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Abstract: In a recent paper, Janjić enumerated Dyck paths of semilength n − 1 having colored hills with
m ∈ {2, 3, 4} colors. For m = 2, he showed that they are also enumerated by the n-th Catalan number Cn,
which implies that they are in bijection with Dyck paths of semilength n. For m = 3, he showed that they are
enumerated by

(
2n−1
n

)
, which implies that they are in bijection with pairs of noncrossing paths of length n− 1.

In this paper, we present new bijections between Dyck paths with colored hills with m colors and various classes
of paths, for m ∈ {2, 3}, giving bijective proofs for the above results, as well as obtaining some new enumeration
results for these classes of paths.
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1. Introduction

A (lattice) path of length n ∈ N∗ := {1, 2, 3, . . .} is a finite sequence of points (xi, yi)0≤i≤n in Z2, starting at the
origin, i.e., (x0, y0) = (0, 0). The vectors (xi+1 − xi, yi+1 − yi), 0 ≤ i ≤ n − 1, are the steps of the path. The
length of a path P , denoted by |P |, is the number of its steps. The height of the i-th point (xi, yi) of a path P ,
denoted by hi(P ), is equal to yi and h(P ) = hn(P ) is the height of the final point of P .

In this work, we are concerned with lattice paths having three kinds of steps: up-steps u = (1, 1), down-steps
d = (1,−1) and horizontal steps h = (1, 0). The set of these paths is denoted by {u, d, h}∗, since each such path
can be identified by the sequence of its steps, i.e., a word in {u, d, h}∗. Given τ, P ∈ {u, d, h}∗, we say that
τ occurs in P whenever P = RτQ, for some R,Q ∈ {u, d, h}∗. The height of this occurrence is equal to the
minimum height of its points. A low (resp. high) occurrence is an occurrence at height 0 (resp. greater than
0). A hill of a path is a low occurrence of ud (the starting point of the u step has zero y-coordinate). A peak
(resp. valley) is an occurrence of ud (resp. du). The number of occurrences of τ in the path P is denoted by
|P |τ . In particular, |P |u, |P |d, |P |h denote the number of u’s, d’s and h’s in P respectively.

Next, we give the terminology and notation used for the sets of paths we are concerned within the sequel.
A partial order ≤ is defined in the set {u, d}n of binary paths of length n ∈ N := {0, 1, 2, . . .} as follows: P ≤ Q
whenever the path P lies weakly below the path Q, i.e., whenever hi(P ) ≤ hi(Q), for all 0 ≤ i ≤ n. A pair
of noncrossing paths is a pair (P,Q) with P ≤ Q. A Motzkin prefix is a path in {u, d, h}∗ that stays weakly
above the x-axis. A Motzkin path is a Motzkin prefix that ends on the x-axis. A Dyck prefix is a Motzkin
prefix with no horizontal steps (also called a ballot path). A Dyck path is a Dyck prefix that ends on the x-axis.
By coloring each horizontal step of a Motzkin prefix with one out of m ∈ N∗ possible colors, we obtain an
m-Motzkin prefix. We denote these colors by the integers 1, 2, . . . ,m and the corresponding colored horizontal
steps by h1, h2, . . . , hm. Similarly, we can color the hills of a Dyck path to obtain a Dyck path with m-colored
hills. We denote these colored hills by H1, H2, . . . ,Hm. Below, we list the notation used in the rest of the paper:

• ε is the empty path, i.e., the path of length 0

• MP(m)
n (h) is the set of m-Motzkin prefixes of length n ending at height h,

MP(m)
n :=

⋃
h≥0MP(m)

n (h), MP(m)(h) :=
⋃
n≥0MP(m)

n (h) and MP(m) :=
⋃
n≥0MP(m)

n .
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• M(m)
n :=MP(m)

n (0) is the set of m-Motzkin paths of length n, and M(m) :=
⋃
n≥0M

(m)
n .

• DPn :=MP(0)
n is the set of Dyck prefixes of length n.

• D(m)
n is the set of Dyck paths of length 2n with m-colored hills and D(m) :=

⋃
n≥0D

(m)
n , m ∈ N.

The case m = 0 corresponds to the set D(0) of Dyck paths with no hills (also called hill-free Dyck paths).

The case m = 1 corresponds to the set D := D(1) of (ordinary) Dyck paths and we define D+ := D \ {ε}.

• Wn(h) is the set of pairs of noncrossing binary paths of length n ending 2h units apart,

Wn :=
⋃
h≥0Wn(h), W(h) :=

⋃
n≥0Wn(h) and W :=

⋃
n≥0Wn.

