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Carla Savage completed her bachelor’s degree studies at Case
Western Reserve University in 1973 and her master’s stud-
ies at the University of Illinois, Urbana-Champaign in 1975.
She obtained a Ph.D. from the University of Illinois at Ur-
bana–Champaign in 1977, under the supervision of David E.
Muller. She is a Professor in the Department of Computer
Science at North Carolina State University. Since 2012, she
is a Fellow of the AMS. In 2019, she became a SIAM Fellow
”for outstanding research in algorithms of discrete mathematics
and computer science applications, alongside exemplary service
to mathematics.” Her research interests include Combinatorics;
enumeration and structure in combinatorial families; theory of
partitions; linear Diophantine enumeration; lattice point enu-
meration; permutation statistics; the combinatorics, geometry,
and number theory of lecture hall partitions. Professor Savage

has given numerous invited talks in conferences and seminars. From 2013 up to the end of
January this year, she was the secretary of the American Mathematical Society.

Mansour: Professor Savage, first of all, we
would like to thank you for accepting this in-
terview. Would you tell us broadly what com-
binatorics is?
Savage: To me, it is the study of enumeration
and structure in discrete families.
Mansour: What do you think about the de-
velopment of the relations between combina-
torics and the rest of mathematics?
Savage: I have been most aware of relations
between combinatorics and theoretical com-
puter science. Since the early seventies, the
areas have grown up together, each challeng-
ing the other with intriguing problems. Some
of the most recognized leaders in combinatorics
have had a strong interest in computation.
Mansour: What have been some of the main
goals of your research?
Savage: When I turned my attention to com-
binatorics, I learned of so many interesting
open questions. I was always thinking, “What

can I compute that would give insight into the
solution of a problem, that would help a math-
ematician solve the problem?”

Mansour: We would like to ask you about
your formative years. What were your early
experiences with mathematics? Did that hap-
pen under the influence of your family or some
other people?

Savage: I went to public school in Baltimore
County, Maryland. We could take advanced
courses in many areas, for instance, mathe-
matics, physics, and french. Amazing teach-
ers. Small classes with students who were mo-
tivated, competitive, fun.

Mansour: Were there specific problems that
made you first interested in combinatorics?

Savage: I attended the 1988 SIAM Confer-
ence on Discrete Mathematics in San Franciso
for the chance to hear Donald Knuth speak.
But I also went to Herb Wilf’s talk there on
Gray codes and was intrigued by some of his
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questions. For example, is it possible to list all
partitions of an integer n, each exactly once,
so that, in moving from one partition to the
next, one part of the partition increases by 1
and one part decreases by 1? In working that
out, I fell in love with integer partitions. That
changed everything.
Mansour: What was the reason you chose the
University of Illinois at Urbana–Champaign for
your Ph.D. and your advisor David E. Muller?
Savage: My husband and I were looking
at schools with strong graduate programs in
mathematics and physics. UIUC suited us
both well. I had interests in electrical engineer-
ing and computer science as well as mathemat-
ics, things like coding theory, switching the-
ory, fault-tolerant computing, automata the-
ory, formal languages, algorithms, graph the-
ory, and complexity theory. David Muller was
a mathematician who thought very abstractly
about problems in computer science, so I was
happy that he was willing to take me on. He
is the “Muller” of Reed-Muller codes.
Mansour: What was the problem you worked
on in your thesis?
Savage: I worked on the design of parallel
algorithms for graph problems. By the mid-
seventies, parallel computers were already be-
ing imagined, designed, and built: the Illiac
IV, STARAN, CRAY. On the horizon were
machines like the Intel Hypercube, the Con-
nection Machine. And there were a variety
of models of parallel computation. One of
those models, the PRAM (parallel random-
access machine) assumed that an unlimited,
but finite, number of processors could work in
sync, with random access to a common mem-
ory, just about the best you hope for. What
speedup could be achieved with such a model?
It turns out that many problems that can be
solved in polynomial time O(nk) on a sequen-
tial computer can be solved in poly-logarithmic
O((log n)k) time on a PRAM with a polyno-
mial number of processors.

