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Abstract: Jeĺınek, Mansour, and Shattuck studied Wilf-equivalence among pairs of patterns of the form {σ, τ}
where σ is a set partition of size 3 with at least two blocks. They obtained an upper bound for the number
of Wilf-equivalence classes for such pairs. We show that their upper bound is the exact number of equivalence
classes, thus solving a problem posed by them.
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1. Introduction

For any n ≥ 1, a partition of [n] = {1, . . . , n} is a collection of disjoint nonempty subsets of [n] whose union is
[n]. The most common method of representing a set partition given by {B1, B2, . . . , Bk} is to write the blocks
as

B1/B2/ · · · /Bk.

The usual convention followed is to order the blocks such that

min(B1) < min(B2) < · · · < min(Bk).

Sometimes it is also convenient, when it does not cause confusion, to write the elements of each block without
braces or commas. For example, the partition {{1, 3, 4}, {2, 6}, {5, 7, 8}} of [8] is written as {1, 3, 4}/{2, 6}/{5, 7, 8}
or 134/26/578.

A partition B1/B2/ · · · /Bk of [n] such that min(B1) < min(B2) < · · · < min(Bk) can be represented by the
sequence a1a2 · · · an where ai = j if i ∈ Bj . This sequence is called the restricted growth function associated
with the partition. For example, the partition 134/26/578 has a corresponding sequence 12113233. For more
on restricted growth functions, the interested reader is referred to Sagan’s paper [7, Section 4]. Henceforth, we
will represent partitions using restricted growth functions. The following definition of pattern avoidance in set
partitions was first introduced by Sagan [7].

Definition 1.1. A partition σ = σ1σ2 · · ·σn contains a partition (or pattern) π = π1π2 · · ·πm if there exists a
subsequence 1 ≤ h(1) < h(2) < · · · < h(m) ≤ n such that for any i, j ∈ [m], σh(i) = σh(j) if and only if πi = πj
and σh(i) < σh(j) if and only if πi < πj. If σ does not contain π, we say that σ avoids the pattern π.

The topic of pattern avoidance has been an active area of research in enumerative combinatorics, starting
with Knuth’s work on permutations [6]. The study of pattern avoidance in set partitions was initiated by
Klazar [5]. Since then, several different notions of pattern avoidance of set partitions have been studied (see,
e.g., the work of Chen et al. [2], Goyt [3], or Bloom and Elizalde [1]).

Let T be a set of patterns. We will denote the set of partitions of [n] that avoid all the patterns of T as
Pn(T ) and the number of such partitions, i.e., |Pn(T )| as pn(T ).

Definition 1.2. Two sets of patterns T and R are said to be Wilf-equivalent, written as T ∼ R, if pn(T ) = pn(R)
for all n ≥ 1.
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For example, Pn({123}) is the set of partitions of [n] with at most two blocks and Pn({122}) is the set of
partitions where any block not containing 1 is a singleton. Hence we get {123} ∼ {122} since pn({123}) =
pn({122}) = 2n−1 for all n ≥ 1.

In this article, our focus will be on pairs of patterns {σ, τ}, where σ is a pattern of size 3 with at least 2
blocks. Such pairs are called (3, k)-pairs when the size of τ is k. Jeĺınek, Mansour, and Shattuck [4] studied such
pairs and obtained an upper bound for the number of Wilf-equivalence classes of (3, k)-pairs. This was done by
describing various Wilf-equivalences among (3, k)-pairs. They also showed that any other Wilf-equivalences, if
they exist, are between (3, k)-pairs of the form {112, τ} and left open the following problem.

Problem ( [4, Problem 2.17]). Are there any more equivalences among the (3, k)-pairs of the form {112, τ}
other than those that we know about? Equivalently, are there any two distinct 2-free integer partitions that are
d∼-equivalent (see Definition 2.3)?

The main aim of this article is to answer this question. In Section 2, we describe the results obtained
by Jeĺınek, Mansour, and Shattuck [4], and show how the second question is equivalent to the first in the
above problem. In Section 3, we answer this equivalent question and hence prove that there are no other
Wilf-equivalences among (3, k)-pairs other than the ones described by Jeĺınek, Mansour, and Shattuck in [4].