Recently, Janjić [6] proved, using recurrence relations, the following enumeration results:

i) |D(2)
n | = Cn+1, where Cn =

(
2n
n

)
/(n + 1) is the n-th Catalan number (seq. A000108 in the OEIS [9]).

As Janjić notes, this interpretation of the Catalan numbers does not exist in Stanley’s book “Catalan
numbers” [10].

ii) |D(3)
n | =

(
2n+1
n

)
(seq. A001700 in the OEIS).

Combining these two results with enumeration results known from the literature, we have the following equalities:

|Wn(0)| = |Dn+1| = |M(2)
n | = |D(2)

n | = Cn+1, (1)

|Wn| = |DP2n+1| = |MP(2)
n | = |D(3)

n | =
(
2n+1
n

)
. (2)

For the first class of sets, i.e., those appearing in relation (1), there exist known bijections between Wn(0) and

Dn+1 (see Deutsch and Shapiro [5], Manes et al. [8]), as well as two bijections fromM(2)
n to Dn+1. The first one,

denoted here by χ, is given by Delest and Viennot [3], whereas the second one, denoted here by η, is given by

Callan [1]. Moreover, a bijection between Wn(0) and M(2)
n is given by Deutsch and Shapiro [5] (as the authors

note, Wn(0) is also in bijection with parallelogram polyominoes of perimeter 2(n+ 2)). For the second class of
sets in relation (2), there exists, to our knowledge, no bijection other than the one given in [8] between Wn and
DP2n+1.

The purpose of this paper is to provide bijections that connect D(2)
n and D(3)

n with the rest of the sets in
their class, thus also proving (i) and (ii) combinatorially, as well as to present new enumeration results that are
derived from the properties of these bijections. The rest of the paper is organized as follows: In section 2, we
introduce a simple new bijection φ : D(2) → D∗ which proves (i) and we give a new enumeration result based

on φ. In section 3, we describe bijections χ and η, both from M(2)
n to Dn+1, we give an equivalent recursive

definition for η, which we exploit to obtain new properties for η, and we derive new enumeration results on
Dyck and 2-Motzkin paths, based on these properties. In section 4, we introduce bijection ϕ2 : D(2) →M(2),
also proving (i), and we study some of its properties, obtaining some known and some new results. For the

second class of sets, the proof of (ii) is accomplished via the bijection ϕ3 : D(3) →MP(2), presented in section

5. Moreover, in section 6, we describe a bijection ψ : W → MP(2), extending the bijection of Deutsch and
Shapiro [5] and finally, in section 7, using the properties of φ, χ and ψ, we introduce a bijection ω :W → D(3),
also proving (ii). The connections between the aforementioned sets via existing and new bijections are depicted
in Fig. 1. We finally note that some of the results of this paper were presented in [7].

Wn(0) Dn+1

D(2)
nM(2)

n

[5]

[5] φ

ϕ2

η

χ

Wn DP2n+1

D(3)
nMP(2)

n

[8]

ω
ψ

ϕ3

Figure 1: Arrows indicate a known bijection between corresponding sets. Dashed arrows indicate bijections
introduced in this paper.
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2. From Dyck paths with 2-colored hills to Dyck paths

We define a mapping φ : D(2) → D+ that has a simple non-recursive description; for every α ∈ D(2), the path
φ(α) is constructed in two steps as follows:

(φ1) Transform each H2 (hill with color 2) of α into a du (a valley at height −1).

(φ2) Finally, add a u step at the beginning and a d step at the end of the path.

Obviously, the resulting path φ(α) is a non-empty Dyck path such that |φ(α)|u = |α|u + 1. The procedure

is clearly reversible, so that we have a bijection, showing that |D(2)
n | = |Dn+1|, for all n ∈ N. Moreover, it is

easy to check that φ satisfies the following properties:

i) The number of H1’s in α equals the number of ud’s at height 1 in φ(α).

ii) The number of H2’s in α equals the number of du’s at height 0 (low valleys) in φ(α).

Note that the first step (φ1) of the bijection transforms a path a ∈ D(2)
n to a path β ∈ {u, d}n starting

and ending on the x-axis and never falling below height -1. We will denote the set of such paths by D−n , i.e.,
β ∈ D−n ⇔ uβd ∈ Dn+1. These paths appear as an intermediate product of bijections φ, χ, ψ, thus playing a
key role in the sequel, in composing these bijections.

