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Abstract: Motivated by recent works on the enumeration of Coxeter groups by the parity of descent positions,
we prove a formula for the generating function of the vector statistic (odesG, edesG, colG, `G) over the group
of colored permutations G(r, n). Here odesG, edesG, colG and `G denote the number of odd descent positions,
even descent positions, colors, and length of colored permutation, respectively. This generalises and unifies
several known results over Coxeter groups of type A and B. In particular, a special case of our formula permits
to evaluate the signed alternating descent polynomials over G(r, n) by the usual Eulerian polynomials, which
extends Dey and Sivasubramanian’s recent results in the special cases when r = 1, 2.
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1. Introduction

For any positive integer n, let Sn be the symmetric group of permutations of [n] := {1, 2, . . . , n}. Given a
permutation σ = σ1 · · ·σn ∈ Sn, an index i (1 ≤ i ≤ n− 1) is a descent (respectively, ascent) of σ if σi > σi+1

(respectively, σi < σi+1). The number of descents (respectively, ascents) of σ are denoted by des(σ) (respectively,
asc(σ)). A descent i of σ is an odd descent (respectively, even descent) if i is odd (respectively, even). Let
odes(σ) (respectively, edes(σ)) denote the number of odd (respectively, even) descents of σ. Similarly, we define
the number of even (respectively, odd) ascents by easc (respectively, oasc). The inversion number (inv) of σ is
the number of pairs (i, j) ∈ [n]× [n] such that σi > σj and i < j.

It is well known that the enumerative polynomial of permutations of [n] by descents is the Eulerian polyno-
mial An(x), which can also be defined by the exponential generating function [15,19, Chap.1]∑

n≥0

An(x)
tn

n!
=

x− 1

x− exp((x− 1)t)
. (1.1)

In 1973 Carlitz and Scoville [7] enumerated permutations according to the parity of both descents and as-
cents. Recently, Pan and Zeng considered the problem of enumerating permutations by the vector statistic
(easc, oasc, edes, odes, inv) and established the exponential generating function [14, Theorem 1.1]. The following
is one of the four equivalent forms of their formula [14, Eq. (1.6)].

Theorem A (Pan and Zeng). Let M =
√

(1− x)(1− y). We have∑
n≥1

tn

[n]q!

∑
σ∈Sn

xodes(σ)yedes(σ)qinv(σ)

=
(1 + x) cosh(Mt; q) +M sinh(Mt; q)− x(cosh2(Mt; q)− sinh2(Mt; q))− 1

1− (x+ y) cosh(Mt; q) + xy(cosh2(Mt; q)− sinh2(Mt; q))
, (1.2)
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where

cosh(t; q) =
∑
n≥0

t2n

[2n]q!
, sinh(t; q) =

∑
n≥1

t2n−1

[2n− 1]q!
(1.3)

with [0]q! = 1 and [n]q! =
∏n
i=1(1 + q + · · ·+ qi−1) for n ≥ 1.

As shown in [14], Formula (1.2) is a q-analogue of Carlitz-Scoville’s formula [7, Theorem 3.1] and encom-
passes both Stanley’s formula for the bi-statistic (des, inv) [18] and Chebikin’s formula for alternating descent
polynomials [8]. In a follow-up, among other things, Dey, Shankar, and Sivasubramanian [10, Theorems 1.5 and
1.8] established analog formulas of Theorem A for types B and D Coxeter groups. The following is one of their
type B formulas [10, Theorems 1.5], which is also a q-analogue of a formula due to Pan-Zeng [14, Theorem 1.4].

Theorem B (Dey, Shankar, and Sivasubramanian). Let M =
√

(1− x)(1− y). We have∑
n≥0

tn

(−q; q)n[n]q!

∑
σ∈Bn

xodesB(σ)yedesB(σ)qinvB(σ)

=
(1− y)

((
1− x cosh(Mu; q)

)
coshB(Mt; q) + x sinh(Mt; q)sinhB(Mt; q)

)
1− (x+ y) cosh(Mt; q) + xy exp(Mt; q) exp(−Mt; q)

+
M
((

1− y cosh(Mt; q)
)
sinhB(Mt; q) + y sinh(Mt; q)coshB(Mt; q)

)
1− (x+ y) cosh(Mt; q) + xy exp(Mt; q) exp(−Mt; q)

,

where

coshB(t; q) =
∑
n≥0

t2n

(−q; q)2n[2n]q!
, sinhB(t; q) =

∑
n≥1

t2n−1

(−q; q)2n−1[2n− 1]q!
(1.4)

and odesB (respectively, edesB and invB) denotes the number of odd descent positions (respectively, even descent
positions and inversions) over type B permutations in Bn, see Remark 2.3.

In this paper, as a natural continuation of the work done in [10,14], we provide a formula for the generating
function of the vector statistic (odesG, edesG, colG, `G) over the group of colored permutations G(r, n), which
permits to put Theorems A and B under the same umbrella. Here odesG (respectively, edesG, colG and `G)
denotes the number of odd descent positions (respectively, even descent positions, colors, and length) of per-
mutation. We shall achieve our goal by extending Dey, Shankar, and Sivasubramanian’s arguments in type B
Coxeter groups [10].

The study of signed Eulerian polynomials was initiated by Loday, Désarménien, Foata, Wachs, and Reiner
in the 1990’s and has attracted great attention of researchers [9, 13, 16, 17, 21], with two recent references
being [11, 12]. The alternating descent statistic on permutations was introduced by Chebikin [8] as a variant
of the descent statistic. Dey and Sivasubramanian [11] further studied the signed enumeration of alternating
descents for classical Weyl groups. Applying our generating function formula for colored permutations (see
Theorem 2.1), we shall evaluate the signed alternating descent polynomials over G(r, n) by the usual Eulerian
polynomials. The resulting formula (see Theorem 2.2) extends Dey and Sivasubramanian’s recent results in the
special cases when r = 1, 2.

The rest of this paper is organized as follows. We introduce definitions and main results, i.e., Theorem 2.1
and Theorem 2.2 in Section 2 and prove them in Section 3 and Section 4, respectively.

2. Definitions and main results

For positive integers m and n with m ≤ n, we denote by [m,n] the set {m,m+ 1, . . . , n}. The cardinality of a
set A will be denoted by |A|. For r, n ∈ P, we define the wreath product Zr oSn of Zr by Sn, i.e., the group of
colored permutations G(r, n), by

G(r, n) := {(c1, . . . , cn;σ) | ci ∈ [0, r − 1], σ = σ1 · · ·σn ∈ Sn}. (2.1)

The product in G(r, n) is defined by

(c;σ) · (c′; τ) := (c1 + c′
τ−1
1
, . . . , cn + c′

τ−1
n

; σ ◦ τ),

where the addition + is in Zr and composition ◦ in Sn. The entry ci is called the color of the σi, for 1 ≤ i ≤ n.
The elements of Zr oSn can be viewed as r-colored permutations, see Steingŕımsson [20] and Bagno et al. [2].
We will represent an element γ ∈ G(r, n) in window notation as

γ = [γ(1), . . . , γ(n)] = [σc11 , . . . , σ
cn
n ],
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and call σi the absolute value of γ(i), denoted by |γ(i)|. For γ ∈ G(r, n), we define the color set of γ by

ColG(γ) := {i ∈ [n] : ci 6= 0}

and its size will be denoted by colG(γ). If ci = 0, it will be omitted in the window notation. For example,
γ = [31, 2, 13, 42, 62, 51] ∈ G(5, 6). The group G(r, n) is generated by SG := {s0, s1, . . . , sn−1}, where for
i ∈ [n− 1]

si := [1, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] and s0 := [11, 2, . . . , n],

with relations given by the Dynkin-like diagram (see Figure 1).

