
numerative
ombinatorics

pp
lic
at
io
ns

A Enumerative Combinatorics and Applications
ecajournal.haifa.ac.il

ECA 4:3 (2024) Article #S2R23
https://doi.org/10.54550/ECA2024V4S3R23

Deterministic Stack-Sorting for Set Partitions

Janabel Xia

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
Email: janabel@mit.edu

Received: October 31, 2023, Accepted: March 8, 2024, Published: April 5, 2024
The authors: Released under the CC BY-ND license (International 4.0)

Abstract: A sock sequence is a sequence of elements, which we will refer to as socks, from a finite alphabet.
A sock sequence is sorted if all occurrences of a sock appear consecutively. We define equivalence classes of
sock sequences called sock patterns, which are in bijection with set partitions. The notion of stack-sorting for
set partitions was originally introduced by Defant and Kravitz. In this paper, we define a new deterministic
stack-sorting map φσ for sock sequences that use a σ-avoiding stack, where pattern containment need not be
consecutive. When σ = aba, we show that our stack-sorting map sorts any sock sequence with n distinct socks
in at most n iterations and that this bound is tight for n ≥ 3. We obtain a fine-grained enumeration of the
number of sock patterns of length n on r distinct socks that are 1-stack-sortable under φaba, and we also obtain
asymptotics for the number of sock patterns of length n that are 1-stack-sortable under φaba. Finally, we show
that for all unsorted sock patterns σ 6= a · · · aba · · · a, the map φσ cannot eventually sort all sock sequences on
any multiset M unless every sock sequence on M is already sorted.

Keywords: Pattern avoidance; Set partitions; Sock sequences; Sock patterns; Stack-sorting
2020 Mathematics Subject Classification: 05A15; 05A16; 05A18

1. Introduction

1.1 Stack-sorting algorithms

There is a long history of research on sorting with restricted data structures. In particular, Knuth first introduced
the concept of a stack-sorting machine in The Art of Computer Programming [19], which uses a stack data
structure to sort sequences. Given an input sequence, one can push elements from the input onto the stack and
pop elements off the stack to the output subject to the constraint that the element being popped out of the stack
must be the element that was most recently pushed onto the stack. Thus, the stack grants sorting power through
choices between pushes and pops. A stack-sorting algorithm is a rule for deciding whether to push or pop at
each step in the sorting process. There has since been much work on various stack-sorting algorithms inspired by
Knuth’s stack-sorting machine, including West’s deterministic stack-sorting algorithm [4, 9, 10, 22], pop-stack-
sorting [1, 2, 21], deterministic stack-sorting for words [14], sorting with pattern-avoiding stacks [3, 5, 6, 16],
stack-sorting Coxeter groups [11,12], and more.

In the setting where our sequences are permutations, we say that a sequence is sorted when it is the identity
permutation. Given a stack-sorting algorithm, it is natural to ask how many passes through the stack are needed
to sort the input object. We say that our input object is k-stack-sortable if there is some stack-sorting algorithm
that sorts the input in at most k iterations. We say that our input object is k-stack-sortable under φ if it can be
sorted by at most k iterations of a given stack-sorting algorithm φ. Knuth [19] characterized the permutations
that are 1-stack-sortable as exactly the permutations that avoid the pattern 231. This characterization launched
the growing field of permutation patterns research that exists today. In general, the set of permutations that
are k-stack-sortable is closed under pattern containment. However, given the nondeterminism of Knuth’s stack-
sorting machine, it is very difficult to characterize or enumerate such permutations when k ≥ 2. For example,
Pierrot and Rossin only recently proved that there is a polynomial time algorithm for deciding whether or
not a given permutation is 2-stack-sortable [20]. This motivated West to define a deterministic stack-sorting
algorithm [22], which uses 21-avoiding stacks. West’s stack-sorting map is easier to analyze. For example,
all permutations of length n are (n − 1)-stack-sortable under West’s stack-sorting map. Furthermore, we can
explicitly characterize all permutations that require all (n−1) iterations of West’s stack-sorting map to become
sorted.

Janabel Xia

Beyond the permutation setting, Defant and Kravitz recently generalized the notion of stack-sorting to set
partitions [15]. In this paper, we continue the investigation of stack-sorting of set partitions. More generally,
we define sock sequence to be a sequence of elements, which we refer to as socks, from a finite alphabet. We
say a sock sequence is sorted if all occurrences of a sock appear consecutively in the sequence. We also define
equivalence classes on sock sequences called sock patterns, which are in bijection with set partitions. We will
study stack-sorting on sock sequences and sock patterns.

As in the permutation setting, one can characterize which sock patterns are 1-stack-sortable. Defant and
Kravitz showed that a sock pattern p is 1-stack-sortable if and only if there is a 231-avoiding word representation
of p [15]. However, the nondeterminism of stack-sorting sock patterns makes analyzing the number of stacks
needed to sort them difficult. This motivates us to look at deterministic stack-sorting algorithms, which we
believe may shed light on the nondeterministic setting. Inspired by both West’s 21-avoiding stack-sorting map
and Defant and Zheng’s work on consecutive pattern-avoiding stacks [16], we define and study novel pattern-
avoiding stack-sorting maps on sock sequences. Our notion of pattern avoidance is identical to Klazar’s notion
of pattern avoidance for set partitions [17,18]. However, our notion of pattern avoidance within the stack differs
in that we do not only consider consecutive pattern avoidance. We formally define these pattern-avoiding
stack-sorting algorithms in Section 2.