We close this section with a new enumeration result, derived from the properties of φ. The number of Dyck
paths of length 2n with k hills is equal (e.g., see equation (6.16) in [4]) to an,k, where

an,k :=

b(n−k)/2c∑
i=0

i

n− k − i

(
k + i

k

)(
2(n− k − i)

n− k

)
, when 0 ≤ k < n and an,n := 1.

Combining this result with properties (i) and (ii) of φ, we deduce the following:

Proposition 2.1. The number of paths in D(2)
n with k1 H1’s and k2 H2’s is equal to the number of paths in

Dn+1 with k1 ud’s at height 1 and k2 du’s at height 0 and equal to
(
k1+k2
k1

)
an,k1+k2 .

3. From Dyck paths to 2-Motzkin paths

As noted before, there exists a folklore bijection χ :M(2) → D+, introduced by Delest and Viennot [3], which
has a straightforward description; given a 2-Motzkin path α, the Dyck path χ(α) is constructed in two steps as
follows:

(χ1) Replace in α each u by uu, each d by dd, each h1 by ud, each h2 by du.

(χ2) Finally, add a u step at the beginning and a d step at the end of the path.

Obviously, bijections φ and χ can be combined to give a bijection χ−1 ◦ φ : D(2) →M(2). Note that the first

step (χ1) transforms α ∈ M(2)
n into a path β ∈ D−n . This implies that χ−1 ◦ φ is easily described in two steps:

the step (φ1) followed by the inverse of step (χ1).
The bijection η :M(2) → D+, introduced by Callan [1], is quite different from χ. Given a path α ∈ M(2),

the path η(α) ∈ D∗ is obtained by applying the following steps:

(η1) append a d step, to obtain αd, so that every h1 in αd has an associated d step (the first d step to the right
of this h1 that starts at the same height as h1),

(η2) replace every d step by udd,

(η3) replace every h2 step by ud,

(η4) replace every h1 step by u and insert a d immediately before its associated d step and

(η5) delete the appended d, to obtain η(α) ∈ D+.

Here, we present an equivalent recursive definition for η, based on the decompositions of the two sets: A
path α ∈M(2) is decomposed as

α = ε or α = h1β or α = h2β or α = uβdγ, β, γ ∈M(2).
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On the other hand, a path α ∈ D+ is decomposed as

α = ud or α = uβd or α = udβ or α = uβdγ, β, γ ∈ D+.

Then, η is equivalently defined by the following relations:

η(ε) = ud, η(h1β) = uη(β)d, η(h2β) = udη(β), η(uβdγ) = uη(β)dη(γ), β, γ ∈M(2). (3)

Note that each replacement occurring in steps (η2)− (η4) preserves the associated d step of each remaining h1
and that the final result does not depend on the order in which h1’s and h2’s are replaced, as long as step (η2)
is completed before steps (η3) and (η4) begin. Then, based on these observations, it is easy to verify that (3)
indeed provides an equivalent definition of η.

We denote the inverse of η by ϕ1, i.e., ϕ1 : D+ → M(2) is a bijection mapping non-empty Dyck paths of
length 2n+ 2 to 2-Motzkin paths of length n, defined recursively as (see Fig. 2).

ϕ1(ud) = ε, ϕ1(uβd) = h1ϕ1(β), ϕ1(udβ) = h2ϕ1(β), ϕ1(uβdγ) = uϕ1(β)dϕ1(γ), β, γ ∈ D+, (4)

α ∈ D+ ←→ ϕ1(α) ∈M(2)

←→ ε

β
←→ ϕ1(β)h1

β ←→ ϕ1(β)h2

β
γ ←→

ϕ1(β)
ϕ1(γ)

Figure 2: The bijection ϕ1 : D+ →M(2).

Example For the path α = uududduduudd ∈ D6, we have

ϕ1(α) = uϕ1(udud)dϕ1(uduudd) = uh2ϕ1(ud)dh2ϕ1(uudd) = uh2εdh2h1ϕ1(ud) = uh2dh2h1 ∈M(2)
5 .

On the other hand, χ(uh2dh2h1) = u uu du dd du ud d 6= α.
Using the recursive definition, it is easy to prove inductively that ϕ1 has the following properties:

i) |ϕ1(α)| = |α|u − 1, i.e., ϕ1(Dn+1) =M(2)
n , for all n ∈ N.

ii) |ϕ1(α)|h2
= |α|udu,

iii) |ϕ1(α)|d = |α|ddu,

iv) |ϕ1(α)|u + |ϕ1(α)|h1
= |α|uu = |α|dd,

v) |ϕ1(α)|ud = |α|uuddu.