Figure 1: The Dynkin-like diagram of G(r, n).

The length of γ ∈ G(r, n) is the minimal number of generators in SG whose product is γ,

`G(γ) := min{r ∈ N : γ = si1 · · · sir , for some sij ∈ SG}. (2.2)

Thus, the descent set of γ ∈ G(r, n) is

DesG(γ) := {s ∈ SG : `G(γs) < `G(γ)}

and its size is denoted by desG(γ). To give a combinatorial description of `G and DesG(γ) we use the following
linear order

nr−1 < · · · < n1 < · · · < 1r−1 < · · · < 11 < 0 < 1 < · · · < n (2.3)

on the set {0, 1, . . . , n, 11, . . . , n1, . . . , 1r−1, . . . , nr−1} of colored integers (see [4]). If γ = [γ(1), . . . , γ(n)] ∈
G(r, n), the length of γ is then characterized by (see [3, 16,20])

`G(γ) = inv(γ) +
∑
ci 6=0

(|γ(i)|+ ci − 1) , (2.4)

where the inversion number is defined by

inv(γ) = |{(i, j) : 1 ≤ i < j ≤ n, and γ(i) > γ(j)}|.

The descent set of γ ∈ G(r, n) has the following alternate definition

DesG(γ) = {i ∈ [0, n− 1] : γ(i) > γ(i+ 1)},

where γ(0) := 0. The number of odd (respectively, even) descent positions of γ is denoted by odesG(γ)
(respectively, edesG(γ)). The ascent set of γ ∈ G(r, n) is defined by

AscG(γ) := {i ∈ [0, n− 1] : γ(i) < γ(i+ 1)}.

Similarly, we define the statistics ascG(γ), eascG(γ) and oascG(γ). For any γ ∈ G(r, n) the following identities
hold

edesG(γ) + eascG(γ) = b(n+ 1)/2c,
odesG(γ) + oascG(γ) = bn/2c.

(2.5)

Note that 0 ∈ DesG(γ) if and only if c1 > 0.

Example 2.1. If γ = [31, 2, 13, 42, 62, 51] ∈ G(5, 6), then DesG(γ) = {0, 2, 3, 4}, desG(γ) = 4, inv(γ) = 12,∑
ci 6=0 |γ(i)| = 19,

∑
ci 6=0(ci − 1) = 4, `G(γ) = 35 and colG(γ) = 5.

For n, r ∈ P, define the polynomials

G(r,n)(a, q) : =
∑

γ∈G(r,n)

acolG(γ)q`G(γ),

G(r,n)(x, y, a, q) : =
∑

γ∈G(r,n)

xodesG(γ)yedesG(γ)acolG(γ)q`G(γ), (2.6)

and the standard q-factorial notation

(a; q)n :=

{
(1− a)(1− aq) · · · (1− aqn−1), if n ≥ 1,
1, if n = 0.

By an argument similar to the proof of (4.13) in [4] we can prove the following result.
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Proposition 2.1. For n, r ∈ P, we have

G(r,n)(a, q) = [n]q!(−aq[r − 1]q; q)n.

Remark 2.1. The case when r = 1 is a classical result about the inversion number over Sn and the case when
r = 2 is the counterpart in type B due to Brenti [6, Proposition 3.3].

For convenience, we use the convention

G(r,0)(a, q) = 1, G(r,0)(x, y, a, q) = 1.

The even and odd index generating functions of G(r,n)(x, y, a, q) are defined by

Hr
0 : =

∑
n≥0

G(r,2n)(x, y, a, q)
t2n

G(r,2n)(a, q)
, (2.7a)

Hr
1 : =

∑
n≥0

G(r,2n+1)(x, y, a, q)
t2n+1

G(r,2n+1)(a, q)
. (2.7b)

Define the q-analogue of exponential series over the wreath product

expG(r)(t; a, q) :=
∑
n≥0

tn

G(r,n)(a, q)
, (2.8)

and the corresponding hyperbolic cosine and sine series

coshG(r)(t; a, q) =
expG(r)(t; a, q) + expG(r)(−t; a, q)

2
, (2.9a)

sinhG(r)(t; a, q) =
expG(r)(t; a, q)− expG(r)(−t; a, q)

2
. (2.9b)

Remark 2.2. When r = 1, 2, we recover the classic q-analogue of hyperbolic series in (1.3) and (1.4).

The following is our first main result.

Theorem 2.1. For any r ∈ P, we have

Hr
0 =

(1− y)

((
1− x cosh(Mt; q)

)
coshG(r)(Mt; a, q) + x sinh(Mt; q)sinhG(r)(Mt; a, q)

)
1− (x+ y) cosh(Mt; q) + xy exp(Mt; q) exp(−Mt; q)

, (2.10a)

Hr
1 =

M

((
1− y cosh(Mt; q)

)
sinhG(r)(Mt; a, q) + y sinh(Mt; q)coshG(r)(Mt; a, q)

)
1− (x+ y) cosh(Mt; q) + xy exp(Mt; q) exp(−Mt; q)

, (2.10b)

where M =
√

(1− x)(1− y).

Remark 2.3. When (a, n, r) = (1, n, 1) or (0, n, 2) we recover a formula equivalent to Theorem A. When r = 2,
the length `G(γ) coincides with the length in the Coxeter (hyperoctahedral) group Bn = G(2, n) (see [5, 6]),
namely

invB(γ) := inv(γ) +
∑
ci 6=0

|γ(i)|.

Hence, when (a, n, r) = (1, n, 2), replacing odesG (respectively, edesG) by odesB (respectively, edesB), we recover
Theorem B.

Remark 2.4. As observed in [14] for permutations of types A and B, among the four statistics easc, oasc,
edes, odes over permutations, it is sufficient to consider two of them. This is still valid for colored permuta-
tions. Indeed, by (2.5), the distribution of the quadruple statistics (eascG, oascG, edesG, odesG) is completely
determined by any pair of the statistics in {odesG, oascG} × {edesG, eascG}, in particular ∗,∑

γ∈G(r,n)

x
eascG(γ)
0 x

oascG(γ)
1 y

edesG(γ)
0 y

odesG(γ)
1 acolG(γ)q`G(γ) = x

b(n+1)/2c
0 x

bn/2c
1 G(r,n)

(
y1
x1
,
y0
x0
, a, q

)
. (2.11)

∗Here we count an ascent at the beginning as position 0, which is not counted in [14].
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When r = 2, x = y, q = 1, substituting t← 2t, and adding odd and even indexed generating functions, we
obtain Brenti’s Theorem 3.4(iv) in [6],∑

n≥0

G(2,n)(x, x, a, 1)
tn

n!
=

(1− x) exp(t(1− x))

1− x exp(t(1− x)(1 + a))
.