1.2 Main results

We give special attention to one such pattern-avoiding stack-sorting map for sock sequences. We define a foot-
sorting map, denoted φaba, based on aba pattern avoidance in the stack. The name foot-sorting comes from
Defant and Kravitz’s original paper on the topic [15], in which feet are used in place of stacks. We show that
every sock sequence eventually becomes sorted under a finite number of iterations of φaba. Moreover, any sorted
sock sequence stays sorted after applying φaba. Thus our map φaba is a noninvertible sorting operator.

When looking at any noninvertible combinatorial dynamical system, it is natural to ask how many objects
require a given number of iterations to reach a periodic point. For sorting operators in particular, it is natural
to ask how many objects become sorted after applying a fixed number of sorting operations. For example,
Defant enumerated the 3-stack-sortable permutations [9, 12, 13], West enumerated the (n − 2)- and (n − 3)-
stack-sortable permutations [22], and Claesson, Dukes, and Steingŕımsson enumerated the (n−4)-stack-sortable
permutations [7].

Thus, we begin by taking an enumerative approach to studying φaba. We state and prove an enumeration
of sock patterns of length n that are 1-stack-sortable under φaba, and we further extend this result to a refined
enumeration that is parameterized by the number of distinct socks r in the sock pattern. In particular, we have
the following closed forms.

Theorem 1.1. Let s(n) denote the number of sock patterns of length n that are 1-stack-sortable under φaba.
Let P (x) :=

∑∞
n=1 s(n)xn be the corresponding generating function. Then we have

P (x) =
(−1 + 3x− 3x2) +

√
1− 6x+ 7x2 − 2x3 + x4

4(x2 − x)
.

Theorem 1.2. Let s(n, r) denote the number of sock patterns of length n and containing r distinct socks that are
1-stack-sortable under φaba. Let P[q](x) :=

∑∞
n=1

∑∞
r=1 s(n, r)x

nqr be the corresponding multivariate generating
function. Then we have

P[q](x) =
(−q + (q2 + 2q)x− (q2 + 2q)x2) + q

√
1− 2(q + 2)x+ (q2 + 2q + 4)x2 − 2q2x3 + q2x4

2(q + 1)(x2 − x)
.

We then take a separate approach to studying these pattern-avoiding stack-sorting operators, namely through
investigating periodic points for general patterns σ. In particular, we show in Proposition 5.2 that for any
unsorted sock pattern σ 6= a · · · aba · · · a and for any multiset of socks M such that not all sock sequences on M
are already sorted, there always exists a sock sequence on M that never gets sorted by φσ.

1.3 Outline of the paper

In Section 2, we provide background discussion on sock sequences and stack-sorting algorithms that we use
throughout the paper. In Section 3, we describe the action of our foot-sorting map φaba and prove a tight
upper bound on the number of iterations of φaba required to sort an arbitrary sock sequence. In Section 4, we
prove the explicit enumerations of sock patterns that are 1-stack-sortable under φaba stated in Theorem 1.1 and
Theorem 1.2. In Section 5, we study the behavior of general σ-avoiding stack-sorting maps through periodic
points. In Section 6, we raise some natural future directions for the investigation of deterministic stack-sorting
for set partitions.

ECA 4:3 (2024) Article #S2R23 2

Janabel Xia

2. Preliminaries

In this section, we provide definitions and notation for the discussion of stack-sorting sock sequences.

2.1 General notation for sock sequences

Fix an arbitrary infinite alphabet A. Throughout, we will use the standard Latin alphabet a, b, c, . . . to refer to
distinct elements of A. We call these elements of A socks. A sock sequence is a sequence p = p1 · · · pn of socks
in A. Let A∗ denote the (infinite) set of sock sequences on A.

Let p be a sock sequence. Let |p| denote the length of the sock sequence. We say that a sock sequence p is
empty if |p| = 0, and nonempty otherwise. Let x1x2 · · · denote the concatenation of sock sequences x1, x2, . . .
(where xi is potentially empty). Let xm denote the sock sequence x · · ·x consisting of m occurrences of sock
x ∈ A. Finally, we let p denote the reverse of p throughout.

2.2 Sock patterns as sequences

We first introduce the following definition, which will help us develop the notion of sock patterns.

Definition 2.1. Let p = p1 · · · pn be a sock sequence on the alphabet A. Then define Set(p) := {p1, . . . , pn} as
the set of distinct socks in p, and define C(p) := |Set(p)| as the number of distinct socks appearing in p.

We can now define an equivalence relation on sock sequences, where two sock sequences p = p1 · · · pn and
q = q1 · · · qm are equivalent if and only if there exists a bijection f : Set(p)→ Set(q) such that q = f(p1) · · · f(pn).
In other words, two sock sequences are equivalent if one can be obtained from the other by renaming the socks.
For example, the sock sequences abaa and cacc are equivalent. A sock pattern is an equivalence class on sock
sequences under our equivalence relation. This also gives us a notion of pattern avoidance. We say that a sock
sequence avoids a sock pattern σ if no subsequence of socks forms a sock sequence in the class σ. Following
standard notation in pattern avoidance, we let σ denote the reverse of sock pattern σ throughout, which
corresponds to the equivalence class obtained by reversing the sock sequences in the class σ.

We can also introduce the following notion of standardization to obtain a natural representative of each
equivalence class.

