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Abstract: The Robinson-Schensted correspondence naturally induces a map from permutations to partitions.
In this work, we study the number of inversions of permutations corresponding to a fixed partition λ under this
map. Hohlweg characterized permutations having shape λ with the minimum number of inversions. Here, we
give the first results in this direction for higher numbers of inversions. We give explicit conjectures for both the
structure and the number of permutations associated with λ where the extra number of inversions is less than
the length of the smallest column of λ. We prove the result when λ has two columns.
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1 Introduction

The Robinson-Schensted (RS) correspondence is a remarkable bijection mapping permutations in Sn to pairs of
standard Young tableaux of the same shape. It was discovered independently by Robinson [13] and Schensted
[14]. This bijection is intimately related to the representation theory of the symmetric group [3, 7], the theory
of symmetric functions [16, Chapter 7], and the theory of partitions [1]. Using this correspondence, one can
associate a partition to any permutation by looking at the shape of either of the tableaux. It is natural to
ask what the relationship of this partition statistic is to other well-studied statistics on permutations. One
well-studied statistic on permutations is the inversion number, i.e., the number of pairs of elements in the
permutation that are out of the natural order. Although it is natural to study the relationship between the
inversion number and the shape of the partition corresponding to a permutation, this seems to be a difficult
problem (see [11,12], for instance), and there has been progress in essentially one special case. As of this writing,
the only results were due to Hohlweg [6], and there had been no further progress on the question. Hohlweg used
the theory of Kazhdan-Lusztig cells to determine the minimum number of inversions of permutations associated
with a shape. Further, he gave a complete characterization for such minimal permutations. Subsequently,
Han [5] gave a combinatorial proof of this result. Hohlweg also showed that these minimal permutations with
shape λ are in bijection with permutations with the maximum number of inversions in the conjugate partition
λ′.

Our main result adapts Han’s proof and extends Hohlweg’s characterization for minimal elements associated
to partitions to elements with larger numbers of inversions in the case of two-column tableaux when the number
of inversions is bounded. Although our result applies to the special case of Young diagrams with two columns, we
note that this is the first development on the problem in over a decade. We conjecture that our characterization
does generalize to more than two columns, although this seems much more difficult to prove using the approach
in this work.

The remainder of the paper is organized as follows. In Section 2 we summarize the relevant background and
state our results. In Section 3 we introduce a combinatorial construction we call a jump partition that we will
use to characterize the minimal permutations and their generalizations. Finally, in Section 4, we will prove the
main result.
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2 Preliminaries and Summary of Results

Let n ∈ N be a positive integer. A vector λ = (λ1, λ2, . . . ) of positive integers is a partition of n (denoted by
λ ` n) if

λ1 ≥ λ2 ≥ · · · > 0 and
∑
i

λi = n.

The size of a partition λ will be denoted by |λ| and the number of non-zero parts in λ, by `(λ). The Young
diagram (or diagram) of a partition λ is a left-justified array of cells with λi cells in the i-th row for each i ≥ 1.
For example, the diagram of the partition (5, 5, 3, 2) is

.

The conjugate of a partition λ, denoted by λ′, is the partition whose diagram is the transpose of the diagram
of λ. A standard Young tableau (SYT or tableau) of shape λ with is a filling of the Young diagram of λ ` n
with entries from [n] := {1, . . . , n} in such a way that the entries are strictly increasing from left to right along
every row as well as from top to bottom along every column. The shape of a tableau T , denoted sh(T ) is the
partition corresponding to the diagram of T . For example,

1 2 4 7 8
3 6 10 12 13

5 9 14

11 15

is a tableau of the diagram above. Note that the elements in the cells of a SYT are distinct integers. Let Tn
denote the set of SYT of size n.

2.1 The Robinson-Schensted Correspondence

The Robinson-Schensted or RS correspondence [13, 14] is a bijection between the set of permutations Sn and
the set of pairs of tableau of size n of the same shape. The definition of the bijection is through a row-insertion
algorithm first defined by Schensted [14] in order to study the longest increasing subsequence of a permutation.
We first review the bijection. Suppose that we have a tableau T . The row-insertion procedure below inserts a
positive integer x that is distinct from all entries of T , into T and results in a tableau denoted by T ← x.

1. Let y be the smallest number larger than x in the first row of T . Replace the cell containing y with x. If
there is no such y, add a cell containing x to the end of the row.

2. If y was removed from the first row, attempt to insert it into the next row by the same procedure as above.
If there is no row to add y to, create a new row with a cell containing y.

3. Repeat this procedure on successive rows until either a number is added to the end of a row or added in
a new row at the bottom.

The RS correspondence from Sn to {(P,Q) ∈ Tn × Tn : sh(P ) = sh(Q)} can now be defined as follows.
Let π ∈ Sn be written in one-line notation as (π1, . . . , πn). Let P1 be the tableau with a single cell containing
π1. Let Pj = Pj−1 ← πj for all 1 < j ≤ n and set P = Pn. The tableau Q is defined recursively in terms of
tableaux Qi of size i as follows. Let Q1 be the tableau with one cell containing the integer 1. The equality of
shapes sh(Qi) = sh(Pi) is maintained throughout the process. The cell of Qi containing i is the (unique) cell of
Pi that does not belong to Pi−1. The remaining cells of Qi are identical to those of Qi−1. Finally, set Q = Qn.
We refer to P as the insertion tableau and Q is the recording tableau.

Let π ∈ Sn and let (P,Q) be the corresponding tableaux under the RS correspondence. The shape of π,
denoted sh(π), is given by sh(P ) = sh(Q). We will also say that a partition λ is associated to a permutation π
if λ = sh(π). A fundamental property about the RS correspondence is that if π is associated to (P,Q), then
π−1 is associated to (Q,P ). See [4, 9, 10] or [16] for numerous interesting properties of the bijection.
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2.2 Main Results

Let Pc(n) denote the set of partitions of n into parts of c colors or types, and let pc(n) = #Pc(n). For
example, P2(2) = {2, 2̄, 11, 11̄, 1̄1̄}, where we think of the two colors as unbarred and barred integers. Further,
let p(n) ≡ p1(n) denote the number of partitions of n. Since any c-colored partition of n can be obtained by
writing n as a sum of nonnegative integers n1 + · · ·+ nc and forming a partition of ni with the i’th colour, we
have the recursion

pc(n) =
∑

n1+···+nc=n
p(n1) · · · p(nc). (1)

Therefore, the generating function of pc(n) is given by the c-fold convolution∑
n≥0

pc(n)xn =
∏
m≥1

1

(1− xm)c
. (2)

See, for example [15, Sequence A000712] for c = 2.
Let λ denote the partition of n such that its conjugate is given in the frequency notation as λ′ = 〈tm1

1 , . . . , tmkk 〉,
where t1 > · · · > tk > 0 and mi > 0 is the multiplicity of ti. In other words, λ′ has the part t1 occurring m1

times, t2 occurring m2 times, and so on. Therefore n =
∑k
i=1 timi. We will also frequently need the sum of the

multiplicities, which we will denote M = `(λ′) =
∑k
i=1mi.