When x = y, adding odd and even indexed generating functions, we obtain a formula of Reiner [17, Corollary
4.4, formula (2)], ∑

n≥0

G(2,n)(x, x, a, q)
tn

(−aq, q)n[n]q!
=

(1− x) expG(2)(t(1− x); a, q)

1− x exp(t(1− x); q)
.

Given a permutation γ ∈ G(r, n), an index i ∈ {0, 1, . . . , n− 1} is called an alternating descent if i is an odd

descent or even ascent. Let D̂esG(γ) be the set of alternating descents of γ, i.e.,

D̂esG(γ) = {2i : γ(2i) < γ(2i+ 1)} ∪ {2i+ 1 : γ(2i+ 1) > γ(2i+ 2)},

and let its cardinality be denoted by d̂esG(γ). We define the q-alternating descent polynomial over G(r, n) is
defined by

AltG(r)
n (x, q) :=

∑
γ∈G(r,n)

xd̂esG(γ)q`G(γ), (2.12)

where `G is the length function (2.4). As an application of Theorem 2.1 we shall evaluate AltG(r)
n (x, q) when

q = −1. The following is our second main result.

Theorem 2.2. For integer n ≥ 1 the following identities hold.

1. If r is a positive even integer, then

AltG(r)
n (x,−1) = (−1)b(n+1)/2c(1− x)n. (2.13)

2. If r is a positive odd integer, then Alt
G(r)
1 (x,−1) = x and for n ≥ 2,

AltG(r)
n (x,−1) =


x(1− x)mAm(x), if n = 2m (m ∈ N∗);
2x2

1+x (1− x)2mA2m(x), if n = 4m+ 1 (m ∈ N∗);
0, if n = 4m+ 3 (m ∈ N).

(2.14)

We make the following remarks.

(i) It is known [15, Chapter 4] that Eulerian polynomial An(x) :=
∑n−1
i=0 An,ix

i is monic, of degree n− 1 and

palindromic, so A2n(x) =
∑n−1
i=0 A2n,ix

i(1 + x2n−2i−1), which is clearly divisible by 1 + x.

(ii) Formula (2.14) reduces to [11, Theorem 2] when r = 1 † and (2.13) reduces to [11, Theorem 13] when
r = 2.

(iii) Our proof of the above theorem is à la Désarménien and Foata [9] using generating functions and q-
calculus. When r = 1, 2, Dey and Sivasubramanian [11] gave a different proof. It would be interesting to
find a combinatorial proof à la Wachs [21].

3. Counting colored permutations by the parity of de-
scents

The aim of this section is to prove Theorem 2.1. Throughout this section, we assume that n and r are positive
integers. For 0 ≤ m ≤ n, let

(
[n]
m

)
be the set of m-subsets of [n], that is,

(
[n]
m

)
:= {A ⊆ [n] : |A| = m} and let

[n]r := {ici : i ∈ [n], ci ∈ [0, r − 1]} be the set of colored integers. The set of m-subsets Ar of [n]r such that

A ∈
(
[n]
m

)
is denoted by

(
[n]
m

)r
.

Let A be a finite ordered set. We write A = {a1, . . . , am}< to mean a1 < · · · < am and denote by

[A] := [a1, . . . , am] the increasing sequence of its elements. In particular, if Ar = {ac11 , a
c2
2 , . . . , a

cm
m }< ∈

(
[n]
m

)r
,

then [Ar] is the increasing permutation of Ar by the linear order (2.3), that is [Ar] = [ac11 , a
c2
2 , . . . , a

cm
m ].

†When r = 1, the position 0 is not counted as an even ascent in [11, Theorem 2].
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Observation 3.1. Let γ = [σc11 , . . . , σ
cn
n ] ∈ G(r, n). If i, j ∈ [n] with i 6= j, then γ(i) < γ(j) if and only if one

of the following conditions hold,

(1) ci = 0, cj = 0 and |γ(i)| < |γ(j)|;

(2) ci > 0, cj > 0 and |γ(i)| > |γ(j)|;

(3) ci > 0, cj = 0 and |γ(i)| < |γ(j)| or |γ(i)| > |γ(j)|.

For γ = [γ(1), . . . , γ(n)] = [σc11 , . . . , σ
cn
n ] ∈ G(r, n), let

csum(γ) =
∑
ci 6=0

ci

and

invc(γ) =
∑

1≤i<j≤n

|{(i, j) : γc(i) > γ(j)}|,

where γc(i) is defined by

γc(i) =

{
σi, if ci 6= 0;

σ1
i , if ci = 0.

(3.1)

We now give an alternative characterization of the length function `G in (2.2) and (2.4).

Lemma 3.1. For γ = [γ(1), . . . , γ(n)] = [σc11 , . . . , σ
cn
n ] ∈ G(r, n), we have

`G(γ) = inv(γ) + invc(γ) + csum(γ).

Proof. By definition (3.1) and Observation 3.1, we have (ci, cj) 6= (0, 0) if γc(i) > γ(j). Hence

invc(γ) =
∑

1≤i<j≤n

|{(i, j) : γc(i) > γ(j)}|

=
∑
i<j

|{i < j : |γ(i)| > |γ(j)|, ci 6= 0}|+
∑
i<j

|{j > i : |γ(i)| < |γ(j)|, cj 6= 0}|

=
∑
ck 6=0

(σk − 1).

Comparing with (2.4), we are done.

For 0 ≤ m ≤ n, let Ar and Br be disjoint subsets of [n]r with |Ar| = m and |Br| = n−m. If π (respectively,
σ) is a permutation of Ar (respectively, Br), in other words, Ar (respectively, Br) is the set of letters in π
(respectively, σ), we define the between-permutation inversion (respectively, c-inversion) as in the following:

inv(π, σ) = |{(π(i), σ(j)) ∈ Ar ×Br : π(i) > σ(j), i ∈ [m] and j ∈ [n−m] }|; (3.2a)

invc(π, σ) = |{(π(i), σ(j)) ∈ Ar ×Br : πc(i) > σ(j), i ∈ [m] and j ∈ [n−m] }|, (3.2b)

where πc(i) is defined by (3.1).
For 0 ≤ i ≤ n − 1, let Gi(r, n) be the set of colored permutations in G(r, n) with the last n − i elements

being increasing from left-to-right, that is,

Gi(r, n) := {γ ∈ G(r, n) : γ(i+ 1) < γ(i+ 2) < · · · < γ(n− 1) < γ(n)}. (3.3)

Note that Gn−1(r, n) = G(r, n) and |Gi(r, n)| = rn
(
n
i

)
i!. Define G(r, 0) = {ε}, where ε is the empty word. The

concatenation operator ∗ of two words u and v is defined by u ∗ v := uv with ε ∗ u = u ∗ ε = u for any word u.