This work was coming after a decade of
great strides in the design of efficient sequential
graph algorithms by John Hopcroft, Robert
Tarjan, and others. However, one of their most
powerful tools - depth-first search - seems to be

inherently sequential. So other methods had to
be developed for the PRAM.
Mansour: What would guide you in your re-
search? A general theoretical question or a
specific problem?
Savage: Usually, a specific problem. It is fun
to learn something new if it might help to solve
your problem.
Mansour: When you are working on a prob-
lem, do you feel that something is true even
before you have the proof?
Savage: All the time, but I am often wrong.
Mansour: What three results do you consider
the most influential in combinatorics during
the last thirty years?
Savage: Here are some things in my realm of
interest:
(1) Middle levels problem. Consider the lat-
tice of subsets of a 2k + 1-element set ordered
by inclusion. Is there a Hamiltonian cycle
in the bipartite graph formed by the k- and
k + 1-element subsets? So easy to state, but
many people spent a lot of time on this prob-
lem without solving it. Finally in a 2016 pa-
per published in Proc. London Math. Soc.,
Torsten Mütze1 showed constructively that it
is always possible. In the years since, progress
has been made on several related questions. It
has led to a consolidation of ad hoc techniques
for Gray codes and simplifications of previous
algorithms.
(2) Four color theorem. More than thirty years
ago, I know, but this was happening while I
was a graduate student at Illinois, home of
Kenneth Appel and Wolfgang Haken2, and it
was pretty exciting. It influenced so much of
the work of the past forty years, on graph
minors and the structure of graphs and, cor-
respondingly, on the design of efficient algo-
rithms for special classes of graphs.
(3) Barvinok’s algorithm3 for lattice point enu-
meration. In 1994, Alexander Barvinok gave
the first polynomial-time algorithm for count-
ing the number of lattice points in a convex
polyhedron in any fixed dimension d. The al-
gorithm is polynomial in the dimension d and
the size of the problem. This led to the de-
velopment of software for efficient lattice point
enumeration such as LattE and its successors.

1T. Mütze, Proof of the middle levels conjecture, Proc. Lond. Math. Soc. (3) 112 (2016), no. 4, 677–713.
2K. Appel and W. Haken, A proof of the four color theorem, Discrete Math. 16 (1976), no. 2, 179–180.
3A. Barvinok, Polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed, Math. Oper.

Res. 19 (1994), 769–779.
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Mansour: What are the top three open ques-
tions in your list?

Savage: (1) Does L(m,n) have a symmetric
chain decomposition? L(m,n) is the lattice of
integer partitions whose Ferrers diagrams fit
in an m × n box, ordered by diagram inclu-
sion. In 1980, Richard Stanley4 proved that
L(m,n) is rank symmetric and unimodal and
conjectured that it had the stronger property
of possessing a decomposition into symmetric
chains. The question of a symmetric chain de-
composition when m ≥ 5 remains open at this
time, although Kathy O’Hara5 gave an elegant
combinatorial proof of unimodality of L(m,n)
in 1990.

(2) Is the Durfee polynomial real-rooted? The
Durfee polynomial is defined by Dn(x) =∑

i≥0 p(n, d)xd where p(n, d) is the number of
partitions of n with Durfee square of size d.
With Rod Canfield and Sylvie Corteel6 in 1998
we showed that, as n tends to infinity, the
sequence of coefficients of Dn(x) is asymp-
totically normal, unimodal, and log-concave.
However, empirical evidence led us to conjec-
ture that Dn(x) has only real roots for all pos-
itive n, a stronger property which would also
imply that the average size and most likely size
of the Durfee square of a partition of n differ
by at most 1.

(3) Do simple symmetric n-Venn diagrams ex-
ist for all prime n? With Jerry Griggs and
Chip Killian7, we showed in 2004 that rota-
tionally symmetric Venn diagrams for n sets
(like the familiar one for three sets) exist for
all prime n. But there may be points where
3 or more of the n curves intersect. Can the
same result be achieved with simple Venn di-
agrams in which at most two curves intersect
at a point? This was known to be possible
for n = 1, 2, 3, 5, 7 and more recently, thanks
to Khalegh Mamakani and Frank Ruskey8, for
n = 11, 13.

Mansour: Do you think that there are core or
mainstream areas in mathematics? Are some
topics more important than others?