We say that a permutation associated to λ is minimal for the shape λ if it has the minimal number of
inversions. Let Wλ be the set of all permutations with shape λ and W∆

λ to be the set of permutations associated
to λ with exactly ∆ more inversions than the minimal one so that ∪∆≥0W

∆
λ = Wλ. Let w∆

λ = #W∆
λ . Hohlweg

has proved the following results for minimal permutations.

Theorem 2.1 ( [6]). Let λ be the shape given by λ′ = 〈tm1
1 , . . . , tmkk 〉 = (λ′1, . . . , λ

′
M ). Then the following results

hold for minimal permutations with shape λ.

1. The number of inversions of such a minimal permutation is

M∑
i=1

(
λ′i
2

)
.

2. The number of minimal permutations is given by

w0
λ =

(
M

m1, . . . ,mk

)
.

3. The minimal permutations can be characterized as follows. Let c = (c1, . . . , cM ) be a permutation (possi-
bly with repeats) of (λ′1, . . . , λ

′
M ). In one-line notation, the corresponding minimal permutation (see the

example after this theorem) is composed of M blocks of entries from [n] of lengths c1, . . . , cM in that order,
such that the elements within each block are consecutively decreasing and the elements of the i’th block are
smaller than the elements of the (i+ 1)’th block for each 1 ≤ i < M .

Minimal permutations are also known as layered permutations [2]. For example, (2, 1 | 3 | 6, 5, 4 | 8, 7) is a min-
imal permutation for the shape λ = (4, 3, 1) corresponding to the permutation c = (2, 1, 3, 2) of λ′ = (3, 2, 2, 1).
We place dividing bars between various blocks for ease of reading. As can be seen from the characterization in
(3) above, minimal permutations are involutions.

We are interested in the case where ∆ is positive. Let us first look at the case when M = 1. Then k = m1 = 1
and t1 = n and λ′ = 〈1n〉. Since λ = (n) consists of a single row, there is exactly one permutation which has
that shape by the RS correspondence, namely the identity permutation with inversion number 0. Therefore

w∆
(n) =

{
1, if ∆ = 0,

0, if ∆ > 0.

The first nontrivial result will be when M = 2. Assume the notation above.

Theorem 2.2. Let λ ` n with λ′ = (s, r), and let ∆ < r. Then,

w∆
λ = p2(∆)×

{
1, if s = r,

2, if s > r.

We will prove Theorem 2.2 in Section 4. Our proof does not generalize to M > 2, although we conjecture
a more general result from empirical data. We make partial progress in that direction with the following lower
bound.
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Theorem 2.3. Fix a partition λ such that λ′ = 〈tm1
1 , . . . , tmkk 〉 with t1 > · · · > tk > 0 and mi > 0 for all i.

Denote M =
∑k
i=1mi. Then for any ∆ < tk,

w∆
λ ≥ p2(M−1)(∆)

(
M

m1, . . . ,mk

)
.

We will prove Theorem 2.3 in Section 4.1. We believe that the following stronger conjecture holds.

Conjecture 2.1. Fix a partition λ such that λ′ = 〈tm1
1 , . . . , tmkk 〉 with t1 > · · · > tk > 0 and mi > 0 for all i.

Denote M =
∑k
i=1mi. Then for any ∆ < tk,

w∆
λ = p2(M−1)(∆)

(
M

m1, . . . ,mk

)
.

We have verified Conjecture 2.1 for partitions of size up to 10. The methods in this work do not seem to
work when the shape of the permutation has more than two columns. We also note that we do not have any
results of this nature when ∆ is greater than or equal to tk. It would be of great interest to generalize our
results and conjectures to that case.

3 Jump partitions and Knuth equivalence

We are interested in counting the number of permutations with a given number of inversions associated with the
shape λ via the RS correspondence. A natural and a very useful tool is the Knuth equivalence of permutations [8].
A very readable introduction is by S. Fomin in [16, Appendix 1]. A Knuth transformation of a permutation
transforms adjacent entries a, b, c satisfying a < b < c in one of the following ways: · · · acb · · · ↔ · · · cab · · · or
· · · bac · · · ↔ · · · bca · · · . For our purposes, we will also need to keep track of the inversion number. We will
therefore use the notation

K+ moves to mean transpositions

{
· · · acb · · · → · · · cab · · ·
· · · bac · · · → · · · bca · · ·

which increase the inversion number, and

K− moves to mean transpositions

{
· · · cab · · · → · · · acb · · ·
· · · bca · · · → · · · bac · · ·

which decreases the inversion number. Two permutations are Knuth equivalent if one can be obtained from
another using Knuth transformations. A dual Knuth transformation of a permutation is a Knuth transformation
of its inverse. By the RS correspondence, two dual Knuth equivalent permutations have the same Q-tableau.
We also need a more explicit notation for these. We use

KD+ moves to mean

{
· · · a · · · (a− 1) · · · (a+ 1) · · · → · · · (a+ 1) · · · (a− 1) · · · a
· · · a · · · (a+ 2) · · · (a+ 1) · · · → · · · (a+ 1) · · · (a+ 2) · · · a

which increase the inversion number, and

KD− moves to mean

{
· · · (a+ 1) · · · (a− 1) · · · a · · · → · · · a · · · (a− 1) · · · (a+ 1)

· · · (a+ 1) · · · (a+ 2) · · · a · · · → · · · a · · · (a+ 2) · · · (a+ 1)

which decreases the inversion number. Note that K+ and K− are right actions of elementary transpositions
and KD+ and KD− are left actions. The importance of these moves for us comes from the following result,
which is one of the important properties of Knuth moves.

Proposition 3.1 ( [8]). Two permutations are associated with tableaux of the same shape via the RS correspon-
dence if and only if one can be obtained from the other by a series of Knuth and dual Knuth transformations.

As usual, let si for i = 1, . . . , n− 1 denote the standard generators of the symmetric group Sn by adjacent
transpositions. The left (resp. right) action of si interchanges the values (resp. entries at positions) i and
i+ 1. To simplify notation, fix a minimal permutation π corresponding to the composition c = (c1, . . . , cM ), let

c∗j =
∑j
i=1 ci and define c∗0 to be 0. Recall that a partition λ = (λ1, . . . , λk) is a weakly decreasing sequence of

positive integers. The size of λ is given by |λ| =
∑k
i=1 λi.
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Definition 3.1. Given a minimal permutation π with M blocks, an inner jump partition µ of size ∆ for π
is a sequence of partitions µ = (µ(1), . . . , µ(M−1)), satisfying the following conditions.