Remark Callan also derives properties (ii) and (iii) (in terms of η) and uses them to enumerate udu’s and
ddu’s in Dyck paths (see Theorem 2 in [1]).

The recursive definitions of η and its inverse ϕ1 have several advantages over the non-recursive definition
consisting of steps (η1)-(η5). First of all, it exposes and exploits the structural similarities of the two sets
involved. Consequently, it can be modified easily to give bijections onto other sets of similar structure (e.g.,
ordered trees, binary trees, or any other combinatorial object counted by the Catalan numbers) which also
translate statistics such as those involved in properties (ii)-(v) into equivalent statistics on these sets. Moreover,
proving properties such as (i)-(v) reduces to a routine application of induction, when using such a recursive
definition. Next, we give the proof of property (v), to demonstrate this advantage. The proofs of properties
(i)-(iv) are similar and easier.

ECA 2:2 (2022) Article #S2R15 4
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Proof of property (v) of ϕ1. By induction on n. Let α ∈ Dn+1. The claim clearly holds for n = 0, i.e., when
α = ud. Assume that it holds for all Dyck paths in Dk+1 and for all k < n. Since α is decomposed as

α = uβd or α = udβ or α = uβ′dγ, or α = uuddγ, β, γ ∈ D+, β′ ∈ D+ \ {ud},

and since, using the induction hypothesis, we have that

|ϕ1(uβd)|ud = |h1ϕ1(β)|ud = |ϕ1(β)|ud = |β|uuddu = |uβd|uuddu,
|ϕ1(udβ)|ud = |h2ϕ1(β)|ud = |ϕ1(β)|ud = |β|uuddu = |udβ|uuddu,
|ϕ1(uβ′dγ)|ud = |uϕ1(β′)dϕ1(γ)|ud = |ϕ1(β′)|ud + |ϕ1(γ)|ud = |β′|uuddu + |γ|uuddu = |uβ′dγ|uuddu,
|ϕ1(uuddγ)|ud = |udϕ1(γ)|ud = 1 + |ϕ1(γ)|ud = 1 + |γ|uuddu = |uuddγ|uuddu,

it follows that the claim also holds for α.

We close this section with two new enumeration results that are derived from the properties of ϕ1. The first
result is immediately derived from properties (ii) and (v):

Proposition 3.1. The number of Dyck paths of length 2n+2 with k uuddu’s and j udu’s is equal to the number
of 2-Motzkin paths of length n with k ud’s (peaks) and j h2’s.

This result introduces new combinatorial interpretations to several sequences in the OEIS:

• Seq. A097860, counting Motzkin paths of length n with k peaks, also counts paths Dyck paths of length
2n+ 2 with k uuddu’s and with no udu’s.

In particular, seq. A004148, counting peakless Motzkin paths, is obtained by setting k = 0.

• Seq. A114848, counting Dyck paths of length 2n with k uuddu’s, also counts 2-Motzkin paths of length
n− 1 with k peaks.

In particular, seq. A187256, counting peakless 2-Motzkin paths, also counts Dyck paths with no uuddu’s.

The second result is derived from properties (i), (iii), (iv) of ϕ1. For any α ∈ Dn+1, we have that

|ϕ1(α)|h2
= |ϕ1(α)| − |ϕ1(α)|u − |ϕ1(α)|h1

− |ϕ1(α)|d = |α|u − 1− |α|uu − |α|ddu = n− |α|uu − |α|ddu.

Selecting only the paths α ∈ Dn+1 with |α|uu + |α|ddu = n − k, for some k such that 0 ≤ k ≤ n, we obtain

exactly the paths ϕ1(α) ∈ M(2)
n with |ϕ1(α)|h2

= k, counted by the number
(
n
k

)
Mn−k (seq. A091869 in the

OEIS), where Mn is the n-th Motzkin number Mn (seq. A001006 in the OEIS), thus deducing the following
result:

Proposition 3.2. The number of paths α ∈ Dn+1, n ∈ N, with |α|uu + |α|ddu = k, 0 ≤ k ≤ n, is equal to(
n
k

)
Mk.

4. From Dyck paths with 2-colored hills to 2-Motzkin
paths

The mapping ϕ2 : D(2) →M(2) maps Dyck paths of length 2n with 2-colored hills to 2-Motzkin paths of length
n. Its definition is based on the decompositions of the two sets: A non-empty path α ∈ D(2) is decomposed
with respect to its first hill as

α = uα1d · · ·uαkd or α = βH1γ or α = βH2γ, β ∈ D(0), γ ∈ D(2), αi ∈ D+, i ∈ [k], k ∈ N∗.

