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Abstract: The aim of this paper is to develop the combinatorics of constructions associated with what we call
triangular partitions. As introduced in [9], these are the partitions whose cells are those lying below the line
joining points (r, 0) and (0, s), for any given positive reals r and s. Classical notions such as Dyck paths and
parking functions are naturally generalized by considering the set of partitions included in a given triangular
partition. One of our striking results is that the restriction of the Young lattice to triangular partition has a
planar Hasse diagram, with many nice properties. It follows that we may generalize the “first-return” recurrence,
for the enumeration of classical Dyck paths, to the enumeration of all partitions contained in a fixed triangular
one.
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1. Introduction

The last 30 years have seen increasing and interesting interactions between the combinatorics of generalized
Dyck paths and parking functions, Macdonald polynomials and operators, diagonal coinvariant spaces, Hilbert
schemes of points, Khovanov-Rozansky homology of (m,n)-torus links, Double affine Hecke algebra, Elliptic
Hall algebra, and Superspaces of bosons and fermions. The aim of this paper is to further the combinatorial
study of the most general extension of the notion of Dyck paths that is involved in this context.

For the purpose of describing our overall setup, it is handy to consider classical Dyck paths as partitions
α ⊆ τ(n+1,n) contained in the staircase partition τ(n+1,n) := (n− 1, n− 2, . . . , 1, 0). These are well known to be
enumerated by the Catalan numbers. From this point of view, parking functions are simply standard tableaux
of skew shape (α + 1n)/α, for any such α. Recall that the number (n + 1)n−1 in total. The generalization we
consider here is obtained by changing the overall partition τ(n+1,n) to other suitably chosen partitions τ . For
instance, one may consider the more general staircase τ(jn+1,n) := (j(n − 1), j(n − 2), . . . , k), for some j ≥ 1.
In that case, it is well known that the number of partitions included in τ(jn+1,n) is given by the Fuss-Catalan

number 1/(jn + 1)
(

(j+1)n
n

)
. The corresponding number of parking functions is given by the simple formula

(jn+ 1)n−1. In the historical sequence of generalizations, Rational Catalan Combinatorics (see [1]) comes next
in line, with an overall partition consisting of the set of cells lying below the diagonal of a (k × n)-rectangle,
with k and n coprime. The terminology “rational” alludes to k/n being a rational number. Removing the
coprimality condition, one gets Rectangular Catalan Combinatorics (see [5]).

The final step in the hierarchy, introduced in [9], corresponds to choosing any overall “triangular partition”.
These are the partitions whose cells are those lying below the line joining points (r, 0) and (0, s), for any given
positive reals r and s. The resulting partitions∗, are here denoted by τrs. As mentioned previously, the rational
case corresponds to choosing r = k and s = n, relatively prime integers, and it is well known that the number of
partitions contained in τkn is given by the formula 1

k+n

(
k+n
n

)
, whilst the number of associated parking functions

is kn−1. These enumerations become a bit trickier when one drops the coprimality requirement†, taking the

∗These are defined in section 2.
†This is the “rectangular” case.
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respective forms

∑

µ`d

1

zµ

∏

j∈µ

1

a+ b

(
j(a+ b)

jb

)
, and

∑

µ`d

n!

zµ

∏

j∈µ

(ja)jb

a (jb)!
,

where a := k/d, b := n/d, for d = gcd(k, n); and writing j ∈ µ for j being a part of µ. Recall here that
zµ :=

∏
i i
di di!, with di being the number of i-size parts of µ.

The extension to any triangular partitions, when r and s are any positive real numbers, is motivated by the
results in [9]. The purpose of this paper is to explore different aspects of this most general framework. We start
with a discussion of the properties and intrinsic characterization of triangular partitions, including interesting
aspects of the dominance and containment order. We then obtain general recurrence for the (weighted) enu-
meration of triangular Dyck paths and associated parking functions (see Proposition 6.1 and Proposition 8.1).

2. Triangular partitions

c

s

r

v

Figure 1: Triangular partition.

A partition τ = τ1τ2 · · · τk is said to be triangular if there exist positive
real numbers r and s such that

τj =
⌊
r − j r/s

⌋
,

with j running over integers that are less or equal to s. In other words,
the cells c = (i, j) ∈ N2 of the triangular partition τrs are those that lie
below the line joining (0, s) to (r, 0), i.e.

(i, j) ∈ τr,s iff
i+ 1

r
+
j + 1

s
≤ 1.

We say that this line cuts off τ . Clearly, the conjugate of a triangular partition is triangular. Triangular
partitions have been considered under the name “plane corner cuts” in [15] and enumerated in [10]. Denoting
by tN the number of triangular partitions of size N , small values of the sequence {tN}N are:

1, 1, 2, 3, 4, 6, 7, 8, 10, 12, 13, 16, 16, 18, 20, 23, . . .

Figure 2 displays all triangular partitions of N ≤ 6, with ε denoting the “empty” partition.

ε

Figure 2: All triangular partitions, for n ≤ 6.

Observe that many different pairs (r, s) may give rise to the same triangular partition τ . Indeed, as illustrated
in Figure 4, we have τ = τrs = τr′s′ whenever there are no positive integer coordinate points lying between the
lines x/r + y/s = 1 and x/r′ + y/s′ = 1. In particular, τrn = τkn,n for all kn ≤ r ≤ kn+ 1 and k, n ∈ N.

We say that the line x/r + y/s = 1 touches the cell (i, j) (from above) if it contains the north-east corner
of the cell, i.e. (i + 1)/r + (j + 1)/s = 1. If the line x/r + y/s = 1 touches no cells, then τr′s′ = τrs for any
(r′, s′) close enough to (r, s). If the line x/r+ y/s = 1 touches a cell (i, j), then taking r′ = r− ε and s′ = s− ε,
for a sufficiently small positive ε, one may “remove” the cell (i, j) from the diagram of the partition. On the
other hand, taking r′ = r+ ε and s′ = s+ ε we get a line cutting off the same partition while touching no cells.
Summing up, for every triangular partition τ there is a pair (r, s) such that the line x/r + y/s = 1 cuts off τ ,
without touching any cell.

Let us say that τ is integral, if there exist k and n in N such τ = τkn. As mentioned previously, these are the
triangular partitions that give rise to the previous context of “rectangular” Catalan combinatorics; and adding
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the requirement that gcd(k, n) = 1 that of “rational” Catalan combinatorics. Clearly, conjugation preserves
integrality. For size N ≤ 10, the non-integral triangular partitions are the following:

{2111, 221, 32, 41,

21111, 51,

211111, 3211, 421, 61,

2111111, 221111, 22211, 53, 62, 71,

21111111, 2211111, 3321, 432, 72, 81,

211111111, 22111111, 322111, 33211, 532, 631, 82, 91}.

As N grows, non-integral triangular partitions become preponderant. For instance, among all triangular par-
titions of size at most 55, more than 87.5% of them are non-integral. Thus triangular partitions significantly
extend the field of study.

A slope vector for a triangular partition τ is a positive coordinate vector that is orthogonal to one of the
lines that cut off τ . If need be, we may normalize slope vectors so that their coordinates sum up to 1. For any
two lines cutting off the same triangular partition τ , say with respective slope vectors (t1, 1− t1) and (t2, 1− t2),
there exists a line with slope vector (t, 1− t) that also cuts of τ for any t1 < t < t2. By definition, a triangular
partition affords (infinitely many) slope vectors. Hence, it follows that:

Lemma 2.1. The closure of the set of all slope vectors of a triangular partition τ forms a convex cone Cτ , of
the form

Cτ = {λ(t, 1− t) | t−τ ≤ t ≤ t+τ , λ ∈ R+}, (1)

for some 0 ≤ t−τ < t+τ ≤ 1. Moreover, τ is uniquely characterized by its size and the pair (t−τ , t
+
τ ).