1. |µ| :=
∑M−1
i=1 |µ(i)| = ∆, and

2. for 1 ≤ i ≤M − 1, `(µ(i)) ≤ ci and µ
(i)
1 < ci+1.

An inner jump partition µ acts on a minimal permutation π by right multiplication of transpositions si. In
particular, define the action of µ as

π ◦ µ := π ·
M−1∏
i=1

(
sc∗i · · · sc∗i−1+µ

(i)
1

)
· · ·
(
sc∗i−`(µ(i))+1 · · · sc∗i−`(µ(i))+µ

(i)

`(µ(i))

)
, (3)

where the action of the product is in increasing order. We will call the action of each transposition above as an
inner jump.

Example 3.1. Let π = (3, 2, 1 | 7, 6, 5, 4 | 10, 9, 8) be a minimal permutation for the partition λ = (3, 3, 3, 1) with
c = (3, 4, 3), and let µ = (∅, (1, 1)). Then, c∗1 = 3 and c∗2 = 7 and therefore

π ◦ µ = π · (id)︸︷︷︸
µ1=∅

· s7 · s6︸ ︷︷ ︸
µ2=(1,1)

= (3, 2, 1 | 7, 6, 10, 5 | 4, 9, 8).

For the sake of clarity, we have kept the locations of the dividing bars unchanged and will do so in the examples
that follow as well. From this example, the reason for naming the action of the transposition an “inner jump”
becomes clearer (see also Example 3.5). If one assigns the parts of the partition (1, 1) to the elements 5 and
4, the size of the part is the number of “jumps” performed by the element to the right, with the jumps being
performed by the elements in the second block over elements of the third block, across the dividing line - the
“inner” boundary - between the second and third blocks (in contrast to the “outer” boundary which we describe
next).

Definition 3.2. Given a minimal permutation π with M blocks, an outer jump partition ν of size ∆ for π
is a sequence of partitions ν = (ν(1), . . . , ν(M−1)) satisfying the following conditions.

1. |ν| :=
∑M−1
i=1 |ν(i)| = ∆, and

2. For 1 ≤ i ≤M − 1, `(ν(i)) ≤ ci and ν
(i)
1 < ci+1.

We say that an outer jump partition ν acts on a minimal permutation π by left multiplication. In particular,
define the action of ν as

ν ◦ π =

M−1∏
i=1

(
s
c∗i−1+ν

(i)
1
· · · sc∗i−`(ν(i))+1

)
· · ·
(
s
c∗i−`(ν(i))+ν

(i)

`(ν(i))

· · · sc∗i−`(ν(i))+1

)
· π, (4)

where the action of the product is in increasing order. We will call the action of each transposition above as an
outer jump.

Example 3.2. Let π be the same minimal permutation as in Example 3.1 so that c∗1 = 3 and c∗2 = 7, and let
ν = ((2), ∅). Then,

ν ◦ π = s4 · s3︸ ︷︷ ︸
ν1=(2)

· id︸︷︷︸
ν2=∅

· π = (5, 2, 1 | 7, 6, 4, 3 | 10, 9, 8).

This example also clarifies the reason for naming the action of the transposition an “outer jump”. If one assigns
the parts of the partition (2) to the element 3, the size of the part is the number of “jumps” performed by the
element which moves from left from the first block and jumps over elements of the second block by wrapping
around the “outer” boundary between the first and second blocks.

Definition 3.3. A jump partition for a minimial permutation π with M blocks of size ∆ is a tuple J = (µ, ν)
of inner and outer jump partitions such that

|J | := |µ|+ |ν| = ∆.

The next result follows because there are a total of 2(M − 1) partitions in a jump partition, each of which
can be thought to be of a different color.

Proposition 3.2. The number of jump partitions of size ∆ for a minimal permutation π with M blocks is
p2(M−1)(∆).
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We apply a jump partition to a minimal permutation π by acting on it first by µ and then by ν, that is,
define

J(π) := ν ◦ π ◦ µ. (5)

Example 3.3. Let π be the same minimal permutation as in Examples 3.1 and 3.2, with µ = (∅, (1, 1)),
ν = ((2), ∅) and J = (µ, ν). Then,

J(π) = s4 · s3 · π · s7 · s6 = (5, 2, 1 | 7, 6, 10, 4 | 3, 9, 8).

In this case, ∆ = 4, which is larger than the smallest column in λ′, which is 3.

The following is an immediate consequence of the definitions.

Lemma 3.1. The order of the action of inner and outer jump partitions is irrelevant.

For definiteness, we fix that we first apply the inner jump partition followed by the outer jump partition.

Lemma 3.2. Let J = (µ, ν) be a jump partition for a minimal permutation π and let J ′ = (ν, µ). Then

(J(π))−1 = µ ◦ π ◦ ν = J ′(π).

Proof. We have
(J ′(π))−1 = (µ ◦ π ◦ ν)−1 = ν ◦ π−1 ◦ µ = ν ◦ π ◦ µ = J(π).

Above, the second equality can be verified by using Definitions 3.1 and 3.2, while the third equality follows since
minimal permutations are involutions.

Example 3.4. Suppose π ∈ S53 is a minimal permutation corresponding to the composition c = (14, 15, 12, 12)
so that it is written in one line notation as

(14, . . . , 3, 2, 1 | 29, 28, 27, . . . , 17, 16, 15 | 41, 40, 39, . . . , 33, 32, 31, 30 | 53, . . . , 43, 42).

The jump partition J = (µ, ν) given by µ = ((1, 1), (2, 1), φ) and ν = (φ, (3, 1), (2)) applied to π returns
(s42s41)(s28)(s31s30s29) · π · (s14)(s13)(s29s30)(s28), and we obtain

(14, . . . , 3, 32, 2 | 1, 29, 27, . . . , 17, 43, 16 | 40, 15, 39, . . . , 33, 31, 30, 28 | 53, . . . , 44, 42, 41).

We now present a complete example for M = 2 in order to clarify the notation set up above, and to give
some insight for Theorem 2.2 and Conjecture 2.1.

Example 3.5. We begin with a minimal permutation on 12 elements with shape λ = 〈26〉 and enumerate
the permutations that are obtained from all possible jump partitions, dividing them into cases according to the
number of inversions introduced. The unique minimal permutation is given by (6, 5, 4, 3, 2, 1 | 12, 11, 10, 9, 8, 7).
One can compute by hand all permutations for ∆ = 1 and ∆ = 2 for this λ. It turns out that there are 2 and
5 such permutations respectively. We show below that in fact jump partitions can be used to enumerate these
permutations.