Note that the first equality corresponds to the case where α ∈ D(0), i.e., α is hill-free, whereas the second and
third equalities correspond to the cases where α ∈ D(2) \D(0), i.e., α has a hill. On the other hand, a nonempty
path α ∈M(2) is decomposed analogously, with respect to its first horizontal step at height 0, as

α = uα1d · · ·uαkd or α = βh1γ or α = βh2γ, β ∈M(2)
, γ, αi ∈M(2), i ∈ [k], k ∈ N∗,

where M(m)
denotes the set of m-Motzkin paths with no horizontal steps at height 0. Then, ϕ2 is defined

recursively as

ϕ2(ε) = ε, ϕ2(uα1d · · ·uαkd) = uϕ1(α1)d · · ·uϕ1(αk)d, ϕ2(βHiγ) = ϕ2(β)hiϕ2(γ), i ∈ {1, 2}, (5)

where a1, . . . , ak ∈ D+, β ∈ D(0), γ ∈ D(2), as depicted in Fig. 3.
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α ∈ D(2) ←→ ϕ2(α) ∈M(2)

ε ←→ ε

· · ·α1 αk

←→
· · ·ϕ1(α1) ϕ1(αk)

β
Hi

γ ←→ ϕ2(β)
hi ϕ2(γ)

Figure 3: The bijection ϕ2 : D(2) →M(2).

Example For the path α = uududdH1uuddH2uuuddudd ∈ D(2)
11 (recall that |H1| = |H2| = 2), we have

ϕ2(α) = ϕ2(uududd)h1ϕ2(uuddH2uuuddudd) = uϕ1(udud)dh1ϕ2(uudd)h2ϕ2(uuuddudd)

= uh2ϕ1(ud)dh1uϕ1(ud)dh2uϕ1(uuddud)d = uh2εdh1uεdh2uuϕ1(ud)dϕ1(ud)d

= uh2dh1udh2uudd ∈M(2)
11 .

On the other hand, (χ−1 ◦φ)(α) = χ−1(u uu du dd ud uu dd du uu ud du dd d) = uh2dh1udh2uh1h2d 6= ϕ2(α),
showing that ϕ2 is different from χ−1 ◦ φ : D(2) →M(2).

It is easy to prove inductively that ϕ2 is a bijection having the following properties:

i) |ϕ2(α)| = |α|u.

ii) The number of hills of color 1 (resp. 2) in α equals the number of horizontal steps of color 1 (resp. 2) at
height 0 in ϕ2(α).

iii) The number of high udu’s in α equals the number of high h2’s in ϕ2(α) (according to property (ii) of ϕ1).

iv) |ϕ2(α)|ud = |α|uuddu + [α ends with uudd] = |αu|uuddu,

where [S] :=

{
1, if S is true,

0, if S is false
is the Iverson bracket, applicable to any logical (true-false) statement S.

Next, we give the proof of property (iv), which is more subtle and is based on property (v) of ϕ1. The proofs
of properties (i)-(iii) are similar and easier.

Proof of property (iv) of ϕ2. By induction on n. Let α ∈ D(2)
n . The claim clearly holds for n = 0, i.e., when

α = ε. Assume that it holds for all paths in D(2)
k and for all k < n. Since α is decomposed as

α = uα1d · · ·uαkd or α = βH1γ or α = βH2γ, β ∈ D(0), γ ∈ D(2), αi ∈ D+, i ∈ [k], k ∈ N∗.

and since, using the induction hypothesis and property (v) of ϕ1, we have that

|ϕ2(uα1d · · ·uαkd)|ud = |uϕ1(α1)d · · ·uϕ1(αk)d|ud =

k∑
i=1

|ϕ1(αi)|ud +

k∑
i=1

[ϕ1(αi) = ε]

=

k∑
i=1

|αi|uuddu +

k∑
i=1

[αi = ud] = |uα1d · · ·uαkdu|uuddu

|ϕ2(βhiγ)|ud = |ϕ2(β)|ud + |ϕ2(γ)|ud = |βu|uuddu + |γu|uuddu = |βHiγu|uuddu, i ∈ {1, 2},

it follows that the claim also holds for α.