Definition 2.2. The standardization of a sock sequence p is an injective renaming of the socks in p such that
the socks appearing for the first time from left to right form the alphabetical sequence {a, b, c, . . . }.

Example 2.1. Let p = bbadb. Then the standardization of p is aabca.

Note that the standardization of a sock sequence is a restricted growth function, which is an alternative
representation of set partitions. We will soon construct an explicit bijection between sock patterns and set
partitions in Section 2.3.

We say that a sock sequence is standardized if it is equal to its own standardization. We see then that
two sock sequences are equivalent exactly when they have the same standardization. When referring to a sock
pattern, we will use the unique standardized sock sequence in the equivalence class as our representative.

In the traditional setting of stack-sorting permutations, one can think of permutations as sequences on the
base set [n] for some n ∈ Z>0. In the setting of sock sequences, we instead define our base set to be a multiset
M of socks. We can then think of sock sequences as sequences on the multiset M .

Definition 2.3. Let M be a multiset of socks. Let S(M) be the set of sock sequences consisting of all socks in
M (equivalently, the set of sock sequences on M).

Example 2.2. Let M = {a, a, b, b}. Then S(M) = {aabb, abab, abba, baab, baba, bbaa}.

Note that it will often be natural to consider the entire set S(M) at once, as S(M) is closed under any
stack-sorting map. For example, to study a stack-sorting map φ, we can ask which sock sequences within S(M)
get sent to each other, which sock sequences within S(M) eventually become sorted under repeated iterations
of φ, which sock sequences within S(M) are periodic points, etc.

Finally, the following notation will help us connect sock sequences to set partitions.

Definition 2.4. Let p be any sock sequence on M . For any sock m ∈ M , define I(p,m) := {i | pi = m}, i.e.
the set of indices i at which sock m occurs in p.

ECA 4:3 (2024) Article #S2R23 3

Janabel Xia

2.3 Sock patterns as set partitions

Sock patterns of length n are in bijection with set partitions on [n]. For example, the sock pattern represented
by the standardized sock sequence p = aabacb corresponds to the set partition {{1, 2, 4}, {3, 6}, {5}}. Let Xn
denote the set of all set partitions on [n], and let X := ∪n≥0Xn. Then the bijection is

SP :A∗ → X
p 7→ {I(p,m) | m ∈ Set(p)},

where the subsets in the set partition SP(p) correspond to the indices at which a fixed sock occurs in p. Note that
Klazar’s notion of pattern avoidance for set partitions [17, 18] corresponds to our notion of pattern avoidance
for sock patterns.

2.4 A novel stack-sorting map

We define a deterministic stack-sorting algorithm for sock sequences based on pattern avoidance of sock patterns.
This sorting algorithm is inspired by the consecutive pattern-avoiding stacks defined by Defant and Zheng [16].
Here, we consider pattern containment in a more general sense, where a pattern need not occur consecutively
within the stack.

Definition 2.5. Let φσ : A∗ → A∗ denote the stack-sorting map given by the following procedure. Suppose we
are given an input sequence p read from left to right. Throughout the procedure, we consider the sequence s of
socks obtained from reading the stack from top to bottom. At each point in time, we do one of the following
operations:

1. If there are remaining socks to push and pushing the leftmost sock from our input sequence onto the top
of the stack does not create an σ pattern in s, then we do so.

2. Otherwise, we pop the topmost sock off of our stack.

The procedure continues until the output contains all socks in the original input. Let φσ(p) denote the output
sock sequence.

Example 2.3. Let σ = aba and p = abcab. Then the following diagram illustrates the state of the stack at each
step in the algorithm. Our output sock sequence is φaba(abcab) = cbbaa, which we note is sorted.

a
b

bac

a
b

ba

c

a
b

a

b

bac

bac

ab bac

a

b bac

a

b

b
a

bc bc

a
a

cb aab

Figure 1: Result of applying map φaba to the sock sequence p = abcab

We can think about output sock sequences as belonging to the image of map φσ. Note that this sorting
procedure preserves the multiset of socks, and therefore also induces a map φσ : S(M)→ S(M) for any multiset
of socks M . Furthermore, sorting with φσ and then renaming socks with a bijection f yields the same sock
sequence as renaming socks with a bijection f and then sorting with φσ, so this sorting procedure also induces
a map from sock patterns to sock patterns. When σ = aba, we call our stack-sorting map the foot-sorting map.
The foot-sorting map has particularly nice properties, which we investigate in more detail in Section 3.

3. The foot-sorting map φaba
In this section, we study the behavior of the foot-sorting map φaba introduced in Definition 2.5. We begin
by presenting a quick but useful lemma that tells us what the action of our foot-sorting map φaba looks like
recursively.

ECA 4:3 (2024) Article #S2R23 4

Janabel Xia

Lemma 3.1. Let p = xl1s1x
l2s2 · · ·xlmsmxlm+1 be a sock sequence where l1, . . . , lm > 0 and lm+1 ≥ 0 are

integers, and s1, . . . , sm are nonempty sock sequences not containing x ∈ A. Then

φaba(p) = φaba(s1)φaba(s2) · · ·φaba(sm)xl1+···+lm+1 .