We will further discuss this unicity below, but first, we show how to explicitly calculate t−τ and t+τ . As we
will see, this also gives a direct characterization of triangular partitions, without having to exhibit a cutting
line.

ℓ





︸ ︷︷ ︸
a

v′
v

v′′

Figure 3: The two extreme slope vectors (here upscaled) of a hook shape (a | `).

For a cell c of a partition µ, recall that the hook of c is the partition of shape (a + 1, 1`), with a = aµ(c)
and ` = `µ(c) standing for the arm and leg of c = (i, j) of µ. Recall that aµ(c) := µj − i (resp. `µ(c) := µ′i− j)
is the number of cells of µ that sit to the right of (resp. above) c in the same row (resp. column). The hook
length of cell c in µ, is defined to be ε(c) = εµ(c) := 1 + aµ(c) + `µ(c). The “Frobenius notation” for such a
hook is (a | `).

For any given cell c of a partition µ, we consider the vectors (t′(c), 1− t′(c)) and (t′′(c), 1− t′′(c)) respectively
orthogonal to the lines:

• which joins the vertices (1, `(c) + 1) and (a(c) + 2, 1), and

• which joins the vertices (1, `(c) + 2) and (a(c) + 1, 1).

An instance is illustrated in Figure 3. It is easy to check that

t′µ(c) := `(c)/ε(c), and t′′µ(c) = (`(c) + 1)/ε(c). (2)

When τ is a triangular partition, all of its slope vectors v = (t, 1 − t) must be such that t′τ (c) < t < t′′τ (c).
Indeed, all the cells appearing in the hook of c must lie below (up to parallel shift) any line that cuts off τ , with
t′τ (c) and t′′τ (c) giving extreme bounds. Otherwise, an extra cell would have to lie in τ , either at the end of the
arm or the leg of c.

ECA 3:1 (2023) Article #S2R1 3
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Vice versa, if the condition t′τ (c) < t < t′′τ (c) is satisfied for every cell c in τ , then (t, 1− t) is a slope vector
of τ . Indeed, consider the lowest line (r, s) perpendicular to (t, 1− t) and such that τ ⊂ τrs. It follows that the
line (r, s) touches a cell of c′ of τ . Suppose that there is a cell c′′ that fits under the line (r, s), but such that
c′′ /∈ τ . Without loss of generality, we can assume that c′ lies to the west of c′′. Let c ∈ τ be the cell in the
same column as c′ and the same row as c′′. Then t ≥ t′′τ (c) which is a contradiction. Hence there is no such cell
c′′ and τ = τrs We have thus shown the following:

Lemma 2.2. A partition τ is triangular if and only if t−τ < t+τ , with

t−τ := max
c∈τ

`(c)

a(c) + `(c) + 1
, and t+τ := min

c∈τ

`(c) + 1

a(c) + `(c) + 1
. (3)

Furthermore, if t−τ < t+τ then (t, 1− t) is a slope vector of τ if and only if t−τ < t < t+τ .

As illustrated in Figure 4, this gives an explicit description for the extreme rays of the cone Cτ which does
not rely on explicit knowledge of a line cutting off τ . Setting tτ := (t−τ + t+τ )/2, we may consider the vector
vτ := (tτ , 1− tτ ) to be a “standard” slope vector for τ .

τ

Cτ

Figure 4: The cone of a triangular partition.

Two triangular partitions are said to be similar‡ if they share a slope vector. For any triangular partition
τ , it is easy to check that all partitions associated to τ -shadows of a cell c = (i, j):

shc(τ) := {(x, y) | (x, y) ∈ τ, with x ≥ i and y ≥ j},

are similar to τ . For any fixed t ≥ 0, all the partitions with cell sets:

{(i, j) | i t+ j (1− t) < d}, 0 ≤ d <∞,

are clearly similar, since they share the slope vector (t, 1 − t). These partitions are nested as d grows. Fur-
thermore, if one chooses t so that t/(1 − t) is irrational, cells are added one at a time as d grows. We get the
following

Corollary 2.1. For a fixed size n, there are finitely many values

0 = t0 < t1 < . . . < tk < 1 = tk+1

such that for every i ∈ {0, 1, . . . , k + 1} no triangular partition of size n admits a slope vector (ti, 1 − ti).
Furthermore, for every i ∈ {0, 1, . . . , k} there is a unique triangular partition τi of size n such that t−τi = ti and
t+τi = ti+1.

Note

Part of the study of triangular partitions may be coined in terms of “sturmian” words. Indeed, these give
explicit descriptions of discrete lines in the plane. Their factors, also known as “mechanical” words, describe
segments of discrete lines. The upper bound (cells closest to a cutting line) of triangular partitions correspond
to such a segment. However, this approach does not emphasize the number of cells lying below the line. For
more on sturmian and mechanical words, see [13, Chapter 2].

‡Careful, this is not intended to be an equivalence relation.

ECA 3:1 (2023) Article #S2R1 4



François Bergeron and Mikhail Mazin

ε

r

s

(a) With regions labeled

r

s
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Figure 5: Triangular partition regions, in logarithmic scale.

3. Moduli space of lines

Note that a line x/r + y/s = 1 touches a cell (i, j) = (a− 1, b− 1) if and only if

a/r + b/s = 1 iff as+ br = rs iff (r − a)(s− b) = ab.

Therefore the positive (r, s)-quadrant Q := (R>0)2 is can be decomposed into regions by (positive branches of)
hyperbolas with equations as above, one for each cell. Thus Q may be considered as a moduli space of lines.
In this moduli space, the hyperbola

Hab := {(r, s) ∈ Q | (r − a)(s− b) = ab},

associated to a cell (i, j) = (a − 1, b − 1), separates Q according to whether the cell (i, j) fits below the line
(r, s), is touched by the line (r, s), or does not fit under it. These possibilities respectively correspond to

(r − a)(s− b) > ab, (r − a)(s− b) = ab, and, (r − a)(s− b) < ab.

Thus the cells occurring in a triangular partition specified by (r, s) are in bijection with the hyperbolas separating
(r, s) from the origin. In other words, as one crosses the hyperbola Hab, going towards the origin, the cell
(i, j) = (a − 1, b − 1) gets removed from the partition. For this reason it is natural to say that Hab is the
hyperbolic wall associated to (a, b).

Lemma 3.1. There is a bijective natural map§ ρ : C → T , from the set C of connected components of the
complement:

Q := Q \
⋃

(a,b)∈N2

Hab,

to the set T of triangular partitions.

Proof. Consider the map that sends the (r, s)-line in Q to the partition τrs. As observed above, this is a locally
constant map from Q to the set of triangular partitions. Therefore, it is well defined on connected components.
The surjectivity is immediate, since by definition a triangular partition τ is cut off by some line x/r+ y/s = 1,
and we have observed that (r, s) may be chosen so that this line contains no points of N2. To prove injectivity
one needs to show that whenever two points of Q define the same triangular partition, then they must lie in
the same connected component. We consider two cases.

First, when the lines associated to (r0, s0) and (r1, s1) do not intersect in the positive quadrant, then one
may assume without loss of generality that r0 ≤ r1 and s0 ≤ s1. Let us show that the segment (rt, st) :=
(r0 + t(r1 − r0), s0 + t(s1 − s0)), connecting these two points of Q, lies entirely within the same connected
component of Q. Indeed, if the segment (rt, st)0≤t≤1 would cross one of the hyperbolic walls Hab, then there
would exist some 0 < t < 1 such that the line x/rt+y/st = 1 passes through (a, b). The partition corresponding

§Illustrated in Figure 5.
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r0

rt

r1

s1 st s0

i, j

⟳

(u, v)

(i, j) /∈ τr0s0

(i, j) ∈ τr1s1

r0

rt

r1

s1 st s0

i, j

⟳

(u, v)

(i, j) ∈ τr0s0

(i, j) /∈ τr1s1

Figure 6: Illustration of Lemma 3.1.

to (r1, s1) would thus contain the cell (i, j) = (a−1, b−1), whereas the partition corresponding to (r0, s0) would
not; which is a contradiction.

