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Abstract In this talk, I will discuss two numbers that are associated with Lie groups. The
first number is N(G,m), the number of conjugacy classes of elements in G whose order
divides m. The second number is N(G,m, s), the number of conjugacy classes of elements
in G whose order divides m and which have s distinct eigenvalues, where we view G as a
matrix group in its smallest-degree faithful representation.

Much of my work on this topic was originally motivated by an enumerative problem that
arose in string theory. I will describe some of this motivation, as well as the history of study-
ing these numbers. I will then discuss recent results, concentrating mainly on exceptional
Lie groups.

This talk is based mostly on joint work with Qidong He which has recently been accepted
at Combinatorial Theory [7].1

1. Background and motivation

Let G be a complex, simply-connected Lie group, viewed as a matrix group via its standard
representation (i.e., its smallest-degree, faithful representation), and let m and s be positive
integers. We study the number of conjugacy classes of elements in G whose order divides m,
as well as the number of such classes whose elements have s distinct eigenvalues. That is,
we define

E(G,m) = {x ∈ G | xm = 1},
E(G,m, s) = {x ∈ E(G,m) | x has s distinct eigenvalues},

and study
N(G,m) = number of conjugacy classes of G in E(G,m),

N(G,m, s) = number of conjugacy classes of G in E(G,m, s).
The study of the number of conjugacy classes of elements of finite order in Lie groups has

an interesting history that combines mathematical and physical approaches and applications.
The story begins in the 1980’s with a pair of papers by Djokovic [3, 4], where nice formulas

for N(G,m) were obtained for any connected semisimple complex Lie group G that is simply
1This short summary paper heavily relies on [7], [8], [9].
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connected or adjoint, using a generating function approach. In [12, 2], the case of certain
prime power orders was computed; and in [10], N(SU(n),m) was obtained. This topic was
revived in [8, 9], where N(G,m) was obtained for unitary, orthogonal, and symplectic Lie
groups using simple combinatorial methods that apply to groups that are not necessarily
connected, simply connected, or adjoint.

In [8, 9], E(G,m, s) and N(G,m, s) were introduced for the first time,2 motivated by an
explicitly enumerative problem in string theory: counting the number of certain vacua in
the quantum moduli space of M-theory compactifications on manifolds of G2 holonomy. In
that context, the numbers N(SU(p), q) and N(SU(p), q, s), where q and p are relatively
prime, were computed in [6]. These numbers are related to symmetry breaking patterns in
grand unified theories, with the number N(SU(p), q, s) being particularly significant as s is
related to the number of massless fields in the gauge theory that remains after the symmetry
breaking. In [8, 9], formulas for N(G,m, s) were obtained for the unitary, orthogonal, and
symplectic Lie groups.

Most recently in [7], methods are developed to obtain the numbersN(G,m) andN(G,m, s)
for G an exceptional Lie group. Results in [7] for N(G,m) coincide with those in [4], but
are obtained in a different way. Results in [7] for N(G,m, s) are new. They are obtained in
closed form for the smallest exceptional groups G2 and F4 (for the latter, the table required
to present the results is very large). For E6, E7, E8, the results can in principle be obtained
algorithmically but require significant computational power.

In this talk, we will briefly review the earlier results mentioned above, and then concentrate
on the recent results announced in [7].

2. Counting conjugacy classes

We begin by reducing the computation of N(G,m) and N(G,m, s) to the computation of
N(T,m) and N(T,m, s), where T is a maximal torus of G: we have

N(G,m) = N(T,m),
N(G,m, s) = N(T,m, s).(2.1)

These equalities can be proven using the torus theorem when G is compact and connected,
or using the Jordan decomposition x = su for x ∈ G, s semisimple, and u unipotent when
G is complex and semi-simple [8, 9, 7].

2.1. Classical Lie groups. With the simplification to the torus, the computation ofN(G,m)
and N(G,m, s) for unitary, orthogonal, and symplectic groups can be obtained in a relatively
straightforward manner by careful study of their respective tori. We illustrate this with an
example taken from [8]. Let G = SO(2n+ 1). Its torus is
(2.2) TSO(2n+1) = {diag(A(θ1), A(θ2), . . . , A(θn), 1)} ,
where

A(θ) =
(

cos 2πθ sin 2πθ
− sin 2πθ cos 2πθ

)
.

Let
B =

(
1 0
0 −1

)
,

2In [8, 9], the number s denotes the number of distinct pairs of eigenvalues.
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and note that
BA(θ)B−1 = A(−θ).

Since diag(B, I2n−2,−1) ∈ SO(2n+1), and since we can always reorder the θl via conjugation
by a permutation within SO(2n+ 1), it follows that two elements x and x′ of TSO(2n+1) that
differ by θ′l = −θl for any l = 1, . . . , n belong to the same conjugacy class. We therefore
consider only elements of TSO(2n+1) with θl ∈ [0, 1/2]. For elements of order dividing m,
we have θl ∈ 1

m
(0, 1, . . . , [m

2 ]), and we order the θl’s in nondecreasing order. It follows that
N(SO(2n+ 1),m) is the number of weak ([m

2 ] + 1)-compositions of n:

N(SO(2n+ 1),m) =
(
n+

[
m
2

]
[

m
2

] )
.