Proof. We show directly what happens to input sock sequence p = xl1s1x
l2s2 · · ·xlmsmxlm+1 . By definition, we

first push the first l1 occurrences of x onto the stack. We then have the following for all i ∈ [m− 1]. We i) push
all socks in si onto the stack, which only contains l1+· · ·+li occurrences of x. This results in si getting sorted by
φaba independently, since si contains no occurrences of x and therefore does not interact with the occurrences of
x at the bottom of the stack. We then ii) must pop all remaining socks in si in the stack before pushing the next
occurrences of x, to avoid having the pattern aba occur in the stack. Finally, we iii) push the next li+1 consecutive
occurrences of x in our input. After m − 1 rounds of this process, we are left with smx

lm+1 in our input,
φaba(s1) · · ·φaba(sm−1) in our output, and exactly l1 + · · ·+ lm occurrences of x on our stack. Again, we push all
socks in sm and independently sort them. If lm+1 = 0, we finally pop all remaining socks in sm in the stack and
all l1 + · · ·+ lm occurrences of x at the bottom of the stack, giving us φaba(s1) · · ·φaba(sm)xl1+···+lm as our final
output. If lm+1 > 0, we pop all remaining socks in sm in the stack before pushing the next lm+1 occurrences of x,
and finally pop all l1 + · · ·+ lm+1 occurrences of x in the stack to obtain φaba(s1)φaba(s2) · · ·φaba(sm)xl1+···lm+1 .
Thus our output always becomes φaba(s1)φaba(s2) · · ·φaba(sm)xl1+···+lm+1 , as desired.

Given how our foot-sorting map φaba acts on sock sequences, we can provide an upper bound on the number of
iterations of φaba required to sort any sock sequence. In the permutation setting, we have that any permutation
of length n is (n−1)-sortable under West’s stack-sorting map, which is linear in the number of distinct elements
of the permutation sequence. Furthermore, this bound is tight. It turns out that any sock sequence on n distinct
socks is n-sortable under φaba, which is also linear in the number of distinct elements appearing in our sequence.
We also show that this bound is tight.

Theorem 3.1. Let p be any sock sequence on multiset M . Let n be the number of distinct socks in M . Then
p is n-sortable under φaba. Furthermore, for any n > 2 there exists a sock sequence p such that p is not
(n− 1)-sortable under φaba.

Proof. Say that a sock is clumped if all occurrences of that sock appear consecutively. Then we can see that
any sock that is clumped stays clumped under φaba; if we can push one of the clumped socks onto the stack
and avoid the pattern aba, then we can push all of them onto the stack. Likewise, once we must pop a clumped
sock out of the stack, then all of the socks can constitute the last sock in the pattern aba, so they must all be
popped out together.

We claim that each application of φ adds at least one more clumped sock. In particular, if the first sock x is
not clumped, then by Lemma 3.1, one application of φaba clumps together all occurrences of sock x and sends
them to the back of the output sock sequence. If the first sock x is already clumped, then we have p = x · · ·xq
where q is some sock sequence. Then φaba(p) = φ(q)x · · ·x, and we can use the same argument on q. Thus,
the first sock that is not already clumped becomes clumped under φaba. Because socks that are clumped stay
clumped in any subsequent application of φaba, we need at most n stacks to sort p.

To show that this bound is tight for any n, consider the sock sequence p∗ = a1 · · · ana1 · · · an where ai is
a sock for all i ∈ [n] and p∗ contains exactly two copies of each distinct sock ai. We will show that p∗ is not
(n−1)-sortable under φaba. To do so, we claim that the after k iterations of φaba for, our sock sequence becomes
X1qX2qX3 where q is a sock sequence of length |q| = n − k containing only single occurrences of socks, and
X1, X2, and X3 are sock sequences of lengths |X1| = 2

⌊
k
3

⌋
, |X2| = 2

⌊
k+1
3

⌋
and |X3| = 2

⌊
k+2
3

⌋
. We prove this

by induction on k.
Our base case is easily verifiable; φaba((a1 · · · an)2) = an · · · a2an · · · a2a1a1, which we can rewrite in the form

X1qX2qX3 where X1 and X2 are empty, X3 = a1a1, and q = an · · · a2, which are all of the correct form. Now
we assume our hypothesis holds up to iteration k, and show that it remains true after iteration k + 1. Indeed,
if we write q = aq′, we have

φaba(X1aq
′X2aq

′X3) = (X2 q′ X3 q′ aa X1),

where we recall that X denotes the reverse of X. We can rewrite this as X ′1q
′X ′2q

′X ′3, where X ′1 = X2,
X ′2 = X3, and X ′3 = aaX1. Then we can verify that |X ′1| = |X2| = 2

⌊
k+1
2

⌋
, |X ′2| = |X3| = 2

⌊
k+2
2

⌋
,

|X ′3| = 2 + 2
⌊
k
3

⌋
= 2

⌊
k+3
3

⌋
, and q = n− k − 1, as desired.

Given the claim, we now have that X2 is nonempty for all sufficiently large k. The X1qX2qX3 cannot be
sorted until q is empty, which takes at least n iterations as desired.

Note that this notion of nonconsecutive pattern avoidance for our deterministic stack-sorting maps φaba
(and more generally φσ) is necessary for our maps to have nice properties like the above. Suppose, instead we
defined an analogous stack-sorting map φ′aba (and more generally φ′σ) that only considers consecutive pattern
avoidance in the procedure given by Definition 2.5. Then one example of a sock sequence that never gets sorted

ECA 4:3 (2024) Article #S2R23 5

Janabel Xia

by applying iterations of φ′aba would be abcabc (in fact, φ′aba(abcabc) = cbacba and φ′aba(cbacba) = abcabc).
Moreover, for any σ, we have sock sequences that never get sorted by applying iterations of φ′σ. Indeed, we will
see in Proposition 5.2 that for any pattern σ 6= aba, there always exists an unsorted sock sequence p that avoids
σ and therefore alternates between p and p under iterations of φ′σ, neither of which are sorted. Therefore, under
the consecutive pattern avoidance regime, there would be no stack-sorting map φσ that eventually sorts any
sock sequence.