If the lines associated to (r0, s0) and (r1, s1) intersect in the positive quadrant (as illustrated in Figure 6), say
at some (non-integer) point (u, v), then both points (r0, s0) and (r1, s1) belong to the hyperbola (r−u)(s−v) =
uv. As one moves along this hyperbola, associated lines rotate around (u, v). Without loss of generality, one
may assume that r0 ≤ r1 and s0 ≥ s1. Consider the segment of the hyperbola (r−u)(s− v) = uv lying between
the points (r0, s0) and (r1, s1). Suppose that for some point (rt, st) on this segment the line x/rt + y/st = 1
passes through an integer point (a, b). If a < u, then it follows that the triangular partition corresponding to
(r1, s1) contains the cell (i, j) = (a−1, b−1), whereas the partition corresponding to (r0, s0) does not. Similarly,
if a > u, then the triangular partition corresponding to (r0, s0) contains the cell (i, j) = (a− 1, b− 1), whereas
the partition corresponding to (r1, s1) does not. Moreover, a 6= u since the hyperbola (r − u)(s − v) = uv can
only intersect a vertical line at one point. Therefore, we get a contradiction in this case as well.

Let τ be a triangular partition, and set

Rτ := CL
{

(r, s) ∈ Q
∣∣ x/r + y/s = 1 cuts off τ

}
.

This is the closure of the connected component corresponding to τ by the above lemma. Observe that, for any
(r, s) in the interior R◦τ , the line x/r + y/s = 1 does not touch any cells. With this terminology, the bijective
map of Lemma 3.1 sends R◦τ 7→ τ .

We say that a cell of a triangular partition τ is removable if it can be removed so that the resulting partition
is also triangular. Similarly, we say that a cell of the complement of τ is addable if it can be added to τ so that
the resulting partition is also triangular. An argument similar to the proof of Lemma 3.1 proves the following:

Lemma 3.2. Let (i, j) be a removable cell of a triangular partition τ . Then there exists (r, s) ∈ Rτ such that
(i, j) is the unique cell touched by the line x/r + y/s = 1.

Proof. Consider (r0, s0) such that the line x/r0 + y/s0 = 1 cuts off τ \ {(i, j)}, and (r1, s1) such that the line
x/r1 + y/s1 = 1 cuts off τ . If these lines do not intersect in the positive quadrant, then r0 < r1, s0 < s1,
and (a, b) = (i + 1, j + 1) is the only integer point that lies between the lines. Then for some 0 < t < 1, with
rt = r0 + t(r1 − r0) and st = s0 + t(s1 − s0), the line x/rt + y/st = 1 cuts off τ and touches the cell (i, j), while
not touching any other cells.

Suppose the lines x/r0 + y/s0 = 1 and x/r1 + y/s1 = 1 intersect at some positive point (u, v). One can
choose these lines so that they do not pass through integer points, ensuring that (u, v) is not integral. Let us
assume that a = i + 1 < u (the case a > u is obtained similarly). The triangle bounded by the lines and the
vertical axis contains the unique integer point (a, b) = (i+ 1, j+ 1), while the triangle bounded by the lines and
the horizontal axis does not contain integer points. Therefore, the line connecting (a, b) and (u, v) cuts off τ
and touches the unique cell (i, j).

The following Lemma can be observed directly, but it is especially natural from the point of view of the
moduli space of lines Q:

Lemma 3.3. Consider a line x/r+y/s = 1. Let (i1, j1), (i2, j2), . . . , (ik, jk) be all the cells touched by x/r+y/s =
1, ordered so that i1 < i2 < . . . < ik. Then the set of triangular partitions β such that (r, s) ∈ Rβ is the union
of the following:

1. τrs,

ECA 3:1 (2023) Article #S2R1 6
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2. β := τrs − {(i1, j1), (i2, j2), . . . , (ik, jk)},

3. {τrs − {(il, jl), (il+1, jl+1), . . . , (ik, jk)} | 1 < l ≤ k} ,

4. {τrs − {(i1, j1), (i2, j2), . . . , (il, jl)} | 1 ≤ l < k} .

Indeed, there are k hyperbolas intersecting at (r, s), and these partitions correspond to the 2k connected
components of Q near (r, s). Note that only two of the cells (i1, j1), . . . , (ik, jk) in τrs are removable: (i1, j1)
and (ik, jk). In cases (3) and (4) of the Lemma the only removable cell touched by the line x/r + y/s = 1 is
(il, jl). Similarly, of the cells (i1, j1), . . . , (ik, jk) only (i1, j1) and (ik, jk) are addable for β, and in the cases (3)
and (4) the only addable cells touched by the line x/r + y/s = 1 are (il−1, jl−1) and (il+1, jl+1) respectively.

4. Orders on triangular partitions

Two orders are of interest here, both obtained by restriction of classical orders on partitions to triangular
partitions. First, even though the dominance order is only a partial order on all partitions of a given size¶,
its restriction to triangular partitions is a total order which we denoted by α � β. See Figure 7 for an illustration
of the difference between the two contexts. It is easy to show that

(0, 1/6) (1/6, 1/4) (1/4, 2/5) (2/5, 3/5) (3/5, 3/4) (3/4, 5/6) (5/6, 1)

Figure 7: The dominance order on all partitions of 6, and its restriction to triangular ones.

Lemma 4.1. For two same size triangular partitions α and β, we have α ≺ β if and only if t+α ≤ t−β .

Furthermore, β covers α in dominance order if and only if t+α = t−β .

Proof. According to Corollary 2.1, (t, 1 − t) is not a slope vector of any triangular partition of size n if and
only if there exist triangular partitions α and β of size n, such that t = t+α = t−β . Let x/r + y/s = 1 be the
closest to the origin line with the slope vector (t, 1− t) such that |τrs| > n. It follows then that x/r + y/s = 1
touches more than one cell. Similar to Lemma 3.3, let (i1, j1), (i2, j2), . . . , (ik, jk) be all the cells touched by
x/r+ y/s = 1, ordered so that i1 < i2 < . . . < ik. Let l := |τrs| − n. One gets l < k by the definition of the line
x/r + y/s = 1. Partition τrs − {(i1, j1), . . . , (il, jl)} is of size n and can be cut off by a line with a slope vector
(t − ε, 1 − t + ε) for a small enough ε > 0. Indeed, one should rotate the line x/r + y/s = 1 counterclockwise
around the north-east corner of the cell (il+1, jl+1) a little. Therefore, α = τrs − {(i1, j1), . . . , (il, jl)}. By a
similar consideration, one can obtain that β = τrs − {(ik−l+1, jk−l+1), . . . , (ik, jk)}. Finally, one observes that
α ≺ β and the rest of the Lemma follow from Corollary 2.1.

In simple terms, if one lists the same size triangular partitions in clockwise order of their slope vectors, they
will occur in decreasing dominance order. For size 6, this is illustrated in Figure 7. More properties of the
dominance order on triangular partitions (with different terminology) may be found in [14].

Our second order of interest is the restriction of the containment order α ⊆ β to triangular partitions. This
gives rise to the Triangular Young poset, which we denoted by Y4. We denote the cover relation in Y4 by
α/· β.

Lemma 4.2. Let α and β be triangular partitions and α ⊂ β. Then one has α/· β if and only if α is obtained
from β by removing exactly one cell. In particular, Y4 is ranked by the number of cells in a partition.