Savage: For many years the AMS Steele

Prize for Seminal Contribution to Research
was given in five “core” areas of mathematics,
with the prize being awarded in one area each
year on a five-year cycle. A few years ago, the
five core areas were redefined to better cover
research mathematics: Analysis/Probability,
Algebra/Number Theory, Applied Mathemat-
ics, Geometry/Topology, and Discrete Math-
ematics/Logic. In addition, a sixth category
“Open” was included, resulting in a six-year
cycle for the prize. I think this is a recognition
that there are core areas, but that important
research these days may cross boundaries.

Mansour: What do you think about the dis-
tinction between pure and applied mathemat-
ics that some people focus on? Is it mean-
ingful at all in your case? How do you see the
relationship between so-called “pure” and “ap-
plied” mathematics?

Savage: I am probably seen as an applied
mathematician since I have spent my whole
career in a computer science department. But
even within computer science, there are more
theoretical and more applied areas. Both had
important roles to play in the progress of the
last fifty years, thanks to researchers with the
vision to put them together.

Mansour: What advice would you give to
young people thinking about pursuing a re-
search career in mathematics?

Savage: Learn what mathematics is good for.
I do not think my generation did that very well.

Mansour: Would you tell us about your in-
terests besides mathematics?

Savage: Family, film, books, music, nature,
simple pleasures.

Mansour: You have been the Secretary of
the American Mathematical Society for eight
years. Would you tell us about your experi-
ences? How do you manage to balance your
time among research, teaching, and your pro-
fessional service?

Savage: My experience with the AMS has left
me in awe of the tremendous service mathe-
maticians are willing to do for our field. There
are hundreds of volunteers appointed each year

4R. P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic and Discrete Methods
1 (1980), 168–184.

5K. O’Hara, Unimodality of Gaussian coefficients: a constructive proof, J. Comb. Theory, Ser. A 53 (1990), 29–52.
6E.R. Canfield, S. Corteel, and C.D. Savage, Durfee polynomials, Elec. J. Comb. 5 (1998), R32.
7J. Griggs, C. E. Killian, and C. D. Savage, Venn diagrams and symmetric chain decompositions in the boolean lattice, Elec.

J. Comb. 11:1 (2004), #R2.
8K. Mamakani and F. Ruskey, New roses: simple symmetric Venn diagrams with 11 and 13 curves, Discrete Comput. Geom.

52:1 (2014), 71–87.
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to editorial and other AMS committees. I
think it is a challenge for all of us to balance
our time between research, teaching, and pro-
fessional service. As AMS secretary, I was in-
volved in some way with most aspects of the
society: publications, conferences, prizes, com-
mittees, elections. I was in a unique position
to see how the pieces fit together and to work
behind the scenes to help make things happen.
I am grateful to have had that opportunity.
Mansour: You have written an excellent sur-
vey paper on Gray codes titled as A survey
of combinatorial Gray codes9. Would you tell
us about Gray codes and their combinatorial
aspects? There is also a connection between
Gray codes and music theory. Would you ex-
plore more about this connection?
Savage: A Gray code for a combinatorial fam-
ily is a listing of the objects in the family, each
exactly once, in such a way that successive ob-
jects differ only in a prescribed (usually small)
way. For example, the binary reflected Gray
code lists all n-bit strings so that successive
strings differ in only one-bit position. A Gray
code for permutations might list all permuta-
tions of {1, . . . , n} so that successive permuta-
tions differ only by a transposition; there are
many other conditions on successive elements
that one might prescribe. A permutation Gray
code can be interpreted as a score for ringing
n church bells in n! rounds, where each permu-
tation specifies the order in which to ring the
n bells in that round.

A Gray code can be viewed as a Hamilto-
nian path in the graph whose vertices are the
objects in the combinatorial family and where
objects are adjacent if they differ by the pre-
scribed change.