From the minimal permutation, the permutations corresponding to ∆ = 1 are obtained by applying jump
partitions of size 1. In each example below, we will write inner jumps µ in parentheses and outer jumps ν in
square brackets. The first row in each pair of permutations below is the unique permutation corresponding to
∆ = 0, and the number of jumps an element is involved in is noted next to an arrow above the element. The
second row shows the resulting permutation. The affected elements (which differ in their positions from the
original permutation) are parenthesized.

1 inner, 0 outer jumps
(1)

6 5 4 3 2 1→1 12 11 10 9 8 7
6 5 4 3 2 (12 1) 11 10 9 8 7

0 inner, 1 outer jump
[1]

6→1 5 4 3 2 1 12 11 10 9 8 7
7) 5 4 3 2 1 12 11 10 9 8 (6

Proceeding in the same way for ∆ = 2, we now list out all the ways to divide a total of two jumps among
the inner and outer jumps. Each jump will result in one more inversion. Jumps are made so an element does
not jump over any element in its own block. Thus an element can make at most as many jumps as the element
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ahead of it. This restriction on the number of jumps that an element can make compared to its successor means
that the vector of jumps is a partition.

1 inner, 1 outer jump
[1] (1)

6→1 5 4 3 2 1→1 12 11 10 9 8 7
7) 5 4 3 2 (12 1) 11 10 9 8 (6

2 inner, 0 outer jumps
(2)

(i) 6 5 4 3 2 1→2 12 11 10 9 8 7
6 5 4 3 2 (12 11 1) 10 9 8 7

(1) (1)
(ii) 6 5 4 3 2→1 1→1 12 11 10 9 8 7

6 5 4 3 (12 2 1) 11 10 9 8 7

0 inner, 2 outer jumps
[2]

(i) 6→2 5 4 3 2 1 12 11 10 9 8 7
8) 5 4 3 2 1 12 11 10 9 (7 6

[1] [1]
(ii) 6→1 5→1 4 3 2 1 12 11 10 9 8 7

7 6) 4 3 2 1 12 11 10 9 8 (5

Thus, the total number of permutations with shape 〈26〉 with two inversions is

w2
(6,6)′ = p(0)p(2) + p(1)p(1) + p(2)p(0) = p2(2) = 5,

where we have used (1) for the second equality. Thus, we have established by this example that w2
(6,6)′ equals

p2(2), which agrees with Theorem 2.2.

4 Permutations with two columns

In this section we will prove Theorem 2.2. Recall that Wλ is the set of permutations whose shape λ is given by
λ′ = (s, r), with s ≥ r. From Theorem 2.1(1), the minimal number of inversions associated to permutations of
shape λ is

(
r
2

)
+
(
s
2

)
.

The proof of Theorem 2.2 will be bijective. Since we are dealing with the case of two columns, i.e. k = 2,
we will denote a jump partition by J = (µ, ν), where µ, ν are partitions, for convenience. We say that a jump
partition J is valid for a minimal permutation π if sh(J(π)) = sh(π). We begin by collecting a few useful results.
The following result immediately follows from Lemma 3.2.

Corollary 4.1. If J = (µ, ν) is valid for π, then so is J ′ = (ν, µ).

Proof. In the RS correspondence, the shape of a permutation and its inverse are the same.

Lemma 4.1. If ∆ < r, and J = (µ, ν) is a jump partition of size ∆, the elements of the minimal permutation
π not fixed under the action of µ are disjoint from those not fixed under the action of ν.

Proof. We analyze the case that the minimal permutation is π1 = (s, s − 1, . . . , 1 | s + r, . . . , s + 1); the other
case is similar. From Definition 3.1, when the inner jump partition µ is applied to π1, the set of elements which
are not fixed is M = {1, . . . , `(µ), s+ r− µ1 + 1, . . . , s+ r}. Similarly from Definition 3.2, when the outer jump
partition ν is applied to π1, the set of elements that are not fixed is N = {s − `(ν) + 1, s − `(ν), · · · , s + ν1}.
Note that we have

`(µ) + `(ν) ≤
`(µ)∑
i=1

µi +

`(ν)∑
i=1

νi = ∆ < r ≤ s.

From this, we conclude that `(µ)+`(ν) < s+1 and µ1+ν1 < r+1. These inequalities imply that s−`(ν)+1 > `(µ)
and s+ r − µ1 + 1 > s+ ν1, and hence that M ∩N = ∅.

Proposition 4.1. The number of jump partitions of size ∆ is equal to p2(∆).
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Proof. This follows immediately from the definition of a jump partition.

We divide the ideas of the proof into the following two subsections. In Section 4.1, we show that starting
from a minimal permutation π ∈ Wλ and applying a valid jump partition J of size ∆ < r to it, results in
a unique permutation in W∆

λ . In Section 4.2, we show that when ∆ < r, every permutation in W∆
λ can be

obtained uniquely from a minimal permutation and a valid jump partition of size ∆. Finally, we stitch together
the ideas to complete the proof in Section 4.3.

4.1 Lower bound

Theorem 4.1. Let ∆ < r. Every valid jump partition J of size ∆ for a minimal permutation of shape λ, where
λ′ = (s, r), gives a permutation in W∆

λ .

We will prove Theorem 4.1 by showing that the action of every valid jump partition on a minimal permutation
can also be obtained by Knuth moves while keeping track of the number of inversions. Before proving the result,
we give an example to illustrate why this is nontrivial.

Example 4.1. Consider the minimal permutation π = (5, 4, 3, 2, 1 | 11, 10, 9, 8, 7, 6) corresponding to shape λ
with λ′ = (6, 5), and the inner jump partition which is the single partition µ = (2, 2). This corresponds to
πs5s6s4s5. The first three actions of transpositions on π are K+ moves. For instance, the permutation πs5

corresponds to interchanging 1 and 11, which is a K+ move because 2 is to the immediate left of 1. Similarly,
after the action of the other two transpositions, we get the permutation π′ = (5, 4, 3, 11, 2 | 10, 1, 9, 8, 7, 6). But
π′s5 corresponds to interchanging 2 and 10, which is no longer a K+ move.

To solve this problem in this case, we first consider π′s6, which interchanges 1 and 9 and is a K+ move.
Now, the interchange of 2 and 10 is indeed a K+ move. Finally, we interchange 9 and 1 back as a K− move.
The strategy of proof of Theorem 4.1 generalizes this idea.