Proof. Clearly, if α is obtained from β by removing exactly one cell, then α/· β. Suppose now that α/· β and
|β| > |α| + 1. Let α = τr0s0 and β = τr1s1 . Similar to Lemma 3.1, let us connect the points (r0, s0) and

¶Starting with size 6.
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(r1, s1) of the moduli space Q by a path (rt, st) as follows: if the corresponding lines do not intersect inside the
positive quadrant, then take the straight line (rt, st) = (r0 + t(r1 − r0), s0 + t(s1 − s0)); if they intersect, then
take their rotation around the point of intersection. Observe that in both cases the partition τrtst can only
increase as t increases. Indeed, even for the rotation, if a cell gets removed, it is not going to be added back
later, which contradicts τr0s0 = α ⊂ β = τr1s1 . Since α/· β it follows that all cells from β − α have to be added
simultaneously, at a certain value 0 < t < 1, which means that the line x/rt + y/st = 1 touches all the cells of
β − α. Then Lemma 3.3 guarantees that the cells can be added one by one. Hence we get a contradiction.

Corollary 4.1. Modulo the map ρ : C → T from Lemma 3.1, the cover relation of Y4 corresponds to crossing
a hyperbolic wall at a generic point.

In other words, the Hasse diagram of Y4 is planar: for every triangular partition, τ one can draw the
vertex corresponding to it at the center of the region Rτ , and then connect vertices in the neighboring regions
by crossing the shared pieces of the boundary at simple points. Note that the resulting drawing of the Hasse
diagram satisfies an additional condition:

Lemma 4.3. For any interval [α, β] ⊂ Y4, the vertices corresponding to α and β in the planar presentation of
the Hasse diagram of [α, β] obtained by restricting the above construction to [α, β] both belong to the boundary
of the unbounded region. In particular, the graph obtained from the Hasse diagram of [α, β] by adding an extra
edge connecting α to β is planar.

Proof. Indeed, the regions corresponding to the partitions not in the interval [α, β] are inside the unbounded
region of the Hasse diagram of [α, β], and unless α = ∅, both Rα and Rβ share boundaries with regions
corresponding to partitions outside of [α, β]. If α = ∅ then the corresponding vertex is also clearly on the
boundary of the unbounded region.

Lemma 4.1 also implies that

Corollary 4.2. In the Hasse diagram of Figure 8, triangular partitions of the same size appear from left to
right in decreasing dominance order.

There is a subtle difference between the planarity of the Hasse diagram as an abstract graph and its planarity
as a Hasse diagram: in a Hasse diagram, the edges are required to be drawn going upward from the smaller
element to the bigger element, with respect to a chosen direction. See [16] for a detailed discussion of the
planarity of Hasse diagrams and its connection to the condition in Lemma 4.3.

Lemma 4.4. The poset Y4 is a lattice.

Proof. Since Y4 is bounded from below, it suffices to show that the join operation is well defined. Clearly, for
any two triangular partitions α′ and β′ there exists a common upper bound, i.e. a triangular partition τ such
that α′ ⊂ τ and β′ ⊂ τ . Therefore, we only need to prove that the minimal upper bound is unique.

Suppose that A 6= B are two minimal upper bounds for α′ and β′. Consider a saturated chain connecting α′

to A, and let α be the maximal element on that chain such that α ⊂ B. Similarly, consider a saturated chain
connecting β′ to B, and let β be the maximal element on that chain such that β ⊂ A. Consider also saturated
chains connecting α to B and β to A. Note that all four chains connecting α and β to A and B cannot intersect
each other except at the ends. In particular, they correspond to non-intersecting paths on the Hasse diagram.

Let τ be a minimal upper bound for A and B, let T be a maximal lower bound for α and β, and consider
saturated chains connecting T to α and β, and A and B to τ . Note that the corresponding paths on the Hasse
diagram do not intersect between each other or with the previously constructed four paths (except at the ends).
Finally, Lemma 4.3 guarantees that if we restrict the drawing of the Hasse diagram to the interval [T, τ ] ⊂ Y4,
than the vertices corresponding to τ and T are going to be on the boundary of the unbounded region, and,
therefore, can be connected by an extra path not intersecting any edges of the Hasse diagram of the interval
[T, τ ]. Thus we obtained a planar presentation of a K3,3 graph: every vertex of τ, α, β is connected to every
vertex of T,A,B, and all the connecting paths do not intersect each other except at the ends. Contradiction.

A lower portion of this Hasse diagram is illustrated in Figure 8. It is dual corresponds to Figure 5. For
obvious reasons, nodes and regions are unlabeled in the larger right-hand side images. The larger image of the
poset displays all triangular partitions of n ≤ 45. Its vertices are equal to n vτ (up to a logarithmic rescaling
and π/4 rotation), with vτ the standard‖ slope vector of τ . The lattice Y4 is not a distributive, as illustrated
by the fact that we have 221 ∨ (32 ∧ 211) 6= (221 ∨ 32) ∧ (221 ∨ 211).

Let us prove a few more results about the triangular Young poset Y4 and the structure of the moduli space
of lines Q.
‖See definition after Lemma 2.2.
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(a) With labeled nodes (b) Larger portion

Figure 8: Bottom of Triangular Young poset Y4 (red vertices non-integral).

i1j1

i2j2

i3j3

kl

l2

l1

Figure 9: Illustration of Lemma 4.5.

Lemma 4.5. No triangular partition can have more than 2 removable cells. Similarly, no triangular partition
can have more than 2 addable cells.

Proof. Suppose that a triangular partition α has three removable cells (i1, j1), (i2, j2), and (i3, j3), i1 < i2 < i3.
It follows that the cell (i2, j2) cannot fit under the line touching the cells (i1, j1) and (i3, j3). Otherwise, in
order to remove the cell (i2, j2) one would either have to remove the cell (i1, j1) or (i3, j3).

Without loss of generality, one may assume that i2 − i1 ≤ i3 − i2, which implies j1 − j2 ≤ j2 − j3. There is
then a cell

(k, l) := (i2 + (i2 − i1), j2 + (j2 − j1)),

since j2 + (j2 − j1) ≥ j2 + (j3 − j2) = j3 ≥ 0 and i2 + (i2 − i1) > 0. Consider the lines `1 and `2 respectively
cutting off α − {(i1, j1)} and α − {(i2, j2)}. The cell (k, l) fits under the line `1, but it does not fit under the
line `2; hence we have a contradiction. The statement about addable cells is proved analogously.

One case of Lemma 4.5 is illustrated in Figure 9. Here the line l1 cuts off α− {(i1, j1)} and the line l2 cuts
off α− {(i2, j2)}. Then the box (k, l) fits under l1, but not under l2.

Lemma 4.6. Suppose that a triangular partition τ corresponds to an unbounded region. Then τ is either empty,
a row partition, or a column partition.

Proof. Indeed, if both cells (1, 0) and (0, 1) are in τ then both the leg and the arm of (0, 0) in τ are positive.
Lemma 2.2 then implies that there exist µ > λ > 0 such that if the line x/r+y/s = 1 cuts off τ then µ > r/s > λ.
Also, if (a− 1, b− 1) is an addable cell, then the hyperbolic wall (r− a)(s− b) = ab is an upper boundary of the
corresponding region. But then, the region has to lay inside the curved triangle bounded by the lines r = µs
and r = λs, and the hyperbola (r − a)(s− b) = ab.

Lemma 4.7. Any bounded region is either a triangle or a quadrilateral. Each quadrilateral region has two lower
boundaries and two upper boundaries, and they cannot alternate, i.e. the two lower boundaries intersect in a
vertex of the region, and the two upper boundaries intersect in a vertex of the region.
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Proof. A bounded region cannot have just two boundaries, since two hyperbolic walls cannot intersect at more
than one point (that would correspond to two distinct lines passing through the same two points). In view of
Lemma 4.5, the only thing left to check is that a quadrilateral region cannot have sides alternating between
lower and upper boundaries.