4. Enumerating 1-stack-sortable sock patterns under φaba
In this section, we prove our main enumerative results. We first provide a proof of Theorem 1.1 and then derive
asymptotics based on the closed form. Then we generalize our argument to prove Theorem 1.2.

We first discuss the notion of appending two sock patterns. Observe that under our notion of equivalence
between sock sequences, even if sock sequences s1 and s′1 are equivalent and sock sequences s2 and s′2 are
equivalent, it does not necessarily follow that the sock sequence s1s2 is equivalent to the sock sequence s′1s

′
2.

For example, suppose s1 = aaba, s′1 = aaba, s2 = bcab, and s′2 = cbac. Then we can have s1s2 = aababcab and
s′1s
′
2 = aabacbac, which are not the same sock pattern. The sock pattern p is determined by how we explicitly

assign sock names to the occurrence of s1 and the occurrence of s2, up to standardization.
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We use Lemma 3.1. Let p = xl1s1x
l2s2 · · ·xlmsmxlm+1 be a 1-stack-sortable sock pattern

under φaba where x /∈ si for any i ∈ [m]. Note that in order for

φaba(p) = φaba(s1)φaba(s2) · · ·φaba(sm)xl1+···+lm+1

to be sorted, we must have that for all i ∈ [m], each si individually is a 1-stack-sortable sock pattern under
φaba.

Then given any fixed si, we only need to consider their relationship to each other in the full sock pattern.
In particular, we claim that for any l1, l2 > 0 and nonempty sock patterns s1, s2 that are each 1-stack-sortable
under φaba, there are exactly two possible sock patterns xl1s1x

l2s2 that are 1-stack-sortable under φaba. To see
this, we must have |C(si) ∩ C(si+1)| ≤ 1, as otherwise the subsequence φaba(si)φaba(si+1) in φaba(p) contains
either abab or abba as a subsequence and is not sorted. We then consider the following two cases:

i) If |C(s1) ∩ C(s2)| = 0, then there is exactly one way to assign sock names to s1 and s2 up to standard-
ization. Namely, we can assign any sock names such that the socks in s1 and s2 are disjoint, and then
standardize.

ii) If |C(s1) ∩ C(s2)| = 1, then again there is exactly one way to assign sock names to s1 and s2 up to
standardization. Namely, we assign the same name to the last element that appears in φaba and to the
first element that appears in φaba(s2), and consider all other socks in s1 and s2 disjoint.

Then we can see that up to equivalence, p is determined by the sock patterns si together with the choice for
1 ≤ i ≤ m− 1 of whether or not si and si+1 share a sock, for a total of 2m−1 choices. We can now consider the
cases where m = 0 and m ≥ 1 separately, which allows us to write the following relation on P (x):

P (x) =
x

1− x
+
∑
m≥1

P (x)m2m−1

 ∑
l1,...,lm>0
lm+1≥0

xl1+···+lm+1

 (1)

=
x

1− x
+
∑
m≥1

(
P (x)m2m−1

(
x

1− x

)m(
1

1− x

))
(2)

=
x

1− x
+

1

2(1− x)

∑
m≥1

(
P (x)m2m

(
x

1− x

)m)
(3)

=
x

1− x
+

1

2(1− x)
·

2P (x)
(

x
1−x

)
1− 2P (x)

(
x

1−x

) . (4)

To see why Equation 1 holds, we can consider the coefficient of xn for any n ∈ Z≥0. On the left-hand side,
this is s(n) by definition. On the right-hand side, we have two main terms. The first term x

1−x =
∑
n≥1 1xn

counts the unique sock pattern with length n that is 1-stack-sortable under φaba when m = 0, namely p = x · · ·x.

ECA 4:3 (2024) Article #S2R23 6

Janabel Xia

The second term contributes a sum of 2m−1s(n1)s(n2) · · · s(nm) over all possible lengths n1, . . . , nm, l1, . . . , lm+1

with ni > 0 for i ∈ [m] and li > 0 such that n1 + · · ·+ nm + l1 + · · ·+ lm = n. This counts the number of sock
patterns that are 1-stack-sortable under φaba when m ≥ 1, since we can take any nonempty sock patterns si
that are independently 1-stack-sortable under φaba and append them in 2m−1 ways.

Given Equation 4, one can now easily solve the quadratic in P (x) to obtain the closed form

P (x) =
(−1 + 3x− 3x2) +

√
1− 6x+ 7x2 − 2x3 + x4

4(x2 − x)
,

as desired.

Corollary 4.1. We have s(n) = Kcnn−3/2 + O(cnn−5/2), where K = 0.34313 · · · is a constant and c =
4.5464 · · · is the inverse of the smallest positive root x0 of 1− 6x+ 7x2 − 2x3 + x4 = 0.

Proof. For any power series f and n ≥ 0, let [xn]{f(x)} denote the coefficient of xn in the series f(x). We wish
to find asymptotics for s(n) = [xn]{P (x)}.