Remarks

• Property (ii) implies that the restriction of ϕ2 on D(0) is a bijection onto M(2)
. This verifies the well-

known result that |D(0)
n | = |M(2)

n | = Fn+1, where Fn is the n-th Fine number (seq. A000957 in the
OEIS).
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• Further restricting ϕ2 on hill-free Dyck paths with no udu’s, or equivalently udu-free Dyck paths of length

2n not ending with ud, we get a bijection ontoM(1)
, i.e., Motzkin paths with no horizontal steps at height

0. It is known that |M(1)

n | is equal to the n-th Riordan number Rn =
∑n
k=0(−1)n−k

(
n
k

)
Ck (seq. A005043

in the OEIS), therefore this class of Dyck paths is also enumerated by the Riordan numbers. Callan [1]
refers to this class as Dyck paths with no short descents (a short descent is a d step preceded by a u step
and not followed by a d step) and obtains the same result bijectively.

We close this section with a new enumeration result that is immediately derived from the properties of ϕ2:

Proposition 4.1. Let D(2)
n (k, i, j) be the number of paths α ∈ D(2)

n with k hills of color 2, |αu|uuddu = i and

j high udu’s and let M(2)
n (k, i, j) be the number of 2-Motzkin paths of length n with k low h2’s, i ud’s (peaks)

and j high h2’s. Then, |D(2)
n (k, i, j)| = |M(2)

n (k, i, j)|, for all n, k, i, j ∈ N.

This result introduces new combinatorial interpretations to several sequences in the OEIS:

• Seq. A064189, counting Motzkin prefixes ending at height k, which are obtained from 2-Motzkin paths

in
⋃
i≥0M

(2)
n (k, i, 0) by turning every low h2 into a u, also counts paths in D(2)

n with k H2’s and no high
udu’s.

In particular, setting k = 0, we deduce that Dyck paths of length 2n with no high udu’s are counted by
the n-th Motzkin number Mn, a result that was proved by Sun [11] using generating functions.

• Seq. A005773 (sums of seq. A064189 over k), counting Motzkin prefixes, also counts paths in D(2)
n with

no high udu’s.

• Seq. A097724, counting peakless Motzkin prefixes ending at height k, which are obtained from paths in

M(2)
n (k, 0, 0) by turning every low h2 into a u, also counts D(2)

n (k, 0, 0).

We also note that the numbers |M(2)
n (k, 0, 0)| were also studied by Cameron and Sullivan [2] (using the

notation p
(0)
n,k for these numbers), from a different perspective.

• Seq. A004148, counting peakless Motzkin paths, i.e., paths in M(2)
n (0, 0, 0), also counts D(2)

n (0, 0, 0), i.e.,
Dyck paths of length 2n with no high udu’s, no uuddu’s and not ending with uudd.

• Seq. A094148 (sums of seq. A097724 over k), counting peakless Motzkin prefixes, also counts paths in

D(2)
n with no high udu’s, no uuddu’s and not ending with uudd.

• Seq. A187256, counting peakless 2-Motzkin paths, also counts paths in D(2)
n with no uuddu’s and not

ending with uudd.

5. From Dyck paths with 3-colored hills to 2-Motzkin
prefixes

The mapping ϕ3 : D(3) → MP(2) maps Dyck paths of length 2n with 3-colored hills to 2-Motzkin prefixes of
length n. Its definition is based on the decompositions of the two sets. A path α ∈ D(3) \ D(2) is decomposed
with respect to its first hill with color 3 as

α = βH3γ, β ∈ D(2), γ ∈ D(3).

Analogously, a 2-Motzkin prefix α ∈MP(2) \M(2) is decomposed with respect to its last u step reaching height
1 as

α = βuγ, β ∈M(2), γ ∈MP(2).

Then, ϕ3 is defined recursively, using ϕ2, as follows:

ϕ3(α) = ϕ2(α), ϕ3(βH3γ) = ϕ2(β)uϕ3(γ), α, β ∈ D(2), γ ∈ D(3). (6)

Equivalently, ϕ3 can be defined as

ϕ3(α0H3α1 · · ·H3αk) = ϕ2(α0)uϕ2(α1) · · ·uϕ2(αk), αi ∈ D(2), 0 ≤ i ≤ k, k ∈ N, (7)

as depicted in Fig. 4. Here, the left-hand side corresponds to the decomposition of a path in D(3) with k ∈ N
H3’s, whereas the right-hand side corresponds to the decomposition of a path inMP(2)(k). Note that, if k = 0,
then the last equality reduces to ϕ3(α0) = ϕ2(α0), i.e., ϕ3 coincides with ϕ2, when restricted to D(2).