2. Wilf-equivalences among (3, k)-pairs

In this section, we will state the Wilf-equivalences between (3, k)-pairs derived by Jeĺınek, Mansour, and Shattuck
[4].

Note that if we are studying Pn(T ) where T = {τ1, τ2, . . .}, we can assume that τi avoids τj for all i 6= j.
For example, when avoiding a (3, k)-pair {121, τ}, we can assume that τ avoids 121. It can be shown that if the
number of blocks and size of each block is specified, there is a unique partition that avoids 121. Namely, if a
partition has m blocks such that the ith block has ai elements for all i ∈ [m], the unique such partition avoiding
121 is 1a12a2 · · ·mam . Here, ka represents a consecutive copies of k.

Definition 2.1. A composition of a positive integer n is a sequence (a1, a2, . . . , am) such that a1+ · · ·+am = n.
The set of compositions of n is denoted as Cn.

For example, C3 = {(1, 1, 1), (1, 2), (2, 1), (3)}. The above discussion implies that Pn({121}) is in bijection
with Cn. The partition avoiding 121 associated to the composition a = (a1, . . . , am) is

τ121(a) = 1a12a2 · · ·mam .

It can be shown that the partitions of the form τ121(b) that contains τ121(a) are those where b has a subsequence,
having the same length as a, such that each term in the subsequence has a value at least that of the corresponding
term in a.

Definition 2.2. The composition b = (b1, . . . , bk) is said to dominate the composition a = (a1, . . . , am) if there
exists a subsequence 1 ≤ i(1) < i(2) < · · · < i(m) ≤ k such that bi(j) ≥ aj for all j ∈ [m]. Such a subsequence is
called an occurrence of a in b. For any positive integer n, Dn(a) will denote the set of compositions of n that
dominate a.

Hence, we get that Pn({121, τ121(a)}) = {τ121(b) | b ∈ Cn \Dn(a)}. We now describe the Wilf-equivalences
among (3, k)-pairs of the form {121, τ121(a)}. From the description of Pn({121, τ121(a)}), it is clear that
{121, τ121(a)} ∼ {121, τ121(a′)} if and only if |Dn(a)| = |Dn(a′)| for all n ≥ 1. Hence we make the follow-
ing definition.

Definition 2.3. For two compositions a and a′, we say a and a′ are dominating equivalent, written as a
d∼ a′,

if for all positive integers n, |Dn(a)| = |Dn(a′)|.

Therefore, {121, τ121(a)} ∼ {121, τ121(a′)} if and only if a
d∼ a′. Using similar ideas it can also be shown

that Pn({112}) is in bijection with compositions of n, where to a composition a = (a1, . . . , am) we associate the
partition

τ112(a) = 12 · · · (m− 1)mmam−1 · · · 2a2−11a1−1.

Also, Pn({112, τ112(a)}) = {τ112(b) | b ∈ Cn \Dn(a)} and {112, τ112(a)} ∼ {112, τ112(a′)} if and only if a
d∼ a′.

Using that fact that pk(σ) = 2k−1 for all patterns σ of size 3 other than 111 (see [7, Theorem 4.3] for details),
we get that if k < k′ then there are 2k−1 partitions of size k avoiding a (3, k′)-pair but only 2k−1 − 1 partitions
of size k avoiding a (3, k)-pair. Hence, no (3, k)-pair can be Wilf-equivalent to a (3, k′)-pair where k 6= k′.

A detailed discussion of the above facts can be found in the paper of Jeĺınek, Mansour, and Shattuck [4].
In fact, they also showed that all except one Wilf-equivalence class of (3, k)-pairs correspond to dominating
equivalence classes of Ck.
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1. The Wilf-equivalence class corresponding to the dominating equivalence class E containing (1, . . . , 1)
consists of the following pairs:

(a) {121, τ121(a)} where a ∈ E,

(b) {112, τ112(a)} where a ∈ E,

(c) {122, τ} where τ ∈ Pk({122}), and

(d) {123, τ ′} where τ ′ 6= 1k.

2. The Wilf-equivalence class corresponding to a dominating equivalence class E not containing (1, . . . , 1)
consists of the following pairs:

(a) {121, τ121(a)} where a ∈ E, and

(b) {112, τ112(a)} where a ∈ E.