Let P ∗(x) :=
√
1−6x+7x2−2x3+x4

4(x2−x) . Note that to obtain asymptotics for s(n), it suffices to compute asymptotics

for the coefficients of the power series of P ∗(x) at x = 0, since we can verify that

P (x)− P ∗(x) =
−1 + x+ x2

4(x2 − x)
= −1

4

∞∑
n=−1

xn

contributes only constant terms to s(n).
In particular, we define Q(x) := P ∗(x0x), where x0 is the smallest positive root of 1−6x+7x2−2x3+x4 = 0

(and thus the singularity of P ∗(x) with smallest magnitude). Then we have that the smallest singularity of
Q(x) occurs at x = 1, so we can write Q(x) = (1 − x)βR(x) where β = 1

2 and R(x) is analytic in some disk
|x| < 1 + ε where ε > 0. Let R(x) =

∑∞
j=0 rj(1− x)j . Then Darboux’s Theorem [8,23] tells us that

[xn]{(1− x)βR(x)} = [xn]

m∑
j=0

rj(1− x)β+j

+O(n−m−β−2).

Plugging in m = 0 and β = 1
2 gives us

[xn]{(1− x)1/2R(x)} = [xn]{r0(1− x)1/2}+O(n−5/2).

Note that r0 = R(1), which is well-defined and computable. We can also compute [xn]{(1 − x)1/2} using
Stirling’s approximation as follows:

[xn]{(1− x)1/2} = −(−1)n−1
(1

2

n

)
= −

(
1

2

)n
1 · 3 · · · · · (2n− 3)

n!

= −
(

1

4

)n
1

2n− 3

(2n)!

(n!)2

= −
(

1

4

)n
1

2n− 3

(
2n
e

)2n√
2π(2n)((

n
e

)n√
2πn

)2 · (1 +O(n−1)
)

= − 1√
4π
n−3/2 ·

(
1 +O(n−1)

)
= − 1√

4π
n−3/2 +O(n−5/2).

Thus, we have

[xn]{Q(x)} = −R(1)√
4π
n−3/2 +O(n−5/2)

⇒ [xn]{P ∗(x)} = −
(

1

x0

)n
R(1)√

4π
n−3/2 +O

((
1

x0

)n
n−5/2

)
⇒ s(n) = Kcnn−3/2 +O(cnn−5/2),

where K = −R(1)√
4π

= 0.34313 · · · is a constant, c = 1
x0

, and x0 = 1
2

(
1−

√
8
√

2− 11
)

is the smallest solution to

1− 6x+ 7x2 − 2x3 + x4 = 0, as desired.

ECA 4:3 (2024) Article #S2R23 7

Janabel Xia

We can extend the previous result to a more refined enumeration of the 1-stack-sortable sock patterns p
under φaba of a given length n based on C(p), the number of distinct socks appearing in p. We can thus define a
q-analogue for the statistic C(p). We also find a closed form for its generating function as stated in Theorem 1.2.
Our proof is analogous to the proof of Theorem 1.1.

Proof of Theorem 1.2. Let s(n, r) denote the number of sock patterns of length n that are 1-stack-sortable
under φaba and have r distinct socks. Again, for p = xl1s1x

l2s2 · · ·xlmsmxlm+1 to be 1-stack-sortable, we must
have that si are individually 1-stack-sortable under φaba for all i ∈ [m] (where the si are potentially nonempty).
Furthermore, if p has r distinct socks, then we have to choose how to cover those r socks across the m sock
patterns s1, . . . , sm.

We again split into two cases. When m = 0, we have that there is exactly one sock pattern of length n that
is 1-stack-sortable under φaba, namely p = xn. This pattern contains one distinct sock, so we can capture these
sock patterns in the sum

∑
n>0 x

nq1 = qx
1−x .

Now suppose m > 0, so we have a nonzero number of nonempty sock patterns si. Suppose si has length
ni > 0 and ri > 0 distinct socks for i ∈ [m]. For each nonempty si, we can again either choose to i) have the
first sock of φaba(si) be the same as the last sock of φaba(si−1), or ii) have φaba(si) (and therefore si) have
disjoint socks from φaba(si−1). In the former, the total number of distinct socks added by appending si is ri−1,
and in the latter, the total number of distinct socks added by adding si is ri. Thus, our contributions to P[q](x)
look like the product of either s(ni, ri)x

niqri or s(ni, ri)x
niqri−1 terms over all i ∈ [m], which we can factor as

P[q](x)m(1 + q−1)m. We can thus write the following relation on P[q](x):

P[q](x) =
qx

1− x
+
∑
m≥1

P[q](x)m(1 + q−1)m−1

 ∑
l1,...,lm>0
lm+1≥0

xl1+···+lm+1q

=
qx

1− x
+
∑
m≥1

(
P[q](x)m(1 + q−1)m−1

(
x

1− x

)m(
1

1− x

)
q

)

=
qx

1− x
+

q

(1 + q−1)(1− x)

∑
m≥1

(
P[q](x)m(1 + q−1)m

(
x

1− x

)m)

=
qx

1− x
+

q

(1 + q−1)(1− x)
·

P[q](x)(1 + q−1)
(

x
1−x

)
1− P[q](x)(1 + q−1)

(
x

1−x

) .
We can now easily solve this quadratic in P[q](x) to get the closed form

P[q](x) =
(−q + (q2 + 2q)x− (q2 + 2q)x2) + q

√
1− 2(q + 2)x+ (q2 + 2q + 4)x2 − 2q2x3 + q2x4

2(q + 1)(x2 − x)
,

as desired.