Using this recursive definition, it is easy to prove inductively that ϕ3 is a bijection having the following
properties:
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α ∈ D(3) ←→ ϕ3(α) ∈MP(2)

α0

H3
α1

H3
αk ←→ ϕ2(α0)

ϕ2(α1)

ϕ2(αk)

Figure 4: The bijection ϕ3 : D(3) →MP(2).

i) |ϕ3(α)| = |α|u.

ii) ϕ3(α) ∈MP(2)(k)⇔ |α|H3
= k, i.e., the number of H3’s in α equals the ending height of ϕ3(α).

iii) The number of low h1’s (resp. h2’s) in ϕ3(α) equals the number of H1’s (resp H2’s) in α, before the first
H3.

In particular, ϕ3(α) has no horizontal steps at height 0 iff α is either hill-free or its first hill has color 3
(according to property (ii) of ϕ2).

iv) The number of high h2’s in ϕ3(α) equals the number of high udu’s in α plus the number of H2’s after the
first H3 (see property (iii) in ϕ2).

v) |ϕ3(α)|ud = |α|uuddu + [α ends with uudd] = |αu|uuddu (according to property (iv) of ϕ2).

Remarks

• If we choose to map each H3 to an h3 instead of a u, then we get a bijection onto 3-Motzkin paths where
the h3’s occur only at height 0 (see a comment by Deutsch in seq. A001700 in the OEIS).

• According to the second property, the number of paths in D(3)
n with exactly k hills of color 3 is equal to

|MP(2)(k)| = k + 1

n+ 1

(
2n+ 2

n− k

)
(seq. A039598 in the OEIS).

We close this section with a new enumeration result that is immediately derived from the properties of ϕ3:

Proposition 5.1. The number of paths α ∈ D(3)
n with k hills of color 3 and |αu|uuddu = i equals the number of

paths in MP(2)
n (k) with i ud’s (peaks), for all n, k, i ∈ N.

As a special case, setting i = 0, we obtain the peakless 2-Motzkin prefixes ending at height k.

6. From pairs of noncrossing paths to 2-colored Motzkin
prefixes

A pair (P,Q) ∈ W(0) \ {(ε, ε)} is decomposed according to the first reunion point of P,Q (a lattice point where
the two paths meet after taking a step) as

(uP ′, uQ′) or (dP ′, dQ′) or (dP ′uP ′′, uQ′dQ′′), where (P ′, Q′), (P ′′, Q′′) ∈ W(0).

The first two cases occur whenever P and Q start with a joint step, so that their remaining parts P ′ and Q′

clearly form a pair in W(0). The third case occurs whenever the initial step is not a joint step so that P must
start with a d and Q with a u (since P ≤ Q) and the paths must meet again, at their first reunion point, with an
up-step for P and a down-step for Q. If dP ′u and uQ′d are their initial parts until their first reunion point, then
dP ′ and uQ′ have no reunion points and the distance between their ending points is 2, so that (P ′, Q′) ∈ W(0).
Obviously, the remaining parts P ′′ and Q′′ also form a pair in W(0).

Furthermore, a pair (P,Q) ∈ W \W(0) is decomposed uniquely with respect to the last reunion point as

(P ′dP ′′′, Q′uQ′′′), where (P ′, Q′) ∈ W(0), (P ′′′, Q′′′) ∈ W.

Here, P ′ and Q′ are the initial parts of P and Q until their last reunion point (these parts are empty if and only
if no reunion point exists). The remaining parts dP ′′′ and uQ′′′ have no common point so that (P ′′′, Q′′′) ∈ W.
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Then, ψ :W →MP(2) is defined recursively, based on the decompositions of the two sets, as (see Fig. 5)

ψ(ε, ε) = ε, ψ(uP ′, uQ′) = h1ψ(P ′, Q′), ψ(dP ′, dQ′) = h2ψ(P ′, Q′),

ψ(dP ′uP ′′, uQ′dQ′′) = uψ(P ′, Q′)dψ(P ′′, Q′′), ψ(P ′dP ′′′, Q′uQ′′′) = ψ(P ′, Q′)uψ(P ′′′, Q′′′),
(8)

where (P ′, Q′), (P ′′, Q′′) ∈ W(0), (P ′′′, Q′′′) ∈ W.