3. The pair {123, 1k} is not Wilf-equivalent to any other (3, k)-pair.

Hence, if we denote the number of dominating equivalence classes in Ck as ξk, we get that (3, k)-pairs split
up into 1 + ξk Wilf-equivalence classes. Hence, we now shift our focus to the dominating equivalence among
compositions.

3. Dominating equivalence

We first recall a few results from the paper of Jeĺınek, Mansour, and Shattuck [4].

Lemma 3.1 ( [4, Lemma 2.3]). If a = (a1, . . . , am) and a′ = (aσ(1), . . . , aσ(m)) where σ is a permutation of

[m], then a
d∼ a′.

Lemma 3.2 ( [4, Lemma 2.4]). If a = (a1, . . . , am−1, 2) and a′ = (a1, . . . , am−1, 1, 1), then a
d∼ a′.

These lemmas imply that to each composition we can associate a unique 2-free integer partition which is
dominating equivalent to it. This is done by first rearranging the terms in decreasing order and then replacing
each 2 in the composition with two 1s.

Example 3.1. The composition (3, 2, 5, 1, 1, 3) is converted to the associated unique 2-free integer partition as
follows:

(3, 2, 5, 1, 1, 3)
d∼ (5, 3, 3, 2, 1, 1)

d∼ (5, 3, 3, 1, 1, 1, 1).

Hence, any two compositions that correspond to the same 2-free integer partition are dominating equivalent.
We will now show that the converse is true as well, which was conjectured by Jeĺınek, Mansour, and Shattuck [4].

Theorem 3.1. Two compositions a and a′ are dominating equivalent if and only if they correspond to the same
2-free integer partition.

The above theorem implies that ξk, i.e., the number of dominating equivalence classes in Ck, is p(k)−p(k−2),
where for any n ≥ 1, p(n) is the number of integer partitions of n. The sequence (ξk)k≥0 is listed in the OEIS [8]
as A027336. Hence the number of Wilf-equivalences classes of (3, k)-pairs is p(k)− p(k − 2) + 1.

To prove the theorem, we first need a few lemmas and definitions.

Lemma 3.3. If a
d∼ a′ for two compositions a and a′ of m and n respectively, then m = n.

Proof. Suppose to the contrary that m and n are distinct. Without loss of generality, we assume m < n. Then

Dm(a) = {a} whereas Dm(a′) is an empty set. This contradicts the fact that a
d∼ a′ and hence proves our

lemma.

Definition 3.1. The composition b = (b1, . . . , bk) is said to h-dominate the composition a if b dominates a and
either k = 1 or (b1, . . . , bk−1) does not dominate a. For any positive integer n, Dh

n(a) is the set of compositions

of n that h-dominate a. We say a and a′ are h-dominating equivalent, written as a
h∼ a′, if for all positive

integers n, |Dh
n(a)| = |Dh

n(a′)|.

We will now show that dominating equivalence is the same as h-dominating equivalence. Before doing
so, we set up some notations. Let c = (c1, . . . , ck) and c′ = (c′1, . . . , c

′
k′) be compositions. We will denote

the composition (c1, . . . , ck, c
′
1, . . . , c

′
k′) by (c, c′). Similarly, for any positive integer s, denote the composition

(c1, . . . , ck, s) by (c, s).
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Lemma 3.4. For any two compositions a and a′, a
d∼ a′ if and only if a

h∼ a′.
Proof. Note that for any composition a,

Dn(a) = Dh
n(a) t

n−1⊔
i=1

{(c, c′) | c ∈ Dh
i (a), c′ ∈ Cn−i}. (1)

This is obtained by finding, for each b = (b1, . . . , bk) ∈ Dn(a), the least j ∈ [k] such that (b1, . . . , bj) dominates
a. This element b of Dn(a) belongs to exactly one of the n sets on the right side. If j = k, then b ∈ Dh

n(a) or
else b ∈ {(c, c′) | c ∈ Dh

i (a), c′ ∈ Cn−i} where i = b1 + · · ·+ bj .