For 0 ≤ i ≤ n− 1, let γ = [σc11 , σ
c2
2 , . . . , σ

ci
i ] ∈ G(r, i), Ar ∈

(
[n]
n−i
)r

with [n] \A = {s1, s2, . . . , si}< and

γ|[n]\A := [sc1σ1
, sc2σ2

, . . . , sciσi ]. (3.4)

We define
f(γ,Ar) = γ|[n]\A ∗ [Ar]. (3.5)

It is easy to see that the mapping f : G(r, i)×
(
[n]
n−i
)r
→ Gi(r, n) is a bijection.
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Lemma 3.2. For 0 ≤ i ≤ n−1, let γ = [σc11 , σ
c2
2 , . . . , σ

ci
i ] ∈ G(r, i), Ar ∈

(
[n]
n−i
)r

and [n]\A = {s1, s2, . . . , si}<.

The mapping f : G(r, i)×
(
[n]
n−i
)r
→ Gi(r, n) satisfies

csum(f(γ,Ar)) = csum(γ) + csum([s1, s2, . . . , si] ∗ [Ar]), (3.6a)

col(f(γ,Ar)) = col(γ) + col([s1, s2, . . . , si] ∗ [Ar]), (3.6b)

`G(f(γ,Ar)) = `G(γ) + `G([s1, s2, . . . , si] ∗ [Ar]). (3.6c)

Proof. By definition (3.5), we have

f(γ,Ar) = γ|[n]\A ∗ [Ar] = [sc1σ1
, sc2σ2

, . . . , sciσi ] ∗ [Ar]. (3.7)

So, it is easy to verify the first two identities (3.6a) and (3.6b). By Lemma 3.1 we have

`G(f(γ,Ar)) = inv(f(γ,Ar)) + invc(f(γ,Ar)) + csum(f(γ,Ar)).

The factorisation (3.7) of f(γ,Ar) implies that

inv(f(γ,Ar)) = inv(γ|[n]\A) + inv([Ar]) + inv(γ|[n]\A, [Ar]),
invc(f(γ,Ar)) = invc(γ|[n]\A) + invc([A

r]) + invc(γ|[n]\A, [Ar]).

Note that γ acts on an ordered set (see (3.4)) preserving the inversion (respectively, c-inversion) number, i.e.,

inv(γ|[n]\A) = inv(γ) and invc(γ|[n]\A) = invc(γ).

By definition (3.2), we have

inv(γ|[n]\A, [Ar]) + invc(γ|[n]\A, [Ar]) = inv([s1, s2, . . . , si], [A
r]) + invc([s1, s2, . . . , si], [A

r]),

which is independent from γ. Combining the above results with Lemma 3.1 results in

`G(f(γ,Ar))− `G(γ)− `G([s1, s2, . . . , si] ∗ [Ar]) = 0,

which proves (3.6c).

Example 3.1. Let n = 8, r = 4 and i = 4. If γ = [21, 4, 31, 13] ∈ G(4, 4), A4 = {61, 32, 11, 5}< ∈
(
[8]
4

)4
, then

[8] \A = {s1, . . . , s4}< = {2, 4, 7, 8}, γ|[8]\A = [41, 8, 71, 23], [A4] = [61, 32, 11, 5] and

γ′ := [s1, . . . , s4] ∗ [A4] = [2, 4, 7, 8] ∗ [61, 32, 11, 5] = [2, 4, 7, 8, 61, 32, 11, 5],

and f(γ,A4) = [41, 8, 71, 23, 61, 32, 11, 5]. By (2.4) we have

`G(γ) = inv(γ) +
∑
ci 6=0

(|γ(i)|+ ci − 1)

= |{(21, 31), (4, 31), (4, 13)}|+ (2 + 1− 1) + (3 + 1− 1) + (1 + 3− 1) = 11,

`G(γ′) = inv(γ′) +
∑
ci 6=0

(|γ′(i)|+ ci − 1)

= |{(2, 61), (2, 32), (2, 11), (4, 61), (4, 32), (4, 11), (7, 61), (7, 32), (7, 11),

(7, 5), (8, 61), (8, 32), (8, 11), (8, 5)}|+ (6 + 1− 1) + (3 + 2− 1) + (1 + 1− 1) = 25.

In the same manner, we obtain `G(f(γ,A4)) = 36.

By convention, for any n ∈ P we denote by 1 the identity permutation in G(r, n). Thus

f(1, Ar) = [s1, s2, . . . , si] ∗ [Ar]. (3.9)

The q-binomial coefficients are defined by(
n

m

)
q

:=
[n]q!

[m]q![n−m]q!
(0 ≤ m ≤ n). (3.10)

Lemma 3.3. Let 0 ≤ i ≤ n− 1. For any γ ∈ G(r, i), we have∑
Ar∈( [n]

n−i)
r

acol(f(γ,A
r))q`G(f(γ,Ar)) = acol(γ)q`G(γ)

(
n

n− i

)
q

(−aqi+1[r − 1]q; q)n−i. (3.11)
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Proof. By (3.6b) and (3.6c) in Lemma 3.2 and (3.9), it suffices to prove the γ = 1 case of (3.11), which is
equivalent to the following identity

[i]q!(−aq[r − 1]q; q)i ×
∑

Ar∈( [n]
n−i)

r

acol(f(1,A
r))q`G(f(1,Ar)) × [n− i]q! = [n]q!(−aq[r − 1]q; q)n. (3.12)

To this end, for any τ = τ1τ2 · · · τn−i ∈ Sn−i, we construct a mapping fτ : G(r, i)×
(
[n]
n−i
)r
→ G(r, n) by

fτ (γ,Ar) := γ|[n]\A ∗ τ [Ar], (3.13a)

where [n] \A = {s1, s2, . . . , si}< and

γ = [σc11 , σ
c2
2 , . . . , σ

ci
i ], Ar = {ac

′
1

1 , a
c′2
2 , . . . , a

c′n−i
n−i }<, (3.13b)

γ|[n]\A = [sc1σ1
, sc2σ2

, . . . , sciσi ], τ [Ar] = [a
c′τ1
τ1 , a

c′τ2
τ2 , . . . , a

c′τn−i
τn−i ]. (3.13c)

Note that

f(γ,Ar) = γ[n]\A ∗ [Ar] = [sc1σ1
, sc2σ2

, . . . , sciσi ] ∗ [a
c′1
1 , a

c′2
2 , . . . , a

c′n−i
n−i ], (3.14a)

fτ (γ,Ar) = γ|[n]\A ∗ τ [Ar] = [sc1σ1
, sc2σ2

, . . . , sciσi ] ∗ [a
c′τ1
τ1 , a

c′τ2
τ2 , . . . , a

c′τn−i
τn−i ]. (3.14b)