Let us follow the boundary of a region in the counterclockwise direction, and suppose that at a certain vertex
we have a change in the type of the boundary (from lower to upper, or vice versa). Let (r − a)(s− b) = ab be
the hyperbola that we followed approaching the vertex, and let (r− c)(s−d) = cd be the hyperbola we followed
after the vertex. Perforce, we have c > a. Indeed, when moving counterclockwise along a lower boundary, r is
decreasing and s is increasing, hence the corresponding line is rotating counterclockwise around (a, b). For the
next boundary to be upper, one has to hit the north-east corner (c, d) of an addable cell (c − 1, d − 1), which
has to lie to the east of (a, b) since the line is rotating counterclockwise. The case when the boundary changes
from upper to lower is similarly dealt with. One concludes that the upper and lower boundaries cannot always
alternate as one moves around the region.

Lemma 4.8. Let α be a triangular partition corresponding to a quadrilateral region, which is to say that it
has two removable and two addable cells. Then the line touching the two removable cells is parallel to the line
touching the two addable cells∗∗.

Figure 10: Illustration for Lemma 4.7.

As illustrated in Figure 10, if one moves counterclockwise along the
boundary of the (3 sided) region corresponding to τ = 221, then the
corresponding line successively rotates

• counterclockwise around the north-east corner of the removable
cell (1, 1) (left),

• clockwise around the north-east corner of the addable cell (2, 0)
(center),

• and clockwise around the addable cell (0, 3) (right).

In a transition from a lower boundary to an upper boundary (left) or
vice versa (right), the center of rotation moves east. If the next piece of
the boundary is of the same type (center), then the center of rotation
moves west.

Proof. Let `1 be the line touching the two removable cells of α, and let
`2 be the line touching the two addable cells of α. Lemma 4.7 implies
that `1, `2 ∈ Rα. Let

(i1, j1), (i2, j2), . . . , (ik, jk), with i1 < i2 < . . . < ik,

be all the cells touched by `1, and let

(k1, l1), (k2, l2), . . . , (kn, ln), with k1 < k2 < . . . < kn,

be all the cells touched by `2. Since `1, `2 ∈ Rα, according to Lemma 3.3 the cells (i1, j1), (i2, j2), . . . , (ik, jk)
are in α, and (i1, j1) and (ik, jk) are the two removable cells of α. Similarly, cells (k1, l1), (k2, l2), . . . , (kn, ln)
are not in α, and (k1, l1) and (kn, ln) are the two addable cells of α.

Suppose that `1 and `2 are not parallel.Let (u, v) be their intersection (here (u, v) is not necessarily in the
positive quadrant). Note that all the removable cells should fit below `2 and none of the addable cells can fit
below `1. It follows that (u, v) is either to the east of the northeast corners of all addable and removable cells, or
it is to the west of all of them. Without loss of generality one can assume that (u, v) is to the east,i.e. u < a1 +1
and u < c1 + 1.It follows then that the line `1 is steeper than `2.

If there is a cell such that its north-east corner is strictly inside the triangle bounded by the horizontal axis
and the lines `1 and `2, then one gets a contradiction: this cell is strictly below `2, but cannot be inside α since
its north-east corner is above `1.

One needs to consider two cases. Suppose first that l1 ≥ j1. Then there is a cell (k1 + (i2− i1), l1 + (j2− j1))
and its north-east corner is inside the required triangle. Indeed, one has:

l1 + (j2 − j1) ≥ j1 + j2 − j1 = j2 ≥ 0,

∗∗In Figure 5 this is reflected by the fact that lines connecting the top and the bottom corners of quadrilateral regions have slopes
1 (in logarithmic scale).

ECA 3:1 (2023) Article #S2R1 10



François Bergeron and Mikhail Mazin

k1, l1

k2, l2

i1, j1

i2, j2

o, p

(u, v)

`1

`2

k1, l1

k2, l2

i1, j1

i2, j2

i3, j3

o, p

(u, v)

`1

`2

Figure 11: Illustration for Lemma 4.8

and k1 + (i2− i1) > 0, so it is a cell, and its north-east corner is below `2 and above `1, because we moved from
the cell (k1, l1) with the north-east corner on `2 and above `1 in the direction parallel to `1, which goes down
steeper than `2.

Suppose now that l1 < j1.Then there is a cell (i1 + (k2 − k1), j1 + (l2 − l1)), and it is inside the required
triangle. Indeed, one has:

j1 + (l2 − l1) > l1 + l2 − l1 = l2 ≥ 0,

and i1 + (k2− k1) > 0, so it is a cell, and its north-east corner is below `2 and above `1 because we moved from
the cell (i1, j1) with the north-east corner on `1 and below `2 in the direction parallel to `2, which goes down
but less steep than `1.

Illustrated in Figure 11, are the cases when l1 > j1 (left) and l1 < j1 (right). Correspondingly, on the left
(o, p) = (k1 + (i2 − i1), l1 + (j2 − j1)) and on the right (o, p) = (i1 + (k2 − k1), j1 + (l2 − l1)). In both instances
the cell (o, p) creates a contradiction as it fits under `2 but not under `1.

Lemma 4.9. Suppose that a triangular partition α has two removable cells and just one addable cell (in other
words it corresponds to a triangular region with two lower boundaries). Then the line touching the two removable
cells does not contain any other positive integer points. Equivalently, no other hyperbolic wall passes through
the vertex of the region where the two lower boundaries intersect.

Proof. Suppose that two parallel lines `1 and `2 are such that

1. they both contain integer points,

2. there are no integer points (even not necessarily positive) between them,

3. `1 contains finitely many positive integer points.

Then `2 also contains finitely many positive integer points, and the numbers of positive integer points on `1 and
on `2 differ not more than by one.

Now, let `1 be the line touching the two removable cells of α, and let `2 be the line parallel to `1, above
it, and satisfying the above conditions. Clearly, `2 ∈ Rα.The statement above then implies that `2 contains at
least one positive integer point. But if it contains more than one positive integer point, then by Lemma 3.3, the
eastmost and the westmost cells touched by `2 are both addable. Contradiction. Therefore, `2 contains exactly
one positive integer point. But then `1 cannot contain more than two.

Lemma 4.10. Suppose that a triangular partition α has just one removable cell and two addable cells (in other
words it corresponds to a triangular region with two upper boundaries). Then the line touching the two addable
cells does not contain any other positive integer points. Equivalently, no other hyperbolic wall passes through
the vertex of the region where the two upper boundaries intersect).

Proof. Similar to Lemma 4.9.

The diagonal of triangular partition τ , is the set of cells that lie on the segment joining its removable cells.
If there is just one such cell, the diagonal is reduced to a single cell. The diagonal acts as a natural “boundary”
of τ , and we denote it by ∂τ . As illustrated in Figure 12, the cells of ∂τ are corners (either in red or green) of
τ . It follows from Lemma 3.3 that the partition τ◦ := τ \ ∂τ , which we call the interior of τ , is a triangular
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removable

removable

Figure 12: The diagonal of τ is the segment bounded by its removable cells.

partition. Thus, when δτ contains k cells, the Hasse diagram of the interval [τ◦, τ ] is a 2k-sided polygon. In
particular, the interval [τk−1,k−1, τkk] is always 2k-gon. This is why the whole poset is a mosaic of 2k-gons, as
illustrated in Figure 8.

For a given slope vector v = (t, 1−t), the ray Rv is the set of triangular partitions having v as an admissible
slope vector, i.e.

Rv := {τ ∈ Y4 | t−τ < t < t+τ }. (4)

This is an infinite chain in Y4 (see Figure 8). For instance, we have the ray

R(1−ε,1+ε) = {ε, 1, 2, 21, 31, 32, 321, 421, 431, 432, 4321, . . .}.