Suppose a
h∼ a′. The equality (1) implies that for all positive integers n,

|Dn(a)| = |Dh
n(a)| +

n−1∑
i=1

|Dh
i (a)| · |Cn−i|

= |Dh
n(a′)| +

n−1∑
i=1

|Dh
i (a′)| · |Cn−i|

= |Dn(a′)|.

Hence we get a
d∼ a′.

Conversely, suppose a
d∼ a′. We will prove |Dh

n(a)| = |Dh
n(a′)| for all n ≥ 1 by induction on n. We have

|Dh
1 (a)| = |D1(a)| = |D1(a′)| = |Dh

1 (a′)|. Let n ≥ 2 and |Dh
k (a)| = |Dh

k (a′)| for all k < n. Using (1), we get

|Dh
n(a)| = |Dn(a)| −

n−1∑
i=1

|Dh
i (a)| · |Cn−i|

= |Dn(a′)| −
n−1∑
i=1

|Dh
i (a′)| · |Cn−i|

= |Dh
n(a′)|.

Hence we get a
h∼ a′, which completes the proof of the lemma.

Lemma 3.5. If a and a′ are two compositions and s is a positive integer such that (a, s)
h∼ (a′, s), then we have

a
h∼ a′.

Proof. Let a be a composition and s be a positive integer. Let Ck,s denote those compositions of k of the form
(c1, . . . , cm) where ci < s for all i ∈ [m− 1] and cm ≥ s. Note that

Dh
n((a, s)) =

n−1⊔
i=1

{(c, c′) | c ∈ Dh
i (a), c′ ∈ Cn−i,s}. (2)

This is obtained by finding, for each b = (b1, . . . , bm) ∈ Dh
n((a, s)), the least j ∈ [m] such that (b1, . . . , bj)

dominates a. Since b ∈ Dh
n((a, s)), this would mean that bj+1, . . . , bm−1 are all strictly less than s and bm ≥ s.

Note that |Ci,s| = 0 for all i < s and that |Cs,s| = 1. Hence an implication of the equality (2) is that for any
positive integer n,

|Dh
n+s((a, s))| = |Dh

n(a)|+
n+s−1∑
i=s+1

|Dh
n+s−i(a)| · |Ci,s|. (3)

Let a′ be a composition such that (a, s)
h∼ (a′, s). We will prove |Dh

n(a)| = |Dh
n(a′)| for all n ≥ 1 by induction

on n. If |Dh
1 (a)| 6= |Dh

1 (a′)|, we would have exactly one of a or a′ being the composition of 1. This would mean
(a, s) and (a′, s) are compositions of different numbers, which contradicts Lemma 3.3 (since Lemma 3.4 implies

that (a, s)
d∼ (a′, s)). Let n ≥ 2 and |Dh

k (a)| = |Dh
k (a′)| for all k < n. From (3), we get

|Dh
n(a)| = |Dh

n+s((a, s))| −
n+s−1∑
i=s+1

|Dh
n+s−i(a)| · |Ci,s|

= |Dh
n+s((a

′, s))| −
n+s−1∑
i=s+1

|Dh
n+s−i(a

′)| · |Ci,s|

= |Dh
n(a′)|.

Hence we get a
h∼ a′, which completes the proof of the lemma.
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Corollary 3.1. If a and a′ are two compositions and s is a positive integer such that (a, s)
d∼ (a′, s), then we

have a
d∼ a′.

Proof. Combine Lemma 3.4 and Lemma 3.5.

We can now prove our main theorem.

Proof of Theorem 3.1. We have to show that if a and b are two compositions such that a
d∼ b, then they

correspond to the same 2-free integer partition. By Lemma 3.3, such a and b are compositions of the same
number n. We will prove the theorem by induction on n, the case n = 1 being trivial. Let n ≥ 2 and suppose

the statement is true for all numbers less than n. Suppose a
d∼ b are two compositions of n. Using Lemma 3.1

and Lemma 3.2, we can assume that a1 ≥ · · · ≥ am and am−1 ≥ 2 and similarly that b1 ≥ · · · ≥ bk and bk−1 ≥ 2
(this can be done by reordering the terms in decreasing order and then changing any pair of 1’s to a 2).