After obtaining a closed form and asymptotics for the number of 1-stack-sortable sock patterns of a given
length, it is natural to ask whether or not there is a simple way to describe what 1-stack-sortable sock sequences
look like. It turns out that even though we know recursively what the map φaba behaves like, we cannot
easily characterize the set of k-stack-sortable sock sequences. The following example shows that sortability
is not closed under containment, that is, there exist sock sequences p and q such that p is contained in q, p
is not 1-stack-sortable, and q is 1-stack-sortable. Take p = abcabc and q = babcabc. Then φaba(p) = cbcbaa
is unsorted and φaba(q) = aaccbbb is sorted. Therefore, the set of 1-stack-sortable sock sequences under φaba
cannot be characterized as all sock sequences that avoid some fixed set of sock patterns. Note that this contrasts
with the original nondeterministic setting that Defant and Kravitz introduced based on Knuth’s stack-sorting
machine [15]. The lack of a pattern avoidance characterization of 1-stack-sortable sock patterns is due to
the determinism of the stack-sorting procedure here. It is worth mentioning that the set of k-stack-sortable
permutations under West’s stack-sorting map is also not closed under permutation pattern containment when
k > 1 [22].

5. General σ-avoiding stack-sorting algorithms

In this section, we study the behavior of φσ for general σ beyond the pattern aba. A natural question to ask is
whether or not φσ will always sort any arbitrary sock sequence in A∗. The following proposition tells us that
φaba is the only such map.

ECA 4:3 (2024) Article #S2R23 8

Janabel Xia

Proposition 5.1. The only σ for which φσ eventually sorts all sock sequences is σ = aba.

Proof. Note that for any σ 6= aba such that |σ| ≥ 3, then φσ(aba) = aba and thus will never sort aba. Thus, we
only need to consider when |σ| ≤ 2. There are two patterns of length two, namely ab and aa. We can easily
verify that the sock sequence abcabc gets taken to itself and to its reverse under φab and φaa, respectively.

The question above is not particularly interesting, since we simply show that there exist short sock sequences
that cannot be sorted by φσ when σ is sufficiently large. We would like to say something stronger. In the
permutation setting, it makes sense to group permutations of a given length n (since passes through the stack
will never change the length of the input permutation) and say something about the existence of unsortable
permutations for all n. Similarly, in the sock sequence setting, we group sock sequences S(M) on a given
multiset M . Now we can ask for which (σ,M) do we have that any sock sequence within S(M) will eventually
become sorted under φσ. We have the following proposition, which tells us that for an infinitely large class of
σ, the map φσ cannot eventually sort all sock sequences in any S(M) (unless every sock sequence of S(M) is
already sorted).

Proposition 5.2. Let σ be an unsorted sock pattern that is not of the form a · · · aba · · · a. Then for any multiset
of socks M such that not all sock sequences in S(M) are sorted, there exists a sock sequence p∗ ∈ S(M) that is
not k-stack-sortable under φσ for any k.

Proof. It suffices to show that there exists an unsorted sock sequence p such that p ∈ Av(σ, σ), as applying φσ
to any sock sequence p that avoids σ just reverses p. Suppose that M consists of distinct socks a1, a2, . . . , am.
Without loss of generality, suppose there are at least two copies of a1. We know that σ contains aba because
it is unsorted. Thus we can consider the following cases for σ and in each case we explicitly construct a sock
sequence p∗ that avoids both σ and σ:

Case 1: σ contains abba or abca. Let p = a1 · · · a1a2 · · · a2 · · · an · · · an be a sorted sock sequence. Consider
the sock sequence

p∗ = a1 · · · a1a2a1a2 · · · a2a3 · · · a3 · · · am · · · am
obtained by swapping the last a1 and the first a2. Then p∗ avoids both σ and σ because the only occurrence of
aba would either consist of the last two occurrences of a1 or the first two occurrences of a2, both of which only
contain one sock between them.

Case 2: σ contains abab, abac or caba. Then we consider the sock sequence

p∗ = a1 · · · a1a2 · · · a2 · · · am · · · ama1.

This cannot contain an occurrence of σ because the only opportunity to contain aba as a pattern is to contain
one of the occurrences of a1 at the beginning and the last occurrence a1. Then there would be no more socks
on either end of the sock sequence to represent the sock not equal to a1 in the pattern σ. For the same reason,
p∗ cannot contain an occurrence of σ.

Note that these cases are exhaustive, as we assume σ is not of the form a · · · aba · · · a. Therefore we have
found a sock sequence p∗ that avoids σ and σ for all possible σ, as desired.

6. Further Directions

In this final section, we propose several questions and directions for future study. We hope that continued
investigation of deterministic stack-sorting maps for sock sequences, whether based on pattern avoidance or
not, is fruitful and yields implications for the nondeterministic setting. We provide possible directions along
the lines of characterization and enumeration.

Recall that we have shown that the foot-sorting map φaba can sort any sock sequence on n socks in at most
n iterations. Furthermore, we provided a construction p = (a1 · · · an)2 to show that this bound is tight. We
may ask whether there are other sock sequences for which the bound is tight.

Question 6.1. What are all sock sequences on n socks that are not (n− 1)-sortable under φaba?