See also an illustration in Figure 8. As any line of irrational slope contains at most one integral point, it follows
that for all n ∈ N there is one and only one triangular partition of size n on any ray associated with an irrational
slope.

5. Triangular Dyck paths

(0, 6)

(10, 0)

(5, 3)

Figure 13: The τ(10,6)-Dyck path 531000.

For a given triangular partition τ , we consider the set Dτ :=
{α |α ⊆ τ} of τ-Dyck paths. Observe that conjugation gives a bi-
jection between Dτ and Dτ ′ . We further write D(r,s), when τ = τrs,
and say that its elements are (r × s)-Dyck paths. Observe that
D(r,n) = D(kn,n), for all kn ≤ r ≤ kn + 1 and k ∈ N, since the
corresponding triangular partitions coincide. It is often convenient
to consider that partitions Dτ are padded with zero parts to make
them of length n = l(τ)+1. As we have already mentioned, classical
Dyck paths correspond to the case τ = τn,n, with n ∈ N. As is very
well known, these are counted by the Catalan numbers An = 1

n+1

(
2n
n

)
. In general, we set Aτ := #Dτ . For

integral partitions τmn, the greatest common divisor d = gcd(m,n) plays an interesting role in our story. We
have m = ad and n = bd, for coprime integers a and b. The cells of τmn lying on its diagonal ∂(τmn) are of the
form (ak, bk), with 0 < k < d.

Figure 14: (α+ 15)/α.

In preparation for upcoming notions, it will be interesting to consider the skew
partition (α+ 1n)/α, in which α+ 1n stands for the partition obtained by adding one
to each of the parts of α including its zero parts. The above skew partition is readily
seen to consist of “independent” columns, as illustrated in Figure 14 with α = 53100.
The sequence of sizes of these columns is precisely µ(α) = 21011. The choice of n will
depend on the context, and it will be larger than the number of parts of α. For a fixed
τ = τ1τ2 · · · τn, the τ-area (or simply area) of a τ -Dyck path α is the number of cells
lying in the skew shape τ/α. In terms of the τ-area sequence (ai)1≤i≤n of α, in which
ai := τi − αi, we clearly have areaτ (α) :=

∑n
i=1 ai.

Definition 5.1. For any J subset of {i | 1 ≤ i ≤ n}, we consider the J-area:

areaJτ (α) :=
∑

i∈J
ai.
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⋆⋆

s

r

Figure 15: A sim cell of α = (8, 8, 4, 3, 3) relative to τ = (12, 10, 9, 7, 6, 4, 3, 1).

5.1 Similar cells (Diagonal inversions)

Let τ be a given triangular partition. With the notations of Equation 2, for any α ⊆ τ consider the set of cells
c of α that have hooks in α that are “similar” to τ :

Simτ (α) := {c ∈ α | t′(c, α) ≤ tτ < t′′(c, α))},

where tτ := (t−τ + t+τ )/2. The cardinality of this set, denoted by simτ (µ), is the similarity index†† of µ with
respect to τ . Expressed in words, the similarity index of µ with respect to τ counts the number of cells of
µ having “hook triangle slope vectors” compatible with the (average) slope vector of τ (represented by v in
Figure 3). Since at corner cells, we have ` = 0 and a = 0, we get `/(a+ `+ 1) = 0 and (`+ 1)/(a+ `+ 1) = 1.
Hence, any corner cell of α is always a τ -sim-cells, irrespective of τ . The sim-cells of the partitions contained
in τ = 32 are marked by stars in Figure 16.

⋆⋆ ⋆⋆⋆⋆ ⋆⋆
⋆⋆
⋆⋆ ⋆⋆

⋆⋆
⋆⋆⋆⋆ ⋆⋆

⋆⋆
⋆⋆
⋆⋆
⋆⋆

⋆⋆
⋆⋆⋆⋆ ⋆⋆

⋆⋆⋆⋆

Figure 16: Sim-cells for subpartitions of 32. The first 6 subpartitions are similar to 32.

The following is an example of a sequence of similar triangular partitions:

ε

They all share the common slope vector (1/2 + ε, 1/2− ε).

Lemma 5.1 (with B. Dequêne). If τ is a triangular partition, then the subpartitions α ⊆ τ such that areaτ (α)+
simτ (α) = |τ | are exactly those that lie on the ray corresponding to the slope vector (tτ + ε, 1− tτ − ε).

6. Counting τ-Dyck paths

The enumeration of triangular Dyck paths has an interesting (ongoing) history, which has up to now been
restricted to the integral case. Even if the simple counting in the case of any integer pairs (m,n) had already
been worked out in the 1950s (see [8]), it is only rather recently that the overall enumerative combinatorics
community has become aware of that fact. For a long time, only the “coprime case” was deemed really
understood, recently going under the name of rational Catalan combinatorics. These include the classical Fuss-
Catalan numbers when m = kn (or equivalently when m = kn+1). A direct extension of the classical “cycling”
argument shows that, for m and n coprime integers, the number (m,n)-Dyck paths is given by the formula

Amn =
1

m+ n

(
m+ n

n

)
. (5)

A formula for the non-coprime case of τmn is described in the next subsection.

††This just another name for the “dinv” statistic, that we choose to stress its natural geometrical meaning.
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6.1 Bizley formula

In the general “integral” situation, the enumeration formula of (m × n)-Dyck paths takes the form of a sum
of terms indexed by partitions of the greatest common divisor of m and n. This is what makes it harder to
“guess” a formula‡‡, since the numbers obtained do not factor nicely in general, even if they are effectively sums
of nicely factorized numbers. The Grossman-Bizley formula (see [8]) is:

Amn :=
∑

α`d

1

zα

∏

k part of α

1

a+ b

(
k(a+ b)

ka

)
, (6)

where (m,n) = (ad, bd) with a and b coprime, so that d = gcd(m,n). It is worth recalling that d!/zα is the
number of sizes d permutations of cycle type α, with

zα :=
∏

i

ici ci!,

where α has ci parts of size i. Specific examples of Equation 6 are:

A2a,2b = 1
2

(
1
a+b

(
a+b
a

))2

+ 1
2

(
1
a+b

(
2a+2b

2a

))
,

A3a,3b = 1
6

(
1
a+b

(
a+b
a

))3

+ 1
2

(
1
a+b

(
a+b
a

))(
1
a+b

(
2a+2b

2a

))
+ 1

3

(
1
a+b

(
3a+3b

3a

))
.

(7)

Observe that, for fixed coprime numbers a and b, all the formulas for (m,n) = (ad, bd), with 0 ≤ d, may be
presented in the form of the generating function:

∞∑

d=1

Aad,bd zd = exp
(∑

k≥1

1
a+b

(
k(a+b)
ka

)
zk/k

)
. (8)

As it happens, this is a specialization of more general formula (see Equation 33).

6.2 Explicit number of Dyck paths for all triangular partitions

For all triangular partitions, τ of size at most 9, the number Aτ of τ -Dyck paths may be found in the Table 1.
In the next subsection, we will see how to calculate these numbers recursively.