Proof of Theorem 4.1. There are two possibilities for the minimal permutation π when r < s, either (r, . . . , 1 |n,
n− 1, . . . , r + 1) or (s, . . . , 1 |n, n− 1, . . . , s+ 1), which are identical when r = s. We will only prove the result
for the first case as the other can be argued along similar lines.

Consider the case when the jump partition is purely inner, i.e. J = (µ, ∅). Write the partition µ of ∆ as
µ = (µ1, . . . , µk) where r > µ1 ≥ · · · ≥ µk > 0 and k < r. The algorithm is as follows. The idea is to enlarge the
inner jump partition to a strict partition (i.e. a partition with distinct parts) µ̃ containing µ whose action on
π can be decomposed into a sequence of K+ moves. Next, by applying a specific sequence of K− moves to the
resulting permutation π ◦ µ̃, we obtain π ◦ µ. The claim will then follow since the application of Knuth moves
to a permutations preserves its shape. Define µ̃ := (µ1 + k − 1, . . . , µk−1 + 1, µk). We will first compute π ◦ µ̃.

Recall that this means, according to Definition 3.1, that we first move 1 µ1 +k−1 steps to the right, followed
by moving 2 µ2 + k − 2 steps to the right, and so on, up to moving k right µk steps. We claim that each of
these is a K+ move. Before we do so, let us first verify that µ̃ is valid for π. First, notice that since ∆ < r, the
numbers 1 through ∆ appear in decreasing order in π as in the example above. Next, notice that the number
1 moves the largest number of steps to the right, and since µ̃ is a strict partition, the value i always moves less
than i− 1. Since 1 is at a position at most s in π, its final position is at most s+ µ1 + k− 1 in π ◦ µ̃. We want
to make sure this is less than n. This follows since

µ1 + k − 1 ≤ µ1 + · · ·+ µk = ∆ < r

showing that π ◦ µ̃ is well-defined.
Now, each elementary transposition of the inner jump partition µ̃ is a K+ move because it is always of the

form
· · · , i, p, p− 1, · · · → · · · , p, i, p− 1, · · ·

with p > i because µ̃ is a strict partition. It is easy to check by the construction that π ◦ µ̃ has ∆ +
(
k
2

)
more

inversions than π.
We will now perform

(
k
2

)
K− moves starting from the permutation π ◦ µ̃ to obtain π ◦ µ. We focus on the

relative positions of 1, . . . , k − 1, k in π ◦ µ̃. They appear in the form

· · · , x, k, x− 1, . . . , x− z1, k − 1, x− z1 − 1, . . . , x− z2, k − 2, . . . , x− zk−1, 1, x− zk−1 − 1, · · ·

with a gap of at least one between the numbers 1, . . . , k and all other elements in consecutive decreasing order.
The actual values of z1, . . . , zk−1 depend on a simple way on µ̃, but are not important for the argument. Note
that x − zk−1 − 1 is larger in value than k. Starting from π ◦ µ̃, we first move k − 1 to the left by performing
an elementary transposition. These are K− moves of the form

· · · , p, i, p− 1, · · · → · · · , i, p, p− 1, · · ·
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with p > i. We continue similarly moving all the elements k− 2, . . . , 1 one by one in that order until they reach
their respective positions in π ◦ µ. Each of these moves is a K− move of the same form as above because of the
gap between i and i+ 1 for i ∈ {1, . . . , k − 1}. Hence, π ◦ µ ∈W∆

λ .
In the case that J = (∅, ν) of size ∆, by Corollary 4.1, ν ◦π ∈W∆

λ . Note that in this case the corresponding
transpositions are KD+ and KD− moves.

When J = (µ, ν) with µ = (µ1, . . . , µk) and ν = (ν1, . . . , νj), we can construct strict partitions µ̃ =
(µ1 + k − 1, . . . , µk−1 + 1, µk) and ν̃ = (ν1 + j − 1, . . . , νj−1 + 1, νj) as above.

From the argument above, it is clear that one can separately apply either µ̃ or ν̃ to π. The only issue that
could arise is that there could be interference between these two actions in the sense that both could act on the
same entries. We will now show that such a situation cannot arise. Following the notation of Example 3.5, we
depict the jump partition on one of the minimal permutations listed above as

[ν1 + j − 1] . . . [νj ] (µk) . . . . . . (µ1 + k − 1)
r . . . r − j + 1 . . . k . . . . . . 1 n . . . r + 1.

Since |µ| + |ν| = ∆ < r, k + j < r and no value among 1, . . . , r can be acted upon by both µ̃ and ν̃. Among
the values r + 1, . . . , n, the values that are moved by ν̃ are n − ν1 − j + 2, . . . , n and those moved by µ̃ are
r + 1, . . . , r + µ1 + k − 1. But since µ1 + k − 1 ≤ |µ| and ν1 + j − 1 ≤ |ν|, no value is affected by both µ̃ and
ν̃. Since µ̃ and ν̃ contain µ and ν in their Young diagrams, similar arguments show that ν and µ act disjointly.
This completes the proof of the claim.

Theorem 4.2. Let λ ` n be a partition such that λ′ = (s, r). Then, for each π ∈ W 0
λ and jump partition J

with size |J | = ∆ < r that is valid for π, the permutation J(π) arises in a unique way. That is,

1. If J1 6= J2, then J1(π) 6= J2(π).

2. If π1 6= π2 and J1 (resp. J2) is a valid jump partition for π1 (resp. π2), then J1(π1) 6= J2(π2).

Proof. Let J1 = (µ1, ν1) and J2 = (µ2, ν2). We begin by showing part (1). Let I1 and O1 (resp. I2 and O2) be
the set of elements moved in π under the action of µ1 and ν1 (resp. µ2 and ν2) respectively. Since ∆ < r, by
Lemma 4.1, I1 and O1 are disjoint, and so are I2 and O2. Since J1 6= J2, either µ1 6= µ2 or ν1 6= ν2. Suppose
µ1 6= µ2 and let k be the largest part in which they differ, i.e. µ1,k 6= µ2,k. Then, using Lemma 4.1, the element
k ∈ I1 ∩ I2 is not in either of O1 and O2 and appears in different positions in J1(π) and J2(π).

For part (2), in the case that s = r, there is exactly one minimal permutation, so there is nothing to prove.
Therefore, we assume that s > r. Let π1 and π2 be two minimal permutations:

π1 = (s, s− 1, . . . , 1 | s+ r, . . . , s+ 1) = (Y,X |Z)

π2 = (r, r − 1, . . . , 1 | s+ r, . . . , r + 1) = (X |Z, Y )
(6)

where we use X,Y and Z to denote the blocks (r, r − 1, . . . , 1), (s, s − 1, . . . , r + 1) and (s + r, . . . , s + 1)
respectively.