It is clear that fτ is a bijection. We show that fτ satisfies the following properties:

col
(
f(1, Ar)

)
+ col(γ) = col(fτ (γ,Ar)), (3.15a)

`G
(
f(1, Ar)

)
+ `G(γ) + inv(τ) = `G(fτ (γ,Ar)). (3.15b)

By (3.9), (3.13), and (3.15a) is obvious. It remains to prove (3.15b). By definition (2.4) and (3.14), we have

`G(f(γ,Ar)) + inv(τ) = inv(γ|[n]\A) + inv([Ar]) + inv(γ|[n]\A, [Ar]) + inv(τ)

+
∑
cj 6=0

(sσj + cj − 1) +
∑
c′k 6=0

(ak + c′k − 1), (3.16)

`G(fτ (γ,Ar)) = inv(γ|[n]\A) + inv(τ [Ar]) + inv(γ|[n]\A, τ [Ar])

+
∑
cj 6=0

(sσj + cj − 1) +
∑
c′τk
6=0

(aτk + c′τk − 1). (3.17)

We observe the following facts:

• inv(τ) = 0 and inv(τ [Ar]) = inv(τ) because [Ar] is an increasing word;

• `G
(
f(1, Ar)

)
+ `G(γ) = `G(f(γ,Ar)), see (3.6c);

• inv(γ|[n]\A, [Ar]) = inv(γ|[n]\A, τ [Ar]), see definition (3.2a).

From (3.16), (3.17) and the above facts, we derive (3.15b). Finally, combining (3.13a), (3.15) and Proposition 2.1,
we prove (3.12).

Example 3.2. Let n = 9, r = 4 and i = 5. If γ = [41, 5, 12, 31, 23] ∈ G(4, 5), A4 = {61, 43, 21, 1}< ∈
(
[9]
4

)4
and

τ = 3412 ∈ S4, then [9] \A = {3, 5, 7, 8, 9},

γ[9]\A = [81, 9, 32, 71, 53], τ [A4] = [21, 1, 61, 43].

Hence fτ (γ,A4) = [81, 9, 32, 71, 53, 21, 1, 61, 43].

Recall the enumerative polynomials see (2.6),

G(r,n)(x, y, a, q) =
∑

γ∈G(r,n)

xodesG(γ)yedesG(γ)acol(γ)q`G(γ).

For convenience, we define the weight

w(γ) = xodesG(γ)yedesG(γ)acol(γ)q`G(γ).

By convention, we set
G−1(r, n) = {[1, 2, . . . , n]}.
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Lemma 3.4. Let n, r ∈ P and 0 ≤ i ≤ n− 1. For Gi(r, n) in (3.3), the following identities hold.

1. If i is odd, ∑
γ∈Gi(r,n)

w(γ) = x
G(r,i)(x, y, a, q)G(r,n)(a, q)

G(r,i)(a, q)[n− i]q!
+ (1− x)

∑
γ∈Gi−1(r,n)

w(γ). (3.18)

2. If i is even, ∑
γ∈Gi(r,n)

w(γ) = y
G(r,i)(x, y, a, q)G(r,n)(a, q)

G(r,i)(a, q)[n− i]q!
+ (1− y)

∑
γ∈Gi−1(r,n)

w(γ). (3.19)

Proof. Let i be a positive odd integer. Multiplying the two sides of (3.11) by xodesG(γ)yedesG(γ) and summing
over γ ∈ G(r, i) we obtain the identity∑

γ∈G(r,i)

∑
Ar∈( [n]

n−i)
r

xodesG(γ)yedesG(γ)acol(f(γ,A
r))q`G(f(γ,Ar))

= G(r,i)(x, y, a, q)

(
n

n− i

)
q

(−aqi+1[r − 1]q; q)n−i

= G(r,i)(x, y, a, q)
G(r,n)(a, q)

G(r,i)(a, q)[n− i]q!
, (3.20)

where the last equality follows from Proposition 2.1.
Let Fi(r, n) denote the subset of colored permutations γ = [γ(1), . . . , γ(n)] in Gi(r, n) such that γ(i) >

γ(i + 1) < γ(i + 2) < · · · < γ(n). By definition (3.3), we have Fi(r, n) = Gi(r, n) \ Gi−1(r, n). For (γ,Ar) ∈
G(r, i) ×

(
[n]
n−i
)r

, let γ′ = f(γ,Ar), see (3.5). Then f : G(r, i) ×
(
[n]
n−i
)r
→ Gi(r, n) is a bijection satisfying the

following properties:

• if f(γ,Ar) = γ′ ∈ Fi(r, n), then i is an odd descent of γ′ (but i is clearly not a descent of γ), thus
odesG(γ′) = odesG(γ) + 1 and edesG(γ′) = edesG(γ);

• if f(γ,Ar) = γ′ ∈ Gi−1(r, n), then i is not a descent for neither γ′ nor γ. Hence odesG(γ′) = odesG(γ)
and edesG(γ′) = edesG(γ).

By the above arguments, we have∑
(γ,Ar)∈G(r,i)×( [n]

n−i)
r

xodesG(γ)yedesG(γ)acol(f(γ,A
r))q`G(f(γ,Ar))

=
∑

γ′∈Gi−1(r,n)

w(γ′) +
1

x

∑
γ′∈Gi(r,n)

w(γ′)− 1

x

∑
γ′∈Gi−1(r,n)

w(γ′)

=

(
1− 1

x

) ∑
γ′∈Gi−1(r,n)

w(γ′) +
1

x

∑
γ′∈Gi(r,n)

w(γ′). (3.21)

Equating the right-hand-sides of (3.20) and (3.21) we obtain

x
G(r,i)(x, y, a, q)G(r,n)(a, q)

G(r,i)(a, q)[n− i]q!
= (x− 1)

∑
γ′∈Gi−1(r,n)

w(γ′) +
∑

γ′∈Gi(r,n)

w(γ′). (3.22)

This completes the proof of (3.18).
For n ≥ 1, and i is a nonnegative even integer, (3.19) can be proved similarly. We just verify the i = 0 case.

Clearly we can construct any γ ∈ G0(r, n) as follows: choose γ(i) = (i, ci) ∈ [n]× {0, . . . , r − 1} for i ∈ [n] and
order γ(1), . . . , γ(n) increasingly. As γ = 1 if and only if ci = 0 for all i ∈ [n], the index 0 is always a descent if
γ 6= 1. Therefore

∑
γ∈G0(r,n)

w(γ) = 1 + y

(
n∏
i=1

r−1∑
ci=0

aqi+ci−1 − 1

)
= 1− y + y(−aq[r − 1]q; q)n.