1

2

12 2

3 3

13 21 3

4 5 4

14 212 31 4

5 7 7 5

15 213 221 32 41 5

6 9 9 9 9 6

16 214 2212 321 42 51 6

7 11 12 14 12 11 7

17 215 2213 3211 421 52 61 7

8 13 15 19 19 15 13 8

18 216 2214 2312 3221 431 53 62 71 8

9 15 18 18 23 23 18 18 15 9

19 217 2215 2313 32212 3221 432 531 63 72 81 9

10 17 21 22 30 28 28 30 22 21 17 10

Table 1: Number of τ -Dyck paths

6.3 General recursive formula for triangular partitions

For any partition triangular τ , the q-area enumerator of τ -Dyck paths is

Aτ (q) :=
∑

α⊆τ

qareaτ (α). (9)

Since conjugation is an area-preserving bijection between the set of τ -Dyck paths and the set of τ ′-Dyck paths,
we clearly have Aτ (q) = Aτ ′(q). In preparation for the upcoming proposition, let us consider the following

‡‡Most guessing approaches rely (directly or indirectly) on the fact the numbers considered have nice factorization in small prime
numbers.
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notions. The bounding word wµ, of a partition µ, encodes the simplest southeast lattice path such that the
cells of the diagram of µ are those that sit below wµ. Thus wµ := 0rk1 · · · 0r21 · · · 0r11, where rk = µk, and
ri = µi − µi+1, for 1 ≤ i < k. For two partitions α and β, we denote by α � β the partition whose bounding
word/path is the concatenation of words: wα ·wβ . The empty partition acts as the identity for this associative
product. Three-way decompositions of the form ν = α � γ � β, with γ indicating a one cell partition, will be
of special interest. Observe that the middle one cell partition “γ” necessarily corresponds to a corner of ν. For
example, Let us denote by ∆(τ) the set of pairs (α, β) corresponding to three-way decompositions of τ , of the

⊙ ⊙ =

Figure 17: A decomposition α� γ � β.

form τ = α� γ � β, with the corner cell γ sitting on the diagonal of τ . In formula,

∆(τ) := {(α, β) | τ = α� γ � β, and γ ∈ ∂τ}. (10)

Recall also that τ◦ stands for the interior of τ , which is obtained by removing from τ all the cells on its diagonal.
Then, the number Aτ of τ -Dyck paths may efficiently be calculated with the following recursive formula.

τ

α \ ∂τ

β

Figure 18: First return cell
1

, with
1

marking other diagonal cells.

Proposition 6.1. Denoting by ∂ = ∂τ the diagonal of a given triangular partition τ , then for the q-area
enumerator of τ -Dyck, we have the recurrence

Aτ (q) = q|∂|Aτ◦(q) +
∑

(α,β)∈∆(τ)

q|α∩∂|Aα\∂(q)Aβ(q), (11)

with initial condition Aε(q) = 1. In particular, setting q = 1, we have

Aτ = Aτ◦ +
∑

(α,β)∈∆(τ)

Aα\∂ Aβ . (12)

This is a direct generalization of the well-known classical recurrence for Dyck path. Its proof corresponds
to a suitably adapted “first return to diagonal” argument typically used in the proof of the classical case (see
Figure 18). It is noteworthy that all possible α \ ∂ and β that occur in the right-hand side of Equation 11 are
triangular, as they are respectfully factors of τ◦ and τ . Hence, for a given partition τ , the set of partitions that
will arise in the recurrence can only be factors (for the �-product) of partitions obtained by successive removal
of diagonals. Hence, they all have a slope in common with that of τ .
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The q-area enumerators for all triangular partitions of size at most 6 are as follows (avoiding repetitions for
conjugate partitions):

A1 = q + 1, A2 = q2 + q + 1,
A21 = q3 + q2 + 2q + 1, A3 = q3 + q2 + q + 1,
A31 = q4 + q3 + 2q2 + 2q + 1, A4 = q4 + q3 + q2 + q + 1,
A32 = q5 + q4 + 2q3 + 2q2 + 2q + 1, A41 = q5 + q4 + 2q3 + 2q2 + 2q + 1,
A5 = q5 + q4 + q3 + q2 + q + 1, A321 = q6 + q5 + 2q4 + 3q3 + 3q2 + 3q + 1,
A42 = q6 + q5 + 2q4 + 2q3 + 3q2 + 2q + 1, A51 = q6 + q5 + 2q4 + 2q3 + 2q2 + 2q + 1,
A6 = q6 + q5 + q4 + q3 + q2 + q + 1.

6.4 Counting by Area and Sim

As in [9], we may consider the enumeration of τ -Dyck paths with respect to two statistics: “area” and “sim”,
in the triangular case. Note that our “sim” is the “dinv” of loc. cit.. The resulting (q, t)-polynomials:

Aτ (q, t) :=
∑

α⊆τ

qareaτ (α)tsimτ (α), (13)

plays a central role in a wide range of subjects. Once again, applying conjugation to partitions α contained in
τ , it is easy to check that Aτ ′(q, t) = Aτ (q, t). It follows from Lemma 5.1 that, for any triangular partition τ of
size n, we have

Aτ (q, t) = (qn + qn−1t+ . . .+ qtn−1 + tn) + . . .,

= sn(q, t) + . . . (14)

where the remaining terms are of degree (strictly) less than n. In the particular case δk = (k, k− 1, . . . , 2, 1, 0),
one may further see that

Aδk(q, t) = s(k+1
2 )(q, t) +

( (k+1
2 )−2∑

j=(k2)

sj,1(q, t)
)

+ . . ., (15)

with the missing terms only involving Schur functions indexed by partitions having a second part larger or
equal to 2. Taking into account the symmetry Aτ = Aτ ′ to avoid unnecessary repetitions, the values of Aτ for
(all) triangular partitions of size at most 8 are as given in Table 2. The entries are expressed in terms of Schur
functions sµ = sµ(q, t), so that the Schur positivity (see next section) is made apparent.

(0,1)
(1, s1)
(2, s2)
(21, s11 + s3) (3, s3)
(31, s21 + s4) (4, s4)
(32, s31 + s5) (41, s31 + s5) (5, s5)
(321, s31 + s41 + s6) (42, s22 + s41 + s6) (51, s41 + s6) (6, s6)
(421, s32 + s41 + s51 + s7) (52, s32 + s51 + s7) (61, s51 + s7) (7, s7)
(431, s42 + s51 + s61 + s8) (53, s42 + s61 + s8) (62, s42 + s61 + s8) (71, s61 + s8) (8, s8)

Table 2: Table of values (τ,Aτ ).

A constant term formula for Aτ (q, t) is given in [9, Prop. 7.2.1]. It follows that Aτ (q, t) is symmetric in q
and t, even though this is not evident in Equation 13. Setting t = 1/q, we often get nice product formulas. For
instance, In the case of τab, with a and b coprime integers, we have

q|τab|Aτab(q, 1/q) =
1

[a+ b]q

[
a+ b

a

]
. (16)

For any triangular partition τ = (k, j), with two parts, we further have

q|τ |Aτ (q, 1/q) =
[2k − j + 2]q[3(j + 1)]q

[3]q[2]q
. (17)
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7. Generic Schur function expansion

The polynomials Aτ (q, t) are not only symmetric but extensive explicit calculations suggest that they always
expand positively on the Schur polynomials basis. The following conjecture of [9, Conj. 7.1.1] is supported by
extensive calculations (for all triangular partitions of n ≤ 28); and in some instances proofs and/or justifications
via representation theory (see [6, 12]).

Conjecture 7.1. For any triangular partition τ of size n, the polynomial Aτ (q, t) affords a positive Schur-
expansion

Aτ (q, t) :=
∑

λ

cτλ sλ(q, t), i.e. with coefficients cτλ ∈ N. (18)

The sum runs over (length ≤ 2) partitions λ such that |λ| ≤ |τ |.