It could be interesting to characterize the sock sequences on n distinct socks that are not (n − 1)-stack-
sortable. Beyond (n − 1)-sortable, it would also be interesting to characterize the sock sequences that are
k-stack-sortable and not (k − 1)-stack-sortable for other values of k. For example, while there is no pattern
avoidance characterization of the 1-stack-sortable sock sequences, it would be interesting to see whether or not
there is still some nice characterization.

Along the lines of characterization, it could also be interesting to characterize an alternate class of periodic
points. When looking at φaba, we know that all sock sequences eventually get sorted, and thus the only periodic
points are the sorted sock sequences, which are precisely those avoiding the sock pattern aba. Any sock sequence

ECA 4:3 (2024) Article #S2R23 9

Janabel Xia

avoiding σ and σ is a periodic point under φσ with period two. Recall that we have also shown in Proposition 5.2
that for almost all σ, we can find an unsorted periodic point avoiding σ and σ that has period two. It is natural
to ask whether or not there are periodic points under φσ with period greater than two when σ 6= aba. It could
be interesting to determine for which σ there exist periodic points under φσ with period greater than two, and
to characterize such periodic points.

Also, recall that we have an enumeration of the sock patterns of length n that are 1-stack-sortable under
φaba. Because we do not have a nice way to understand what the 1-stack-sortable sock sequences look like,
nor do we understand how to count the number of preimages in general, it is not immediately clear how to
enumerate even 2-stack-sortable sock patterns.

Question 6.2. How many sock patterns of length n are k-stack-sortable under φaba for k > 1?

Another line of investigation would be to look at other deterministic sorting algorithms, such as considering
analogous sorting maps φσ1,...,σi

that avoid multiple sock patterns σ1, . . . , σi at once. It could be interesting to
investigate the behavior of alternative deterministic stack-sorting algorithms on sock sequences in general.

Acknowledgments

This work was done at the University of Minnesota Duluth with support from Jane Street Capital, the National
Security Agency, and the CYAN Undergraduate Mathematics Fund at MIT. The author is grateful to Joe Gallian
and Colin Defant for directing the Duluth REU program and for the opportunity to participate. The author is
also grateful to Mitchell Lee, Noah Kravitz, Maya Sankar, and Yelena Mandelshtam for helpful discussions and
their guidance throughout the research process.

References

[1] M. D. Atkinson and J.-R. Sack, Pop-stacks in parallel, Inform. Process. Lett. 70 (1999), 63–67.

[2] D. Avis and M. Newborn, On pop-stacks in series, Utilitas Math. 19 (1981), 129–140.

[3] K. Berlow, Restricted stacks as functions, Discrete Math. 344 (2021), Paper No. 112571.

[4] M. Bóna, A survey of stack-sorting disciplines, Electron. J. Combin. 9 (2003), Article 1.

[5] G. Cerbai, Sorting Cayley permutations with pattern-avoiding machines, Australas. J. Combin. 80 (2021),
322–341.

[6] G. Cerbai, A. Claesson, and L. Ferrari, Stack sorting with restricted stacks, J. Combin. Theory Ser. A 173
(2020), 105230.

[7] A. Claesson, M. Dukes, and E. Steingŕımsson, Permutations sortable by n – 4 passes through a stack, Ann.
Comb. 14 (2010), 45–51.

[8] G. Darboux, M émoire sur l’approximation des fonctions de trés-grands nombres, et sur une classe étendue
de développements en s érie, Journal de Mathématiques Pures et Appliquées (1878), 5–56.

[9] C. Defant, Stack-Sorting and Beyond, Ph.D. Thesis, 2022.

[10] C. Defant, Troupes, cumulants, and stack-sorting, Adv. Math. 399 (2022), 108270.

[11] C. Defant, Pop-stack-sorting for Coxeter groups, Comb. Theory 2 (2022), Paper No. 11.

[12] C. Defant, Stack-sorting for Coxeter groups, Comb. Theory 2 (2022), Paper No. 18.

[13] C. Defant, Counting 3-stack-sortable permutations, J. Combin. Theory Ser. A 172 (2020), 105209.

[14] C. Defant and N. Kravitz, Stack-sorting for words, Australas. J. Combin. 77 (2020), 51-–68.

[15] C. Defant and N. Kravitz, Foot-Sorting for Socks, November 2022, arXiv:2211.02021.

[16] C. Defant and K. Zheng, Stack-sorting with consecutive-pattern-avoiding stacks, Adv. in Appl. Math. 128
(2021), Paper No. 102192.

[17] M. Klazar, Counting pattern-free set partitions. I. A generalization of Stirling numbers of the second kind,
European J. Combin. 21 (2000), 367—378.

[18] M. Klazar, Counting pattern-free set partitions. II. Noncrossing and other hypergraphs, Electron. J. Combin.
7 (2000), Research Paper 34.

[19] D. E. Knuth, The art of computer programming, Volume 4A, Combinatorial algorithms, Part 1, Addison-
Wesley, Upper Saddle River, NJ, 2011.

[20] A. Pierrot and D. Rossin, 2-stack sorting is polynomial, Theory Comput. Syst. 60 (2017), 552–579.

[21] R. Smith and V. Vatter, A stack and a pop stack in series, Australas. J. Combin. 58 (2014), 157–171.

[22] J. West, Permutations with forbidden subsequences, and, stack-sortable permutations, Ph.D. Thesis, 1990.

[23] H. S. Wilf, generatingfunctionology, third ed., A K Peters, Ltd., Wellesley, MA, 2006.

ECA 4:3 (2024) Article #S2R23 10