We will now compute |Dn+1(a)|. If am ≥ 2, we get |Dn+1(a)| = 2m + 1. This is because any composition
in Dn+1(a) is obtained by either

1. inserting the term 1 before a1, between ai and ai+1 for some i ∈ [m− 1], or after am, or

2. adding 1 to some term of a.

Since all terms of a are greater than 1 in this case, each method of obtaining a composition of Dn+1(a) described
above results in a different composition.

When am = 1, using the same logic as above but noting that adding 1 before am and adding 1 after am
both result in the same composition, we get |Dn+1(a)| = 2m.

Using similar arguments for b and since we must have |Dn+1(a)| = |Dn+1(b)|, we get k = m, i.e., a and b
have the same number of terms.

Note that if we show am = bm, Lemma 3.5 and the induction hypothesis would imply that a and b have the
same corresponding 2-free integer partition. On the contrary, let am 6= bm. Without loss of generality we can
assume that am < bm. We will show that this implies that |Dn+am(a)| < |Dn+am(b)|, which is a contradiction

to a
d∼ b.

A constructive pair is a pair (c, P ) where c = (c1, . . . , cl) is a composition of am and P is a sequence that
consists of the numbers 1, 2, . . . , l in order and m boxes such that each box contains at most one of the numbers.
To each such pair (c, P ) we associate the composition in Dn+am(b) obtained by replacing each unboxed number
i in the sequence P by ci and the jth box by bj if it is empty and by bj + ci if it contains the number i. We will
call this composition b(c, P ).

Example 3.2. Suppose b = (8, 6, 6, 5), am = 4, c = (1, 2, 1), and P = 1 2 2 3 2 2 . Then the composition
b(c, P ) is (1, 8, 8, 1, 6, 5).

The construction of b(c, P ) from b be thought of visually as follows: Think of any composition as towers of
boxes. The boxes in the sequence P can be thought of as the top view of b and the number i indicates where to
add ci boxes to b. The construction in the example is shown in Figure 1.

(c,P )−−−→

(PbP )

c1

c2

c3

b(c, P )

Figure 1: Construction corresponding to the constructive pair given in Example 3.2

Using any occurrence of b in a composition b′ in Dn+am(b), we can obtain a constructive pair (c, P ) such
that b(c, P ) = b′. This is done as follows: Suppose b′ = (b′1, . . . , b

′
p) is a composition in Dn+am(b) and 1 ≤

i(1) < i(2) < · · · < i(m) ≤ p is an occurrence of b. Construct P from b′ by first replacing b′j by a ball if
j /∈ {i(1), . . . , i(m)}. Then for any j ∈ [m], replace b′i(j) by an empty box if b′i(j) = bj and by a box containing

a ball if b′i(j) > bj . Suppose there are l balls in P , we replace them by the numbers 1, . . . , l in order. Now for

each i ∈ [l],
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1. set ci as b′j if i is an unboxed number and the jth term in P , and

2. set ci as b′i(j) − bj if i is a boxed number and the i(j)th term of P .

The above procedure might be more clear when compositions are thought of as towers of boxes. For example,
in Figure 1, if the black boxes in b(c, P ) are used as the occurrence of b in the above procedure, we obtain the
constructive pair (c, P ) of Example 3.2.

It is clear that if b′ = b(c, P ) for some constructive pair (c, P ), then there is a canonical occurrence of b
in b′ formed using the original copy of b to which terms were added in the construction. Using this canonical
occurrence in the above procedure we can get back the original constructive pair (c, P ). However, since b has
all terms strictly greater than am, there is a unique occurrence of b in any composition b′ in Dn+am(b). Hence,
there is a unique constructive pair (c, P ) such that b(c, P ) = b′ for any composition b′ of Dn+am(b). Therefore,
the set Dn+am(b) is in bijection with the set of constructive pairs.

Since a also has m terms, the same method can be used to associate a composition in Dn+am(a) to a
constructive pair (c, P ), and we call this composition a(c, P ). Just as for b, any composition a′ ∈ Dn+am(a)
can be obtained from a using a constructive pair. However, a((am), P1) = a((am), P2) where P1 has 1 between
the (m − 1)th and mth box and P2 has 1 after the mth box. Hence we get |Dn+am(a)| < |Dn+am(b)|, which
completes the proof.
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