(P,Q) ∈ W ←→ ψ(P,Q) ∈ MP(2)

(ε, ε) ←→ ε

b

b

bQ′

P ′
←→

ψ(P ′, Q′)

h1

b

b

bQ′

P ′
←→

ψ(P ′, Q′)

h2

b

b

b

b

b

b

bQ′ Q′′

P ′

P ′′ ←→

ψ(P ′, Q′)
ψ(P ′′, Q′′)

b

b

b

b

b

b

Q′

P ′

Q′′′

P ′′′

←→
ψ(P ′, Q′)

ψ(P ′′′, Q′′′)

Figure 5: The bijection ψ :W →MP(2).

Using the recursive definition of ψ, it is easy to prove inductively that ψ is a bijection having the following
properties:

i) |ψ(P,Q)| = |P |.

ii) The restriction of ψ on W(0) is a bijection onto M(2), showing that |Wn(0)| = |M(2)
n |.

iii) The restriction of ψ on W(h) is a bijection onto MP(2)(h).

iv) Joint u’s of (P,Q) correspond to h1’s at height 0 of ψ(P,Q).

v) Joint d’s of (P,Q) correspond to h2’s at height 0 of ψ(P,Q).

vi) ψ maps (u, u)’s to h1’s, (d, d)’s to h2’s, (d, u)’s to u’s and (u, d)’s to d’s.

Remarks

• The last property implies that ψ has a simple non-recursive description consisting of a single step:

(ψ1) Read the pairs of steps of the pair (P,Q) and transform (u, u)’s into h1’s, (d, d)’s into h2’s, (d, u)’s
into u’s and (u, d)’s into d’s.

• The restriction of ψ on W(0) coincides with the bijection given by Deutsch and Shapiro [5].

• The mapping ψ−1 ◦ ϕ3 : D(3) →W is a bijection verifying that |D(3)
n | = |Wn|.

7. From pairs of noncrossing paths to Dyck paths with
3-colored hills

Combining the steps of φ, χ and ψ, we define a bijection ω :W → D(3) with a simple description of three steps:

ECA 2:2 (2022) Article #S2R15 9



Kostas Manes and Ioannis Tasoulas

(ω1) Each (u, u) is replaced by ud, each (d, d) by du, each (d, u) by uu and each (u, d) by dd.

(ω2) Then, the uu’s starting with an unmatched u at even height are replaced by H3’s. (A u step of a path is
unmatched if the path contains no d step at the same height with this u step and to its right.)

(ω3) Finally, each du at height −1 is turned into an H2.

The first step (ω1) combines the steps (ψ1) of ψ and (χ1) of χ: At first, the step (ψ1) is applied and the

pair (P,Q) ∈ Wn(h) is transformed into a 2-Motzkin prefix α ∈MP(2)
n (h) of the form

α = α0uα1 · · ·uαh, α0, . . . , αh ∈M(2), |α0|+ · · ·+ |αh| = n− h,

and then (χ1) is applied to α so that each αi, 0 ≤ i ≤ h, is transformed to a path βi ∈ D−, whereas the u’s
between the αi’s become uu’s. Thus, the result of step (ω1) is a path

β = β0uuβ1 · · ·uuβh, β0, . . . , βh ∈ D−, |β0|+ · · ·+ |βh| = 2(n− h),

ending at height 2h. The uu’s between the βi’s are exactly the uu’s of β starting with an unmatched u at even
height, so that they are clearly distinguishable (occurrences of uu starting with an unmatched u inside some
βi can only occur at heights −1, 1, 3, . . .). The second step (ω2) replaces these uu’s by H3’s to obtain a path
β′ = β0H3β1 · · ·H3βh and the last step (ω3) transforms each βi into a path in D(2), so that β′ is transformed

into a path in D(3)
n with h H3’s. The whole procedure is clearly reversible so that ω is a bijection.

A detailed example for bijection ω is given in Fig. 6. It is easy to check that the resulting path α =

ω(P,Q) ∈ D(3)
18 of Fig. 6 is mapped via ψ−1 ◦ ϕ3 to a pair of noncrossing paths other than (P,Q), which shows

that ω 6= ϕ−13 ◦ ψ.

P

Q

(ω1) ↓

(ω2) ↓

H3 H3 H1

(ω3) ↓

H3 H3H2 H2 H2 H1

Figure 6: The bijection ω :W → D(3) mapping a pair (P,Q) ∈ W18(h) to a path α ∈ D(3)
18 with h H3’s, where

h = 2. After the application of step (ω1), the uu’s starting with an unmatched u at even height are drawn with
a thicker line.

Remark The restriction of ω on W(0) is the bijection φ−1 ◦ χ ◦ ψ :W(0)→ D(2), described by omitting step
(ω2).
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