We will show that applying a jump partition to these minimal permutations results in constraints on the
structure of the resulting permutations. In particular, we will show that all the elements that are fixed in J2(π2)
cannot appear at the same positions as in J1(π1).

First, we claim that for some contiguous set of indices I such that 1 ≤ i ≤ r for i ∈ I, (J2(π2))i = r−i+1 for
i ∈ I. That is, when J2 is applied to π2, it fixes i for each i ∈ I. We verify that since ∆ < r, a contiguous block
of X consisting of r− `(µ2)− `(ν2) > 1 elements will remain fixed under the action of J2. To see this, note that
µ2 fixes the first r− `(µ2) elements of X while ν2 fixes the last r− `(ν2) elements of X. Thus r− `(µ2)− `(ν2)
contiguous elements of X are fixed by both µ2 and ν2 and hence by J2.

Suppose now that i ∈ X is fixed by J2 at position r − i + 1 in π2. In the permutation π1, the element i is
at position s − i + 1 > r − i + 1. When J1 is applied to π1, i may either remain fixed, or its position may be
changed due to an inner or outer jump. If it stays fixed, then its position in J1(π1) is different from its position
in J2(π2). If the position of i is changed due to either an inner or an outer jump, then its position in J1(π1)
only increases and therefore cannot be equal to r − i+ 1.

We now prove Theorem 2.3 using the ideas of Theorems 4.1 and 4.2. Recall that π is a minimal permutation
for λ, with λ′ = 〈tm1

1 , . . . , tmkk 〉, and J = (µ, ν) is a jump partition of size ∆ < tk.

Proof of Theorem 2.3. When µ or ν consists of a single partition, the argument is the same as that of Theo-
rem 4.1. When ν is empty, the same argument works again because the partitions µi, µi+1 in the inner jump
partition µ (for example) cannot interact (in the sense that the elements moved by them are disjoint) because
∆ is small. This is also the case when µ is empty. Suppose now that µ = (µ1, . . . , µk) and ν = (ν1, . . . , νk) are
both nonempty.
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The only cases where elements can be moved simultaneously by both the inner and the outer jump partition
are when both µi and νi+1 are nonempty, and when both νi and µi+1 are nonempty. We will now show that in
both cases, the moves made are Knuth or dual Knuth transformations. It will suffice to consider the first case,
i.e., when both µi and νi+1 are nonempty. The argument in the other case is similar.

Consider the i’th, (i+ 1)’th, and the (i+ 2)’th block in π, labelled as follows.

· · · | a1, . . . , ar | b1, . . . , bs | c1, . . . , ct | · · · ,

where the aj ’s, the bj ’s and the cj ’s are consecutively decreasing, bs = a1 + 1 and ct = b1 + 1. The action of µi
interchanges the rightmost elements of the a-block with the leftmost ones of the b-block. We first perform the
µi action, which is valid by Theorem 4.1. At this point, some of the bj ’s are in the a-block and some of the aj ’s
are in the b-block. If µi+1 is nonempty, some of the bj ’s are in the c-block. Schematically, the action of µi and
µi+1 cause the blocks to look as follows.

· · · | a1, . . . , ar−1, b1 | ar, b2, . . . , bs−1, c1 | bs, c2, . . . , ct | · · · ,

The key observation is that the relative position of the elements of the b- and c-blocks are unchanged among
themselves at this point. We now perform the outer jumps according to νi+1, which interchanges the leftmost
elements of the b-block with the rightmost ones of the c-block. Since the KD+ and KD− moves do not depend
on the locations of the values being interchanged, the action of νi+1 is valid after the action of µi if and only if it
is valid before the action of µi. We, therefore, perform the action of νi+1 exactly as prescribed in Theorem 4.1.
As always, the fact that ∆ < tk guarantees that these interchanges will be dual Knuth moves.

Now, we have to show that if J1 and J2 are valid distinct jump partitions for minimal permutations π1 and
π2 respectively, then J1(π1) 6= J2(π2). Since J1 6= J2, there exists an index i such that either µ1,i 6= µ2,i or
ν1,i 6= ν2,i. Suppose that the former is true. If π1 = π2, we repeat the idea of the proof of Theorem 4.2(i).

Now, suppose π1 6= π2. By Theorem 2.1(3), c1 6= c2 are two distinct permutations of λ′ such that π1 (resp.
π2) are minimal permutations corresponding to c1 (resp. c2). Let i be the smallest integer such that c1,i 6= c2,i.
Then focus on the i’th and (i+ 1)’th blocks in π1 and π2. The structure of these blocks is essentially the same
as that in (6), the sole difference being that Z in both blocks is different. But that does not affect the argument,
since one is only looking at fixed points within X in both permutations.

We have thus shown that each jump partition gives rise to a unique permutation in W∆
λ . Since there are(

M
m1,...,mk

)
minimal permutations by Theorem 2.1(2) and p2(M−1)(∆) jump partitions acting on each of them

by Proposition 3.2 giving rise to distinct permutations, we have the required lower bound for the cardinality of
W∆
λ , completing the proof.

4.2 Upper bound

In this section, we will prove Theorem 4.3, i.e. we will show that every permutation in W∆
λ can be obtained

from a unique pair of a valid jump partition and a minimal permutation of shape λ (by applying the jump
partition to the permutation).

Theorem 4.3. Let λ ` n be a partition such that λ′ = (s, r) . Let ∆ < r and σ ∈W∆
λ . Then, there is a unique

tuple (π, J) where π ∈W 0
λ , J is a valid jump partition of size |J | = ∆ and σ = J(π).

We will prove Theorem 4.3 by considering the graphical representation of permutations, i.e, given π ∈ Sn,
the set of points in [1, n]2 given by coordinates (i, πi) for 1 ≤ i ≤ n. We know that there exists a longest
decreasing subsequence (LDS) of length s in π. Call the corresponding set of points S, and the remaining, R.
We focus on the smallest rectangle enclosing S. The rectangle divides [1, n]2 into various regions, as depicted
in Figure 1.

We will first need a result for the longest increasing subsequence (LIS) for two-rowed permutations. Let π
be a permutation whose shape is (s, r)′. If a partial permutation π′ is formed by removing an element p from π
in its one-line notation, we denote it by π′ = π \ {p}. The notion of LIS also makes sense for π′ and π′ can be
standardized to a permutation of size [n− 1] in an obvious way. We need the following result about the LIS.

Proposition 4.2. Let λ = (s, r) and π be a permutation with shape λ. If s > r, there exists p ∈ [n] such that
π \ {p} has an LIS of length s− 1. Moreover, p is in every LIS of π.