Gray code schemes typically involve decom-
posing a combinatorial structure into smaller
substructures which are then listed recursively.
How to combine the sublists to enforce the
Gray code restriction at the boundaries is the
hard part. Frank Ruskey and his former stu-
dents Joe Sawada and Aaron Williams have
been responsible for (and continue to produce)
some of the most delicately clever Gray code
constructions. Donald Knuth included several
results and open questions about Gray codes
in Volume 4A of The Art of Computer Pro-

gramming.
Mansour: In a very recent short arti-
cle, published at Newsletter of the Euro-
pean Mathematical Society, Professor Melvyn
B. Nathanson10, while elaborating on the
ethical aspects of the question “Who Owns
the Theorem?” concluded that “Mathematical
truths exist, and mathematicians only discover
them.” On the other hand, some people claim
that “mathematical truths are invented,” and
some others claim that it is both invented and
discovered. What do you think about this old
discussion?
Savage: I found Nathanson’s article quite in-
teresting, especially the ethical issues raised.
It reminds me of questions about whether al-
gorithms can be patented - in most cases, they
cannot be, they are considered abstract ideas.
But the software implementation of the algo-
rithm might be.

I think mathematical truths are discovered.
But perhaps, sometimes the questions that
lead to their discovery are invented.
Mansour: Lecture Hall partitions has recently
become an active area of research and you have
some interesting works in this direction. Why
are they important? Do they have some sur-
prising connections with other combinatorial
objects?
Savage: Lecture hall partitions Ln, intro-
duced by Mireille Bousquet-Mèlou and Kimmo
Eriksson11 in 1997, are integer sequences λ =
λ1, . . . , λn satisfying

0 ≤ λ1

1
≤ λ2

2
≤ . . . ≤ λn

n
.

Bousquet-Mèlou and Eriksson showed that∑
λ∈Ln

q
∑n

i=1 λi =
1∏n

j=1(1− q2j−1)
,

a result known as the lecture hall theorem. It
is surprising that these partitions, defined by
the ratio of consecutive parts, would have such
a simple generating function. Moreover, the
right-hand side is the generating function for
partitions into odd parts less than 2n. In fact,
the lecture hall theorem is a new finite version
of Euler’s theorem that the number of parti-
tions of an integer into distinct parts is the
same as the number of its partitions into odd

9C. D. Savage, A survey of combinatorial Gray codes, SIAM Rev. 39:4 (1997), 605–629.
10See https://www.ems-ph.org/journals/newsletter/pdf/2020-12-118.pdf.
11M. Bousquet-Mélou and K. Eriksson, Lecture hall partitions, Ramanujan J. 1:1 (1997), 101–111.
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parts. Bousquet-Mèlou and Eriksson12 also de-

fined s-lecture hall partitions L
(s)
n for nonneg-

ative integer sequences s as sequences λ satis-
fying

0 ≤ λ1

s1

≤ λ2

s2

≤ . . . ≤ λn
sn

and looked for sequences s that would yield in-
teresting enumerative results. As one example,
they showed that if s is defined, for positive
integer `, by sn = `sn−1 − sn−2 with s0 = 0,
s1 = 1, then∑

λ∈L(s)
n

q
∑n

i=1 λi =
1∏n

j=1(1− qsj−1+sj)
.

Since then, many others have looked at aspects
of lecture hall partitions. As I wrote in my
2016 survey paper, The Mathematics of Lec-
ture Hall Partitions13, over the past 25 years
lecture hall partitions have emerged as fun-
damental structures in combinatorics, number
theory, algebra, and geometry, leading to new
generalizations and interpretations of classical
theorems and new results.
Mansour: In joint work with Michael J.
Schuster, Ehrhart series of lecture hall poly-
topes and Eulerian polynomials for inversion
sequences14, you introduced s-lecture hall poly-
topes, s-inversion sequences and studied rele-
vant statistics on both families. What was the
main motivation behind their studies?
Savage: We found earlier15 that the number
of lecture hall partitions λ with λn/n ≤ t is
(t+ 1)n. This suggests a connection with per-
mutations since the Eulerian polynomial En(x)
satisfies∑
t≥0

(t+ 1)nxt =

∑
π∈Sn

xdes(π)

(1− x)n+1
=

En(x)

(1− x)n+1
.

I was first able to explain the connection bijec-
tively in a paper with Katie Bright16 in 2010.
In 2012, with Michael Schuster, we were look-
ing for a generalization for s-lecture hall par-
titions, but that required a way to general-

ize permutations. Mike’s idea was to use s-

inversion sequences I
(s)
n , defined as

I(s)
n = {e ∈ Zn | 0 ≤ ei < si, i = 1, . . . , n}.

