s-Catalan numbers in Figure 2 matches up exactly with
row (n + 1)/2 in the table for s-Catalan numbers in Figure 1. This is not a coincidence. To fix notation,
set n = 2m + 1, with m ≥ 0, and also set s = t/2, t a positive integer (this s corresponds to the s for spin
s-Catalan numbers). Then, s ∗αn = t

2 ∗α2m+1 = t ∗λ2m+1, while the spin (t/2)-Catalan number at n = 2m+ 1

is
(

2m+1
t(m+1)

)
t
−
(

2m+1
t(m+1)+1

)
t
. Under these notational conventions, the (2m + 1)th spin (t/2)-Catalan number

corresponds to the (m+ 1)th t-Catalan number, which is the content of the next theorem.

Theorem 4. Let t and m be positive integers. Then,(
2m+ 1

t(m+ 1)

)
t

−
(

2m+ 1

t(m+ 1) + 1

)
t

=

(
2m+ 2

t(m+ 1)

)
t

−
(

2m+ 2

t(m+ 1) + 1

)
t

,

or equivalently,

c
t∗λ2m+1

t∗λ2m,t∗(m+1,m) = c
t∗λ2m+2

t∗λ2m+1,t∗(m+1,m+1).

Note that if t = 1 in Theorem 4, then the binomial coefficient identity reduces to(
2m+ 1

m+ 1

)
−
(

2m+ 1

m+ 2

)
=

(
2m+ 2

m+ 1

)
−
(

2m+ 2

m+ 2

)
,

and the latter is clearly the (m+ 1)th Catalan number.

Proof of Theorem 4. We show that

c
t∗λ2m+2

t∗λ2m+1,t∗(m+1,m+1) = c
t∗λ2m+1

t∗λ2m,t∗(m+1,m).

Any valid filling of a Littlewood-Richardson tableau on the skew shape t ∗ λ2m+2/t ∗ λ2m+1 with t(m + 1) 1s
and t(m+ 1) 2s must have a row of t 2s in the bottom row, as any 1s in the bottom row would violate the ballot
condition. Deleting the bottom row and the columns above it therefore leaves a valid Littlewood-Richardson
tableau on the skew shape t ∗ λ2m+1/t ∗ λ2m with t(m + 1) 1s and tm 2s. This operation is clearly reversible,
completing the proof.
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