Proof. It is clear that π has an LIS of length s. Let p1, . . . , ps be an LIS of π. We use the following standard
fact about any LIS q1, . . . , qt of a permutation σ: qi is inserted in the i’th column in the first row for all i in the
Robinson-Schensted algorithm. Now, since the second row of π has length r < s, there are exactly r bumpings,
and hence s− r positions in the first row which are not bumped. All the elements in those positions are a part
of every LIS of π. Let p be one of those elements. If p is removed, then it is clear that the resulting partial
permutation has an LIS of length s− 1. Clearly, every LIS must therefore contain p since otherwise, the length
of an LIS for π \ {p} would be s.
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By considering the reverse permutation πR(i) = (πn, . . . , π1) in Proposition 4.2, we immediately obtain the
following corollary.

Corollary 4.2. Let π ∈ Sn with shape (s, r)′ with s > r. Then there exists p ∈ [n] such that π \ {p} has an
LDS of length s− 1. Moreover p is in every LDS of π.

c

b

d

f

a2

a1

g

e

j

h

Figure 1: The longest decreasing subsequence S enclosed in the rectangle formed by the topmost and bottommost
point in S. The remaining points of the permutation are in one of the marked regions.

Lemma 4.2. Let π ∈ W∆
(s,r)′ with ∆ < r. Then there exists a longest decreasing subsequence of π with points

S enclosed by a rectangle which demarcates [1, n]2 into regions as shown in Figure 1 such that the points in R
must either all appear in regions {b, c, f} or all in {g, h, j} and form a decreasing subsequence.

Proof. The proof will be divided into five claims. The first three of these claims are true for any longest
decreasing subsequence S and we prove these assuming S is arbitrary. To prove the fourth and the fifth, we
require that the subsequence satisfy an extra property, which we specify below.

First of all, note that for any S none of the points in R can be in regions labeled d and e since that would
imply the existence of a longer LDS together with the points in S. Let R1 be the set of points of R in a1∪b∪c∪f
and let R2 be the points in a2 ∪ g ∪ h ∪ j. We will consider the case that there exists a point in a1 ∪ b ∪ c ∪ f
and show that R2 and a1 are empty. The reverse case is similar. Throughout the proof, we will use the phrase
“increase/decrease of points” to mean the increase/decrease of the ordinates of points as we move from left to
right.

An outline of the steps we take in the proof is as follows. We will show the following three claims for any
longest decreasing subsequence S.

(i) Points in R1 and R2 must decrease from left to right.

(ii) If there is a point of R1 in c, then R2 = ∅.

(iii) If there are points of R1 in both b and f , then R2 = ∅.

Among the LDSs of a permutation π, we refer to those whose highest point has smallest possible x-coordinate
as a leftmost LDS or LLDS. Note that the LLDS need not be unique.

(iv) For any LLDS S of π, if the points of R1 appear in b ∪ a1 or in a1 ∪ f , then R2 = ∅.

(v) There are no points in a1.

We list certain conditions that we will use repeatedly in the proof.

• LDS bound: The length of the longest decreasing subsequence is s.

• LIS bound: The length of the longest increasing subsequence is 2.

• Inversion bound: By the assumption of the lemma, ∆ < r. Therefore, the number of inversions is
strictly less than

(
s
2

)
+
(
r
2

)
+ r. Since there are

(
s
2

)
and

(
r
2

)
inversions among the points in S and R

respectively, the number of inversions between the points of S and R must be less than r.

Let S be an arbitrary longest decreasing subsequence of π.
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(i) Consider two points in R1 that are increasing. First, note that these points cannot be in b ∪ c ∪ f because
together with the third point of S (either the topmost or bottom-most), they violate the LIS bound. So, at
least one of the points is in a1. The higher of the two points is thus necessarily in a1. Call this point p1. There
cannot be a point of S to the northeast of p1 because that violates the LIS bound. But now, by including p1 in
S, we violate the LDS bound by including p1 in the LDS; see Figure 2 for an illustration. Therefore, the points
of R1 must be in decreasing order. Similarly, the points of R2 must also decrease from left to right.

c

b

d

f

a2

a1

g

e

j

h

p1

Figure 2: Illustration of the violation of the LDS bound used in part (i). No points of S lie in the shaded region
to the northwest of p1. Then p1 can be added to S to form a larger LDS. Similar ideas are used in parts (ii)
and (iii).

(ii) Suppose that there is a point of R1 in region c. Then, none of the other points of R2 can be in g ∪ h∪ j by
the LIS bound. If there is a point of R2 in a2 (p2, say), then there can be no points of S to the southwest of p2

by the LIS bound, analogous to the argument used in part (i) as shown in Figure 2. But now, by including p2

in S, we violate the LDS bound.

(iii) Suppose there is a point of R1 each in b and f . Then there cannot be points of R2 in {g, h, j} by the LIS
bound. Thus, all points of R2 must be in a2.

If any point in a2 is to the northeast of any point in b or in f , then by an argument similar to that in part (ii),
either the LIS or the LDS bound is violated. Therefore, the points of b, a2, f form a decreasing subsequence of
length r. There are at least r inversions between the extreme points of S and the points of R, which violates
the inversion bound.

(iv) In this part of the proof, we will argue by contradiction. If π is a counter example to the claim of (iv),
then there is an LLDS S of π such that the points of R1 appear in b ∪ a1 or a1 ∪ f and R2 6= ∅.

First, suppose s > r. Let π be a minimal such counterexample meaning that every subpermutation π′ of π
which satisfies the inversion bound satisfies (iv) (with the sets a′1, a

′
2, b
′, . . . defined analogously). Let π′ = π\{p}

where p is the point guaranteed to exist by Corollary 4.2. By the corollary, the LDS of π′ has length s− 1. Let
S′ = S \ {p} so that S′ is an LDS of π′. We will show that π cannot be a minimal counterexample. Let R′1 and
R′2 be the points corresponding to S′. Since the points of R1 appear in a1 ∪ b (resp. a1 ∪ f), it can be verified
that the points of R′1 appear in a′1 ∪ b′ (resp. a′1 ∪ f ′). Also, since R′2 = R2, we have that R′2 6= ∅. Finally, since
π satisfies the inversion bound, we have

∆ = Inv(π)−
(
s

2

)
−
(
r

2

)
< r. (7)

By deleting p from π, we remove at least s − 1 inversions (those involving p and the other elements of S).
Therefore,

Inv(π′) ≤ Inv(π)− (s− 1). (8)

Also, we have

∆′ = Inv(π′)−
(
s− 1

2

)
−
(
r

2

)
. (9)

Combining these three bounds, we get

∆′ ≤ Inv(π)− (s− 1)−
(
s− 1

2

)
−
(
r

2

)
= ∆ < r.
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That is, π′ satisfies the inversion bound, contradicting the minimality of π.