A key ingredient to make things work was to

define the ascent statistic over I
(s)
n in the right

way. Position i is an ascent in s-inversion se-
quence e if ei/si < ei+1/si+1. And position 0
is an ascent if 0 < e1. With this definition
we were able to show bijectively that if i

(s)
n (t)

is the number of s-lecture hall partitions with
λn/sn ≤ t, then∑

t≥0

i(s)n (t)xt =

∑
e∈I(s)n

xasc(e)

(1− x)n+1
.

We called the numerator of the right-hand side

the s-Eulerian polynomial E
(s)
n (x) and defined

the s-lecture polytope P
(s)
n as the set of all real

points λ ∈ Rn satisfying

0 ≤ λ1

s1

≤ λ2

s2

≤ . . . ≤ λn
sn
≤ 1.

Then i
(s)
n (t) is the Ehrhart polynomial of the

s-lecture hall polytope. And E
(s)
n is the h∗-

polynomial of the s-lecture hall polytope, as
well as the ascent polynomial of the s-inversion
sequences. Following the bijection allowed us
to define and track several other meaningful
statistics.
Mansour: In joint work with Mirko Vison-
tai, The s-Eulerian polynomials have only real
roots17, you proved a conjecture of Brenti,
showing that Eulerian polynomials for all finite
Coxeter groups have only real roots. Therein,
you also partially settled a conjecture of Dilks,
Petersen, and Stembridge on type-B affine Eu-
lerian polynomials. Further, by extending re-
sults to q-analogs, you have shown that the
MacMahon–Carlitz q-Eulerian polynomial has
only real roots whenever q is a positive real
number, thus confirming a conjecture of Chow
and Gessel. In the end, you provided the argu-
ments of the validity of the results for the case

12M. Bousquet-M èlou and K. Eriksson, Lecture hall partitions. II, Ramanujan J. 1(2) (1997), 165–185.
13C. D. Savage, The mathematics of lecture hall partitions, J. Combin. Theory Ser. A 144 (2016), 443–475.
14C. D. Savage and M. J. Schuster, Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences,

J. Combin. Theory Ser. A 119:4 (2012), 850–870.
15S. Corteel, S. Lee, and C. D. Savage, Enumeration of sequences constrained by the ratio of consecutive parts, S èm. Lothar.

Combin. 54A (2005/07), Article B54Aa.
16K. L. Bright and C. D. Savage, The geometry of lecture hall partitions and quadratic permutation statistics, In 22nd Inter-

national Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), Discrete Math. Theor. Comput. Sci.
Proc., AN, pages 569–580. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2010.

17C. D. Savage and M. Visontai, The s-Eulerian polynomials have only real roots, Trans. Amer. Math. Soc. 367:2 (2015),
1441–1466.

ECA 2:3 (2022) Interview #S3I9 5



Interview with Carla D. Savage

of the hyperoctahedral group and the wreath
product groups, confirming further conjectures
of Chow and Gessel, and Chow and Mansour,
respectively. Would you tell us about the im-
portant ideas behind the proofs?

Savage: Analogous to the way the Eulerian
polynomial is viewed as the descent polyno-
mial of permutations, the s-Eulerian polyno-

mials E
(s)
n (x) are the ascent polynomials of

the s-inversion sequences. There is a bijec-
tion between inversion sequences and permu-
tations that sends ascents to descents. Simi-
larly, we showed there is a bijection between
(2, 4, . . . , 2n)-inversion sequences and signed
permutations that send ascents to descents. So
the s-Eulerian polynomials for s = (1, 2, . . . , n)
and s = (2, 4, . . . , 2n) are, respectively, the
type-A and type-B Eulerian polynomials.

Visontai and I showed that all s-Eulerian
polynomials, and therefore type-A and type-
B, have only real roots. There were two key
ideas involved in the proof. The first was to

use a refinement of E
(s)
n (x), natural for inver-

sion sequences, that could be defined recur-
sively as a sum of smaller such polynomials,
some of which are multiplied by x. The sec-
ond idea was to use the method of “compatible
polynomials” of Maria Chudnovsky and Paul
Seymour18 to show that real rootedness of the
sum followed from the real-rootedness of the
smaller polynomials as long as the factor of x
came in at just the right place (which, luckily,
it does). In a section of his paper Unimodality,
log-concavity, real-rootedness and beyond, Pet-
ter Brändén19 has given a nice explanation of
our method and generalized it to apply more
broadly.