On the other hand, as G−1(r, n) = {[1, . . . , n]}, (3.19) holds by Proposition 2.1.
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By definition (3.3), for 0 ≤ i ≤ n − 1, the elements of Gi(r, n) are colored permutations γ ∈ G(r, n) such
that the last n − i elements of γ are increasing. When i = n − 1, we have Gn−1(r, n) = G(r, n). Recall that
(see (2.6))

G(r,n)(x, y, a, q) =
∑

γ∈Gn−1(r,n)

w(γ). (3.23)

Lemma 3.5. For any n, k ∈ N, r ∈ P, the polynomials G(r,n)(x, y, a, q) satisfy the following recurrences:

1. If n = 2k is a nonnegative even integer, and 0 ≤ j ≤ k, we have

G(r,n)(x, y, a, q)

G(r,n)(a, q)
=

(1− x)j(1− y)j

G(r,n)(a, q)

∑
γ∈Gn−2j−1(r,n)

w(γ)

+

j−1∑
m=0

x(1− x)m(1− y)m

[2m+ 1]q!

G(r,n−2m−1)(x, y, a, q)

G(r,n−2m−1)(a, q)

+

j∑
m=1

y(1− x)m(1− y)m−1

[2m]q!

G(r,n−2m)(x, y, a, q)

G(r,n−2m)(a, q)
. (3.24a)

2. If n = 2k + 1 is a positive odd integer, and 0 ≤ j ≤ k, we have

G(r,n)(x, y, a, q)

G(r,n)(a, q)
=

(1− x)j(1− y)j+1

G(r,n)(a, q)

∑
γ∈Gn−2j−2(r,n)

w(γ)

+

j∑
m=0

y(1− x)m(1− y)m

[2m+ 1]q!

G(r,n−2m−1)(x, y, a, q)

G(r,n−2m−1)(a, q)

+

j∑
m=1

x(1− x)m−1(1− y)m

[2m]q!

G(r,n−2m−2)(x, y, a, q)

G(r,n−2m−2)(a, q)
. (3.24b)

Proof. It is clear that (3.24a) is valid for n = 0. Assuming that n = 2k (k ≥ 1), we prove (3.24a) by induction
on j. The base case when j = 0 is obvious by (3.23). Assume that (3.24a) is true for j and show that it holds
for j + 1, that is,

G(r,n)(x, y, a, q) = (1− x)j+1(1− y)j+1
∑

γ∈Gn−2j−3(r,n)

w(γ)

+

j∑
m=0

x(1− x)m(1− y)m

[2m+ 1]q!

G(r,n−2m−1)(x, y, a, q)G(r,n)(a, q)

G(r,n−2m−1)(a, q)

+

j+1∑
m=1

y(1− x)m(1− y)m−1

[2m]q!

G(r,n−2m)(x, y, a, q)G(r,n)(a, q)

G(r,n−2m)(a, q)
. (3.25)

Equation (3.25) is easy to verify by applying (3.18) and (3.19) because

∑
γ∈Gn−2j−1(r,n)

w(γ) = (1− x)
∑

γ∈Gn−2j−2(r,n)

w(γ) + x
G(r,n−2j−1)(x, y, a, q)G(r,n)(a, q)

[2j + 1]q!G(r,n−2j−1)(a, q)

= (1− x)(1− y)
∑

γ∈Gn−2j−3(r,n)

w(γ) + x
G(r,n−2j−1)(x, y, a, q)G(r,n)(a, q)

[2j + 1]q!G(r,n−2j−1)(a, q)

+ (1− x)y
G(r,n−2j−2)(x, y, a, q)G(r,n)(a, q)

[2j + 2]q!G(r,n−2j−2)(a, q)
. (3.26)

Plugging (3.26) in (3.24a) and dividing both sides by G(r,n)(a, q), we derive (3.25). Formula (3.24b) can be
proved similarly.

Proof of Theorem 2.1. As
∑
γ∈G−1(r,n)

w(γ) = 1, multiplying identity (3.24a) (respectively, (3.24b)) with

j = k by (1 − y) (respectively, (1 − x)), and then adding
yG(r,n)(x,y,a,q)

G(r,n)(a,q)
(respectively,

xG(r,n)(x,y,a,q)

G(r,n)(a,q)
) on both

sides, we obtain the following recurrence relations:
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• if n = 2k is even,

G(r,n)(x, y, a, q)

G(r,n)(a, q)
=

(1− x)k(1− y)k+1

G(r,n)(a, q)
+

k−1∑
m=0

x(1− x)m(1− y)m+1

[2m+ 1]q!

G(r,n−2m−1)(x, y, a, q)

G(r,n−2m−1)(a, q)

+

k∑
m=0

y(1− x)m(1− y)m

[2m]q!

G(r,n−2m)(x, y, a, q)

G(r,n−2m)(a, q)
; (3.27)

• if n = 2k + 1 is odd

G(r,n)(x, y, a, q)

G(r,n)(a, q)
=

(1− x)k+1(1− y)k+1

G(r,n)(a, q)
+

k∑
m=0

y(1− x)m+1(1− y)m

[2m+ 1]q!

G(r,n−2m−1)(x, y, a, q)

G(r,n−2m−1)(a, q)

+

k∑
m=0

x(1− x)m(1− y)m

[2m]q!

G(r,n−2m)(x, y, a, q)

G(r,n−2m)(a, q)
. (3.28)

Invoking (2.7), multiplying (3.27) (respectively, (3.28)) by t2k (respectively, t2k+1) and then summing over k ≥ 1
(respectively, k ≥ 0), we obtain the system (1− y cosh(Mt; q))Hr

0 − xL sinh(Mt; q)Hr
1 = (1− y) coshG(r)(Mt; a, q),

− y
L sinh(Mt; q)Hr

0 + (1− x cosh(Mt; q))Hr
1 = M sinhG(r)(Mt; a, q),

where M =
√

(1− x)(1− y) and L =
√

(1− y)/(1− x).
Solving the above system using Cramer’s rule results in (2.10).

4. Counting colored permutations by signed alternating
descents

The aim of this section is to prove Theorem 2.2 by applying Theorem 2.1. By the wreath product analogue of
exponential series expG(r)(t; 1, q) (see (2.8)) we define the q-trigonometric series over wreath product by

cosG(r)(t; q) : =
∑
n≥0

(−1)n

(−q[r − 1]q; q)2n
· t2n

[2n]q!
,

sinG(r)(t; q) : =
∑
n≥0

(−1)n

(−q[r − 1]q; q)2n+1
· t2n+1

[2n+ 1]q!
.

It follows from (2.6), (2.11) and (2.12) that

AltG(r)
n (x, q) = xb(n+1)/2cG(r,n)(x, 1/x, 1, q).

Combining with Theorem 2.1 we obtain the following generating functions.

Lemma 4.1. Let Alt
G(r)
0 (x; q) = 1. We have

∑
n≥0

Alt
G(r)
2n (x, q)

(−q[r − 1]q; q)2n
· t2n

[2n]q!