We now turn to N(SO(2n + 1),m, s), where s denotes the number of distinct conjugate
pairs of eigenvalues of the elements. There are n θl’s and

(
n−1
s−1

)
= s

n

(
n
s

)
ways to partition

them into s nonzero parts. There are
[

m
2

]
+ 1 possible values for the θl, yielding

N(SO(2n+ 1),m, s) = s

n

(
n

s

)([
m
2

]
+ 1
s

)
.

Similar, though in many cases more subtle, computations lead to results for other orthog-
onal groups, as well as for symplectic groups and unitary groups. Interesting subtleties arise
from tori that are not connected, and from the interplay between those and the parity of m.
All the results are rather pleasing linear combinations of one or two binomial coefficients,
with the exception of N(SU(n),m) and N(SU(n),m, s), which are given by a sum over
divisors of gcd(n,m). For more detail, see [8].

2.2. Exceptional Lie groups. For the exceptional Lie groups, the tori and the conjugation
of torus elements are not as simple to work with as for the classical Lie groups, so we need
additional insights in order to compute N(G,m) and N(G,m, s) for these.

Let W be the Weyl group of G. Let T (G,m) be the subgroup of the torus of G consisting
of elements of order dividing m, and let Ts(G,m) be the subset of T (G,m) of elements that
have s distinct eigenvalues when G is considered to be in its smallest faithful representation.

Recall that two elements t, s ∈ T are conjugate in G iff there exists w ∈ W satisfying
s = w · t, where W acts on T by conjugation. It follows that N(T,m) (resp. N(T,m, s)) is
the number of orbits of elements in T (G,m) (resp. Ts(G,m)) under the action of W . By
Burnside’s Lemma,

N(T,m) = 1
|W |

∑
w∈W

|Fix(w)| ,

and
N(T,m, s) = 1

|W |
∑

w∈W

|Fixs(w)| ,

where Fix(w) = {t ∈ T (G,m) : w · t = t} and Fixs(w) = {t ∈ Ts(G,m) : w · t = t}.
Now, if u, v ∈ W are conjugate, there is a canonical bijection between the fixed points

of T (G,m) under u and under v, so |Fix(u)| = |Fix(v)|; similarly, |Fixs(u)| = |Fixs(v)|.
Therefore, we can simplify the above sum over the Weyl group to get

N(G,m) = N(T,m) = 1
|W |

∑
c∈Cl(W )

|c| |Fix(wc)| ,(2.3)
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and

N(G,m, s) = N(T,m, s) = 1
|W |

∑
c∈Cl(W )

|c| |Fixs(wc)| ,(2.4)

where Cl(W ) is the collection of conjugacy classes in W .
The utility of our simplified formulas stems from the fact that while the Weyl group of an

exceptional Lie group may be forbiddingly large, the number of conjugacy classes inside the
Weyl group is generally small. Hence, provided that we know the size and a representative of
each conjugacy class in the Weyl group, the sums above will be much easier to evaluate than
the ones given by Burnside’s Lemma. Fortunately, this information has been completely
determined in [1] and translated into an accessible form in GAP 3 [5, 11].

Due to space constraints, we give only a brief description of the methods we developed to
compute |Fix(wc)| and |Fixs(wc)| for the exceptional groups. We will elaborate further in
the talk. For more detail, see [7].

2.2.1. N(G,m). For each exceptional Lie group, we use the set of matrix generators provided
by [13] both for a concrete representation of the torus elements themselves and for a concrete
representation of the generators of W that act on the torus. This allows us to compute the
conditions for t ∈ T to be fixed under some w ∈ W . These conditions take the form of
homogeneous linear equations with integer coefficients represented by a matrix A ∈Mn×`(Z),
where n = 3, 12, 27, 28, 120 for G = G2, F4, E6, E7, E8, respectively, and ` is the rank of the
Lie group. At most ` of the n equations are linearly independent.

The number of torus elements that satisfy the conditions, i.e. |Fix(w)|, is the number of
elements in the kernel of A over 1

m
Z/Z. This number can be computed using the Smith

Normal Form (SNF) of A. We carry out the computation of |Fix(wc)| for a representative wc

of each conjugacy class of W . We obtain complete results for N(G,m) that are presented in
the form of five tables for G = G2, F4, E6, E7, E8, each organized by congruence classes of m
mod 6, 12, 6, 12, or 60, respectively. The numbers 6, 12, 6, 12, and 60 are the least common
multiples of the elementary divisors that come up in the relevant SNF’s.

2.2.2. N(G,m, s). The main questions that need to be addressed here are: when does a
torus element t ∈ T have s distinct eigenvalues? How many of those are fixed under the
action of some s ∈ W?

We develop methods to detect when an eigenvalue is repeated by introducing a matrix
for which the kernels of its submatrices are associated with repeated eigenvalues. We define
a partial order on the set of submatrices. The structure of the resulting partially ordered
set, along with the principle of inclusion and exclusion, ultimately leads to an algorithm
for computing |Fixs(wc)|. We use this algorithm to obtain complete results for G2 and F4.
The results for G2 are presented in a table organized by congruence classes of m mod 12.
For F4, the results have to be given in terms of m mod 12252240. For the remaining three
exceptional groups, we lack the computational power required. Finding an efficient way to
compute those is an open problem.
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