Next, we consider the case that s = r. The points of R1 may lie in a1 ∪ b or in a1 ∪ f . Applying the
arguments from parts (i), (ii) and (iii) to R2, the points of R2 can only lie in g ∪ a2 or a2 ∪ j. It suffices to
suppose that the points of R2 appear in a2 ∪ j and the arguments in the other case are analogous.

Let us suppose that π has shape (s, s)′. Fix an LLDS of π. Let π′ be the subpermutation of π obtained by
deleting the topmost point of S, which we call v1. First of all, note that since the LDS of π is s, the LIS of π′

must be two (unless s = 1 in which case the lemma is trivial). Thus λ′, the shape of π′, also has two columns.
It is impossible that the LDS of π′ be of length s − 1 since π′ has a total of 2s − 1 elements and its partition
has 2 columns. Thus the LDS of π′ must be of length s.

Case 1: R1 ⊂ a1 ∪ f and R2 ⊂ a2 ∪ j:
In this case, since all the elements of π′ are to the southeast of v1, in particular, the elements of the LDS in

π′ are to the southeast and so v1 could be added to them to obtain a longer decreasing subsequence in π.

Case 2: R1 ⊂ a1 ∪ b and R2 ⊂ a2 ∪ j:
An LDS of π′ of length s cannot have all of its points to the southeast of v1, since otherwise, we would get a

longer LDS in π. Therefore, it must use points in b. However, since it is also an LDS of π this contradicts our
assumption that we chose an LLDS in π.

(v) If there is a point in a1, then there cannot be a point in c by part (i). Moreover, there cannot be points in
b ∪ f because we would violate the inversion bound with the extreme points of S. This argument also shows
that there has to be at least one point in c.

This completes the proof of the lemma.

We are now in a position to prove the main result of this section.

Proof of Theorem 4.3. Consider the permutation diagram of σ. Let S be an LDS of σ as is guaranteed by Lemma
4.2. Without loss of generality, assume that all points of R appear in regions b, c, f (see Figure 1) with p, q, r−p−q
points respectively. We will first build the outer jump partition ν. Since the points of R are in decreasing order,
note that the coordinates of the points in b and c are (1, n1), . . . , (p, np), (p + 1, nq − 1), . . . , (p + q, nq − q),
where n1 > · · · > np > nq. Consider the point (p, np) which has the lowest ordinate in region b. Suppose that
there are kp points in S which have lower ordinates than this one. First of all, note that these kp points must
necessarily be consecutive, and hence have coordinates (n− kp + 1, np − 1), . . . , (n, np − kp).

We now perform the transformation replacing the points (p, np), (n− kp + 1, np− 1) by (p, np− 1), (n− kp +
1, np). It is easy to see that this new permutation also has shape λ′ and has one less inversion than σ. A little
thought shows that the transformation from the latter to the former is encoded by a single outer jump. We
then interchange the pair (p, np−1), (n−kp+2, np−2) by (p, np−2), (n−kp+2, np−1), and continue this way
until we replace (p, np − kp + 1), (n, np − kp) by (p, np − kp), (n, np − kp + 1). At this point, the lower boundary
of the region a shifts up by 1 and the point (p, np − kp) is now in region c. We have thus performed kp outer
jumps to reduce the number of points in b by 1.

Now suppose there are kp−1 points in (the modified) S below (p−1, np−1). We then repeat the same process
with kp−1 outer jumps to again modify S and further reduce the number of points in b to p− 2. Continue this
way. At the end of these sequence of moves, the number of points in b will be empty and the points in c would
be (1, np), (2, np − 1), . . . , (p, np − p), (p+ 1, nq − 1), . . . , (p+ q, nq − q) and this forces nq = np − p. If, at each
stage there were kp−i points below (p− i, np−i), then, we have performed the inverse of the outer jump partition
ν = (k1, . . . , kp), which clearly satisfies k1 ≥ · · · ≥ kp.

We will now build the inner jump partition µ. Now consider the points in region f , which must have
coordinates (m1, np − p − 1), . . . , (ms, np − p − s), where s = r − p − q and m1 > · · · > ms. We now repeat
the same sequence of arguments as above, where each interchange corresponds to exchanging these points with
points in S to their left (and above). These correspond to inner jumps. If there are (`1, . . . , `s) points to left of
points with abscissas (m1, . . . ,ms), then these interchanges correspond to the inverse of the inner jump partition
µ = (`s, . . . , `1).

At the end of this sequence of moves, all points of R will be consecutively decreasing in the region c, and
hence we obtain the permutation π = π2 above with the jump partition being J = (µ, ν). Notice that the
interchanges in regions b and f can be performed independently. If, initially all the points were in regions
{g, h, j}, we would have had π = π1.

4.3 Proof of Theorem 2.2

From Theorem 4.1, it follows that every jump partition of size ∆ acting on a minimal permutation yields a
permutation in W∆

λ and Theorem 4.2 guarantees that no two distinct jump partitions give rise to the same
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permutation. Finally, Theorem 4.3 ensures that every permutation in W∆
λ can be obtained in a unique way

starting from a jump partition acting on a minimal permutation. The proof of Theorem 2.2 follows. As a
consequence, we obtain the following structure theorem about such permutations.

Corollary 4.3. For any permutation π in W∆
λ with λ′ = (s, r) and ∆ < r, one of the following is true.

• πi = s + 1 − i for s − ∆ consecutive numbers starting at some position i, where 1 ≤ i ≤ ∆ + 1 and
πi = 2s+ r+ 1− i for r−∆ consecutive numbers starting at some position i, where s+ 1 ≤ i ≤ s+ ∆ + 1.

• πi = r + 1 − i for r − ∆ consecutive numbers starting at some position i, where 1 ≤ i ≤ ∆ + 1 and
πi = s+ 2r+ 1− i for s−∆ consecutive numbers starting at some position i, where r+ 1 ≤ i ≤ r+ ∆ + 1.

Proof. From Theorem 4.3, there is a unique permutation π0, which is either π1 or π2 in (6), and a unique jump
partition J = (µ, ν) such that π = J(π0). The two cases correspond to these minimal permutations. We will
argue the first case in which π0 = π1; the second one is similar.

Using the terminology of Lemma 4.1, the elements in the first block which are not fixed are {1, . . . , `(µ), s−
`(ν)+1, . . . , s}. But since `(µ)+`(ν) < ∆ < r ≤ s, there are at least s−∆ consecutive elements in π0 which are
undisturbed. A similar argument works for the second block. Finally, recall that (π0)i = s+ 1− i for 1 ≤ i ≤ s
and (π0)i = 2s+ r + 1− i for s+ 1 ≤ i ≤ s+ r.
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