= (x− 1)×
(
1− x cos((1− x)t; q)

)
cosG(r)((1− x)t; q)− x sin((1− x)t; q)sinG(r)((1− x)t; q)

x− (x2 + 1) cos((1− x)t; q) + x exp(i(1− x)t; q) exp(−i(1− x)t; q)
, (4.2a)

∑
n≥0

Alt
G(r)
2n+1(x, q)

(−q[r − 1]q; q)2n+1
· t2n+1

[2n+ 1]q!

= (x− 1)×
(
x− cos((1− x)t; q)

)
sinG(r)((1− x)t; q) + sin((1− x)t; q)cosG(r)((1− x)t; q)

x− (x2 + 1) cos((1− x)t; q) + x exp(i(1− x)t; q) exp(−i(1− x)t; q)
. (4.2b)
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Recall the following q-binomial idenity [1, p. 37]

m∑
j=0

(−1)j
(
m

j

)
q

=

{
(q; q2)n, if m = 2n;

0, if m is odd,
(4.3)

and the limits of q-binomial coefficients (3.10) when q → −1:

lim
q→−1

(
2n

2m+ 1

)
q

= 0, (4.4a)

lim
q→−1

(
2n

2m

)
q

= lim
q→−1

(
2n+ 1

2m

)
q

= lim
q→−1

(
2n+ 1

2m+ 1

)
q

=

(
n

m

)
, (4.4b)

lim
q→−1

[r − 1]q = lim
q→−1

1− qr−1

1− q
=

{
0, if r is odd;
1, if r is even.

(4.4c)

By (4.4c), if r is even and n− k ≥ 2, then

lim
q→−1

(−q[r − 1]q; q)n
(−q[r − 1]q; q)k

= ((−1)k;−1)n−k = 0. (4.4d)

Now, we are ready to prove Theorem 2.2 in the next three sections. First, we shall prove that for any even
integer r ≥ 2,

AltG(r)
n (x,−1) = (−1)b(n+1)/2c(1− x)n for n ≥ 0. (4.5)

4.1 Proof of Theorem 2.2 when r is even

Multiplying the two sides of (4.2a) by

x− (x2 + 1) cos((1− x)t; q) + x exp(i(1− x)t; q) · exp(−i(1− x)t; q),

and then comparing the coefficients of t2n

[2n]q !
(n ≥ 0), we derive the recurrence relation, after simplification using

(4.3), for even indices:

−(1− x)2Alt
G(r)
2n (x, q)

(−q[r − 1]q; q)2n
+

n−1∑
k=0

(
2n

2k

)
q

(−1)n−kAlt
G(r)
2k (x, q)

(−q[r − 1]q; q)2k

(
x(q; q2)n−k − x2 − 1

)
(1− x)2n−2k

=
(−1)n+1(1− x)2n+2

(−q[r − 1]q; q)2n
+ x(1− x)

2n−1∑
k=0

(
2n

k

)
q

(−1)n(1− x)2n

(−q[r − 1]q; q)k
. (4.6)

In the same vein, from (4.2b) we derive the recurrence relation for odd indices (n ≥ 0):

−(1− x)2Alt
G(r)
2n+1(x, q)

(−q[r − 1]q; q)2n+1
+

n−1∑
k=0

(
2n+ 1

2k + 1

)
q

(−1)n−kAlt
G(r)
2k+1(x, q)

(−q[r − 1]q; q)2k+1

(
x(q; q2)n−k − x2 − 1

)
(1− x)2n−2k

=
(−1)n(1− x)2n+3

(−q[r − 1]q; q)2n+1
+ (x− 1)

2n∑
k=0

(
2n+ 1

k

)
q

(−1)n−k(1− x)2n+1

(−q[r − 1]q; q)k
. (4.7)

Clearing the fractions in (4.6) and (4.7) by multiplying (−q[r − 1]q; q)2n and (−q[r − 1]q; q)2n+1, respectively,
and then taking the limit q → −1, we obtain by invoking (4.4),

−(1− x)2Alt
G(r)
2n (x,−1) = (−1)n+1(1− x)2n+2,

−(1− x)2Alt
G(r)
2n+1(x,−1) = (−1)n(1− x)2n+3,

which are equivalent to (4.5).
In the next two sections, we shall prove the remaining part of Theorem 2.2, i.e., for n ≥ 2, if r is a positive

odd integer, then

AltG(r)
n (x,−1) =


x(1− x)mAm(x), if n = 2m (m ∈ N∗);
2x2

1+x (1− x)2mA2m(x), if n = 4m+ 1 (m ∈ N∗);
0, if n = 4m+ 3 (m ∈ N),

(4.9)

where Am(x) are the classical Eulerian polynomials, see (1.1).
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4.2 Proof of Theorem 2.2 when r is odd and n 6= 4m+ 3

For n ≥ 1, clearing the fractions in (4.6) and (4.7) by multiplying (−q[r − 1]q; q)2n and (−q[r − 1]q; q)2n+1,
respectively, then taking q = −1 results in

Alt
G(r)
2n (x,−1) =

n−1∑
k=0

(
n

k

)
Alt

G(r)
2k (x,−1)(−1)n−k(1− x)2n−2k−2(2n−kx− x2 − 1)

+ (−1)n(1− x)2n−1(1− 2nx), (4.10a)

Alt
G(r)
2n+1(x,−1) =

n−1∑
k=0

(
n

k

)
Alt

G(r)
2k+1(x,−1)(−1)n−k(1− x)2n−2k−2(2n−kx− x2 − 1)

+ (−1)nx(1− x)2n. (4.10b)

Now, we prove that Alt
G(r)
2m (x,−1) = x(1 − x)mAm(x) for m ≥ 1. By (4.10a), this is clear for m = 1. It

remains to show that x(1− x)mAm(x) satisfies recurrence relation (4.10a), namely,

Am(x) =

m−1∑
k=0

(
m

k

)
(1− x)m−k−2Ak(x)(−1)m−k(2m−kx− x2 − 1)− x(−1)m(1− x)m−1.

Multiplying the above identity by tm/m! and summing over m ≥ 1 yields

1 +
∑
m≥1

Am(x)
tm

m!
=

x(1− x) exp((x− 1)t)− x
(x2 + 1) exp((x− 1)t)− x− x exp(2(x− 1)t)

,

which is equivalent to (1.1). Thus, (4.9) holds true if n is even.

By definition we have Alt
G(r)
1 (x, q) = x(1 + q + · · · + qr−1), hence Alt

G(r)
1 (x,−1) = x. For the time being,

we admit (4.9) for n = 4m + 3, namely, assume that Alt
G(r)
4k+3(x,−1) = 0 for k ∈ N, see the proof in the next

section. Thus, replacing n by 2m in (4.10b) results in

Alt
G(r)
4m+1(x,−1) =

m−1∑
k=0

(
2m

2k

)
Alt

G(r)
4k+1(x,−1)(1− x)4m−4k−2(22m−2kx− x2 − 1) + x(1− x)4m. (4.10c)

It remains to show that Alt
G(r)
4m+1(x,−1) = 2x2(1−x)2m

1+x A2m(x) for m ≥ 1. As a check, setting m = 1 in

(4.10c) yields Alt
G(r)
5 (x,−1) = 2x2(1 − x)2, since A2(x) = 1 + x, (4.9) is valid for n = 5. Now we prove that

2x2(1−x)2m
1+x A2m(x) satisfy recurrence relation (4.10c), namely,

2x2(1− x)2m

1 + x
A2m(x) =

m−1∑
k=1

(
2m

2k

)
2x2(1− x)4m−2k−2A2k(x)

1 + x
(22m−2kx− x2 − 1)

+ x(1− x)4m−2(22mx− 2x).