Specific values are:

A(n−k,k) =

k∑

j=0

s(n−2j,j), (19)

whenever n > 3k − 1, and A2k−1,k = A2k,k−1. This exhaust all possibilities for two-part triangular partitions,
since we must have n ≥ 3k − 1 if we want τ = (n− k, k) to be triangular. See [11, section 3]

7.1 Several parameters

Conjecturally, there is a natural extension of the previous Schur-expansions that encompass situations involving
more parameters, hence involving Schur functions indexed by partitions having more than two parts. In some
instances these are obtained as the GLk-character of the Sn-alternating component of representations of GLk×
Sn, as discussed in [5–7], thus explaining the Schur positivity. In the representation theoretical framework, one
can show that these expressions become stable once k ≥ n. We may thus present them as positive integer
coefficient linear combination of “formal” Schur expansions sλ(q) = sλ(q1, q2, . . . , qk):

Aτ (q) :=
∑

|λ|≤|τ |

cτλ sλ(q). (20)

Writing ρ(τ) for min(l(τ), l(τ ′)), we may summarize our theoretical and experimental observations about these
as follows:

1. for all τ :
Aτ (q, t) =

∑

α⊆τ

tsimτ (α)qareaτ (α)); (21)

2. for all τ ,
Aτ (q) = Aτ ′(q); (22)

3. if λ has more than ρ(τ) parts, then cτλ = 0;

4. if cτλ 6= 0, then |λ|+
(
l(λ)

2

)
≤ |τ |;

5. if τ = τ ′ + τn,n, with τ ′ triangular of length at most n, then

e⊥nAτ (q) := Aτ ′(q), (23)

6. for any τ ,

(e⊥k Aτ )(q) = q|τ |−(k+1
2 )
[
ρ(τ)

k

]

1/q

. (24)

7. for all k and n such that 0 ≤ k ≤ n− 1, and τ := τn,n, then

(e⊥n−k−1Aτ )(q, t) :=
∑

α⊆τ

tsimτ (α)
( ∑

des(α)⊆J
|J|=k

qareaJτ (α)
)
, (25)
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where the second summation runs over subsets J of {i | 1 ≤ i ≤ n− 1} that satisfy the stated requirements. To
finish parsing the right-hand side of this last equality, we recall Definition 5.1, and set

des(α) := {i | 1 ≤ i ≤ n− 1, and αi > αi+1}. (26)

We underline that this right-hand side is exactly the combinatorial description of the coefficient of en in the
Delta theorem. Extending this equality to any triangular partition would thus have an interesting impact on
possible extensions of this theorem.

Besides cases already covered, some experimentally calculated values are as follows

A321 = s111 + s31 + s41 + s6,

A421 = s211 + s32 + s41 + s51 + s7,

A431 = s311 + s42 + s51 + s61 + s8,

A432 = s411 + s33 + s52 + s61 + s71 + s9,

A531 = s221 + s411 + s42 + s52 + s61 + s71 + s9,

A532 = s311 + s521 + s43 + s52 + s62 + s71 + s81 + s10.,

A631 = s311 + s521 + s43 + s52 + s62 + s71 + s81 + s10.,

A4321 = s1111 + s311 + s411 + s511 + s42 + s43 + s61 + s62 + s71 + s81 + s10.,

A54321 = s11111 + s3111 + s4111 + s5111 + s6111 + s611 + s711 + 2 s811 + s911 + s10.11 + s421 + s521

+ s621 + s721 + s821 + s431 + s531 + s631 + s441 + s44 + s64 + s74 + s63 + s73 + s83

+ s93 + s72 + s82 + s92 + s10.2 + s10.1 + s11.1 + s11.2 + s12.1 + s13.1 + s15..

Observe that one may “predict” the equality A532 = A631 using Equation 22 in conjunction with Equation 23,
since 532 = 211 + 321, 631 = 31 + 321, and 31 is the conjugate of 211. Observe in A54321 that some coefficients
are larger than 1. Although these last values may be simply inferred just from the knowledge of Equation 25,
they do agree with representation theoretical descriptions not discussed here. For more on this see [4].

7.2 Hook shape component

A classical plethystic evaluation of Schur functions makes it easy to restrict a symmetric function to its “hook
shape component”. Indeed, recall that

1

u+ v
sµ[u− εv] :=

{
uavb if µ = (a | b),
0 otherwise,

(27)

using Frobenius notation for hooks, and with ε standing for a “formal plethystic variable” such that f [εx] =
ωf(x). Then, it is easy to show that

Proposition 7.1. Assuming Equation 24,

1

u+ v
Aτ [u− εv] =

∑

a+b=n−1

cτ(a | b)u
avb = u|τ |

ρ(τ)−1∏

i=1

(
1 +

v

ui

)
. (28)

where ρ(τ) := min(l(τ), l(τ ′)).

In other words, the multiplicity of a hook indexed Schur function s(a | b) in Aτ is the coefficient of uavb in
Equation 28. For instance, the above formula gives 16 of the 37 terms of A54321, leaving only 21 terms to be
explained:

A54321 = (16 terms) + s421 + s521 + s621 + s721 + s821 + s431 + s531 + s631 + s441

+ s44 + s64 + s74 + s63 + s73 + s83 + s93 + s72 + s82 + s92 + s10.2 + s11.2.

The remaining terms may be obtained using Equation 25.
A striking fact is that Aτ [z−εa] essentially corresponds to the triply graded Poincaré series of the Khovanov-

Rozansky homology of some torus knots, for adequate choices of τ .
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8. Triangular parking functions
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Figure 19: Parking func-
tion.

For any partition α and n ≥ l(α), a height n parking function of form α is simply a
standard tableau π of shape (α+1n)/α. Observe that the skew partition (α+1n)/α is
a set of disjoint columns, say of respective size ci. It follows readily that the number
of standard tableaux considered is:

n!

c1!c2! · · · ck!
, (29)

Observe also that the skew Schur function s(α+1n)/α is equal to

s(α+1n)/α = ec1ec2 · · · eck . (30)

Given a triangular partition τ and n ≥ l(τ), the overall set τ-parking functions of height n, is the set
{π |π ∈ syt((α + 1n)/α), and α ⊆ τ} which we denote by E(τ,n). For τ = τmn, with (m,n) coprime integers,
the total number of τ -parking functions (of height n) is well known to be equal to mn−1. More generally, for
τ = τmn with (m,n) = (da, db), such that a, b coprime and d = gcd(m,n), we also have a parking function
analog of Equation 6:

#E(τmn,n) =
∑

λ`d

1

zλ

(
n

λ

) ∏

k∈λ

1

a
(ka)kb−1. (31)

8.1 Symmetric function counting

It is natural to extend the above enumeration to a symmetric function q-enumeration of height n parking
functions, setting:

E(τ,n)(q;x) :=
∑

α⊆τ

q|τ |−|α| s(α+1n)/α(x). (32)

In the special cases τ = τ(da,db), with a, b coprime, there is (see [2,3]) a symmetric function version of Equation 8:

∞∑

d=1

E(τ(da,db),db)(1;x) zd = exp
(∑

k≥1

1
aekb[kax] zk/k

)
. (33)

We have the following nice extension of Equation 11 for the symmetric function enumeration of parking functions,
whose proof follows a very similar argument.

Proposition 8.1. For any triangular partition τ and any n > l(τ), the generic symmetric function enumerator
of τ -parking functions satisfies the recurrence

E(τ,n)(q;x) = q|δ|E(τ◦,n)(q;x) +
∑

(α,β,k)

q|α∩δ|E(α\∂,n−k)(q;x) E(β,k)(q;x), (34)

with initial condition Eε,n(x) = en(x), and where the summation runs over the set of triples (α, β, k) such that
τ = α� 1� β, with the partition 1 corresponding to a cell (i, k) of the diagonal ∂ = ∂τ of τ .

Formulas for a q, t-enumeration of τ -parking functions with special values of n may be found in [9]. One may
extend these for general values of n, and there are stable several parameter (i.e. q = (q1, q2, . . . , qk)) extensions
of the form:

Eτ,n(q,x) =
∑

µ`n

∑

λ

cλµsλ(q) sµ(x),

which specialize at q = (q, t) to the above-mentioned (q, t)-enumeration. This is ongoing work.
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