Mansour: What kind of mathematics would
you like to see in the next ten-to-twenty years
as the continuation of your work?

Savage: I think there is more to learn about
lecture hall partitions. Here are a few exam-
ples below of directions since my 2016 survey
paper.

Sylvie Corteel and Jang Soo Kim20 recently

discovered a two-dimensional version, lecture
hall tableaux, with a surprisingly simple prod-
uct form generating function. The generat-
ing function arises as the moment of certain
orthogonal polynomials that Corteel and Kim
were studying.

Petter Brändén and Madeleine Leander21

have a recent paper on lecture hall P -
partitions. I think Brändén and Leander’s
methods could be used to derive Corteel
and Kim’s formula for bounded lecture hall
tableaux, but I haven’t figured out how yet.

Brändén and Liam Solus22 have a recent pa-
per on the algebraic properties of lecture hall
polytopes.

Also, the s-inversion sequences can be
viewed as a combinatorial generalization of
permutations. They can be used to interpret,
refine, and generalize formulas in the same way
that structures such as partitions and permu-
tations might be used. For example, Mirko Vi-
sontai17 and I used them to interpret the type-
A and type-B Eulerian polynomials. More re-
cently, they are being used to re-interpret and
generalize results on pattern avoiding permu-
tations.
Mansour: In a very recent pre-print, Coef-
ficients of the inflated Eulerian polynomials23,
co-authored with Juan S. Auli and Ron Gra-
ham, you proved a conjecture of Pensyl and
Savage by showing that the inflated s-Eulerian
polynomials are unimodal for all choices of pos-
itive integer sequences s. Would you elaborate
on this work and possible future research di-
rections?
Savage: In the same way that s-Eulerian poly-
nomials arise as h∗-polynomials of s-lecture

hall polytopes P
(s)
n , the inflated s-Eulerian

polynomials arise from the rational s-lecture

hall polytopes, Q
(s)
n , consisting of all points

λ ∈ P
(s)
n with λn ≤ 1. Thomas Pensyl and

I showed that the inflated s-Eulerian polyno-
mial24 has the explicit expression

Q(s)
n (x) =

∑
e=(e1,...,en)∈I(s)n

xsnasc(e)−en .

18M. Chudnovsky and P. Seymour, The roots of the independence polynomial of a clawfree graph, J. Combin. Theory Ser. B
97:3 (2007), 350–357.

19P. Brändén, Unimodality, log-concavity, real-rootedness and beyond, Handbook of enumerative combinatorics, 437–483.
20S. Corteel and J. S. Kim, Lecture hall tableaux, Adv. Math. 371 (2020), 107266.
21P. Brändén and M. Leander, Lecture hall P -partitions, J. Comb. 11:2 (2020), 391–412.
22P. Brändén and L. Solus, Some algebraic properties of lecture hall polytopes, Sém. Lothar. Combin. 84B (2020), Article 25.
23J. S. Auli, R. Graham, and C. D. Savage, Coefficients of the inflated Eulerian polynomial, arXiv:1504.01089.
24T. W. Pensyl and C. D. Savage, Rational lecture hall polytopes and inflated Eulerian polynomials, Ramanujan J. 31 (2013),

97–114.
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The coefficients of Q
(s)
n (x) seemed to form a

unimodal sequence for all s, but we could not
prove it.

Later, I saw similar polynomials

Tn(x) =
∑
π∈Sn

xn des(π)−(n−πn)

appearing in a paper by Fan Chung and Ron
Graham25. One of the things Chung and Gra-
ham proved was that Tn(x)/(1 + x + · · · +
xn−1) and Tn−1(x) have the same sequences of
nonzero coefficients. Juan Auli and I found
that this same property held for the inflated
s-Eulerian polynomials when s is nondecreas-
ing and we posted the result to the arXiv.
Ron saw our preprint and said he thought he
could prove the coefficients were unimodal, so
we joined forces, and the paper you mentioned
came to be.
Mansour: It is a fact that not many women
follow a professional career in mathematics. It
is a discussion around the globe on how to
get more women into mathematics. What do
you think about this issue? How do you com-
pare the working conditions for women when
you started your career and nowadays? What
should be done in the next ten years to involve
more women in mathematics?
Savage: As an undergraduate, I went to an en-
gineering school where there were only a hand-
ful of women. All of the students, male and
female, struggled through the same freshman
courses. The feeling of a shared experience
stayed with me through graduate school and
as a faculty member in a relatively new depart-
ment trying to build its research programs.