Multiplying the above identity by t2m/(2m)! and summing over m ≥ 1 yields

1 +
∑
m≥1

A2m(x)
t2m

(2m)!
=

(x− 1)(exp((1− x)t) + exp((x− 1)t))

2x(exp((1− x)t) + exp((x− 1)t))− 2x2 − 2
,

which can be verified straightforwardly by (1.1).

4.3 Proof of Theorem 2.2 when r is odd and n = 4m+ 3

Recall that the elements of the set {0, 1, . . . , n, 11, . . . , n1, . . . , 1r−1, . . . , nr−1} are ordered as in the following
(see (2.3)),

nr−1 < · · · < n1 < · · · < 1r−1 < · · · < 11 < 0 < 1 < · · · < n.

For 1 ≤ i ≤ n, we define an operator φi over G(r, n) by

φi(γ) =


(c1, . . . , ci + 1, . . . , cn;σ), if ci is odd;

(c1, . . . , ci − 1, . . . , cn;σ), if ci 6= 0 is even;

γ, if ci = 0,

where γ = (c1, . . . , cn;σ) ∈ G(r, n), see (2.1).
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Lemma 4.2. For 1 ≤ i ≤ n, the alternating descent set is invariant under operator φi, i.e.,

D̂esG(φi(γ)) = D̂esG(γ) for γ ∈ G(r, n). (4.11)

Hence, we have d̂esG(φi(γ)) = d̂esG(γ).

Proof. Let γ = (c1, . . . , cn;σ) ∈ G(r, n) and φi(γ) = (c′1, . . . , c
′
n;σ) for a fixed i ∈ [n]. Then, c′j = cj if j 6= i for

j ∈ [n] and c′i = ci ± 1. Equation (4.11) is obvious if ci = 0. Since operator φi only acts on γ(i), we need only
to check the nature of positions i − 1 and i through φi. In what follows we assume that ci > 0 for some odd
index i.

(i) i ∈ D̂esG(γ) if and only if (iff ) i ∈ D̂esG(φi(γ)).

Indeed, i ∈ D̂esG(γ) (with ci > 0) iff ci+1 > 0 and |γ(i)| < |γ(i + 1)| iff c′i = ci ± 1 > 0, c′i+1 = ci+1 > 0

and |γ(i)| < |γ(i+ 1)|, which is equivalent to i ∈ D̂esG(φi(γ)).

(ii) i− 1 ∈ D̂esG(γ) if and only if i− 1 ∈ D̂esG(φi(γ)).
Indeed, γ(i − 1) > γ(i) (with ci > 0) iff ci−1 = 0 or ci−1 > 0 and |γ(i − 1)| < |γ(i)|. As c′i = ci ± 1 > 0

and c′i−1 = ci−1, the latter statement is equivalent to i− 1 ∈ D̂esG(φi(γ)).

Thus, (4.11) is valid for odd i ∈ [n]. The proof for even i ∈ [n] is similar.

In what follows, for a permutation σ ∈ Sn, we write `G(σ) = inv(σ) and denote the number of alternating

descents of σ by d̂es(σ) as in [8]. Note that sgn(σ) = (−1)inv(σ) is the signature of σ.

Lemma 4.3. Let n = 4m+ 3 with m ≥ 0. Then∑
σ∈Sn

(−1)inv(σ)xd̂es(σ) = 0. (4.12)

Proof. Recall the reversing operator R on Sn, which maps σ = σ1σ2 · · ·σn ∈ Sn to R(σ) = σnσn−1 · · ·σ1.
Clearly, an index i ∈ [n − 1] is an even ascent (respectively, odd descent) in σ if and only if n − i is an odd
descent (respectively, even ascent) in R(σ). Also, position 0 is an even ascent in both σ and R(σ). Thus

d̂es(σ) = d̂es(R(σ)). (4.13)

Since inv(σ) + inv(R(σ)) =
(
n
2

)
and

(
n
2

)
= (2m+ 1)(4m+ 3) is odd, we have sgn(R(σ)) = −sgn(σ). Combining

with (4.13), we see that R is a weight preserving and sign reversing involution or killing involution over Sn,
which yields (4.12).

Let Sc
r,n be the subset of G(r, n) consisting of permutations γ = (c1, . . . , cn;σ) such that ci > 0 for some

index i ≥ 1.

Lemma 4.4. Let r be an odd positive integer and n ∈ N∗. Then∑
γ∈Scr,n

(−1)`G(γ)xd̂esG(γ) = 0. (4.14)

Proof. We construct a killing involution Φ on Sc
r,n such that if Φ(γ) = γ′ for γ ∈ Sc

r,n, then d̂esG(γ′) = d̂esG(γ)
and

`G(γ′) = `G(γ)± 1. (4.15)

For γ ∈ Sc
r,n with γ = (c1, . . . , cn;σ), we define Φ(γ) as follows: let Φ(γ) = φi(γ) where i is the smallest index

such that ci > 0. It is obvious that Φ is an involution on Sc
r,n.

By Lemma 4.2, it is clear that d̂esG(γ′) = d̂esG(γ). It remains to verify (4.15). We first show that each
inversion pair is invariant through Φ.

(1) For 1 ≤ j < i, pair (j, i) is an inversion of γ ∈ Sc
r,n if and only if it is an inversion of Φ(γ) ∈ Sc

r,n.
Indeed, pair (j, i) is an inversion: σ(j)cj > σ(i)ci with ci > 0 iff cj = 0, or cj > 0 and |γ(j)| < |γ(i)|; as
c′i = ci ± 1 > 0 and c′j = cj , the previous statement shows that (j, i) is an inversion of Φ(γ).

(2) For i < l ≤ n, pair (i, l) is an inversion of γ ∈ Sc
r,n if and only if it is an inversion of Φ(γ) ∈ Sc

r,n.
Indeed, pair (i, l) is an inversion of γ: σ(i)ci > σ(l)cl (with ci > 0) iff cl > 0, and |γ(i)| < |γ(l)|; as
c′i = ci ± 1 > 0, c′l = cl > 0, the previous statement means that (i, l) is an inversion of Φ(γ).

As φi fixes all γ(k) for k 6= i, it follows that inv(Φ(γ)) = inv(γ). Therefore, by (2.4),

`G(Φ(γ)) = inv(Φ(γ)) +
∑
ck 6=0

(|γ(k)|+ ck − 1)± 1

= `G(γ)± 1,

which is (4.15). Hence (4.14) is proved.
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