However, I do not think I would have
had a career in mathematics research with-
out the kindness and encouragement of other
mathematicians. I am especially grateful to
Herb Wilf, Frank Ruskey, George Andrews,
Sylvie Corteel, Donald Knuth, Fan Chung, and
Richard Stanley for support, advice, and some-
times just saying the right thing at the right
time. And there are so many others, may I
keep going? My point here is that we all have a
chance to make a difference - to make a female
(or any) mathematician feel welcome, appreci-
ated, respected.

Mansour: You are a fellow of AMS and
SIAM. Election as a fellow is an honor be-
stowed upon members by their peers as dis-
tinguished for their contributions to the disci-
pline. What do you think about the impor-
tance of being recognized by your fellows?
Savage: It is such a great honor to me. The
recognition carries a lot of weight within my
college. At the same time, it is humbling since
I am well aware of other mathematicians who
are at least as deserving.
Mansour: In your work, you have extensively
used combinatorial reasoning to address im-
portant problems. How do enumerative tech-
niques engage in your research?
Savage: I almost always start out by writing a
little program to generate or count something.
If an enumerative result emerges, I rely on ba-
sic techniques like recursion, generating func-
tions, q-series identities, bijections to prove it.
If that is not good enough, I try to learn what-
ever is required.
Mansour: Would you tell us about your
thought process for the proof of one of your
favorite results? How did you become inter-
ested in that problem? How long did it take
you to figure out a proof? Did you have a “eu-
reka moment”?
Savage: I am more likely to have a eureka
moment when I see a pretty answer emerge - it
lets you know you are finally asking the right
question. Once you “see” the answer, proving
it can be a challenge and require you to learn
new things.

For example, we wondered how many lec-
ture hall partitions15 had Ferrers diagrams that
would fit in an n×nt box. The answer, (t+1)n,
was quite a surprise and led to the discovery
of the connections with Ehrhart theory.

As another example, if, instead of lecture
hall partitions, you enumerate anti-lecture hall
compositions An, i.e., integer sequences λ sat-
isfying

0 ≤ λ1/n ≤ λ2/(n− 1) ≤ . . . ≤ λn/1

you find that26

∑
λ∈An

q
∑n

i=1 λi =
n∏
i=1

1 + qi

1− qi+1
.

25F. Chung and R. Graham, Inversion-descent polynomials for restricted permutations, J. Combin. Theory Ser. A 120:2 (2013),
366–378.

26S. Corteel and C. D. Savage, Anti-lecture hall compositions, Discrete Math. 263(1-3) (2003), 275–280.
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That was another surprise that led us to dis-
cover connections with other q-series identities.

I have gotten “aha” moments during Ira
Gessel’s talks. He explains things so clearly
that I realize I can use his methods for one of
the problems I am working on.
Mansour: Is there a specific problem you
have been working on for many years? What
progress have you made?
Savage: I return to the question of whether
or not the Durfee polynomials Dn(x) =∑

d p(n, d)xd are real-rooted whenever I learn
something that might apply. But maybe their
most interesting property is already settled.
In the 1998 paper with Canfield and Corteel27

where we showed that the coefficients of Dn(x)

are asymptotically normal as n → ∞, we also
showed that the most likely size of the Dur-
fee square for a partition of n is asymptotic to√

6 log 2
π

√
n. This means (as Alexander Yong28

pointed out in his 2014 Notices article) that
your h-index is very likely to be about 0.54
times the square root of your total number of
citations.

Mansour: Professor Carla Savage, I would
like to thank you for this very interesting in-
terview on behalf of the journal Enumerative
Combinatorics and Applications.

Savage: Thank you, Professor Mansour, for
the opportunity and for such interesting ques-
tions.

27E.R. Canfield, S. Corteel, and C.D. Savage, Durfee polynomials, Elec. J. Comb. 5 (1998), R32.
28A. Yong, Critique of Hirsch’s Citation Index: a combinatorial Fermi problem, Notices Amer. Math. Soc. 61 #9 (2014),

1040-1050.
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