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ASSOCIATIVE-COMMUTATIVE SPECTRA FOR SOME VARIETIES OF
GROUPOIDS (EXTENDED ABSTRACT)

JIA HUANG AND ERKKO LEHTONEN

Abstract The associative spectrum of a groupoid (i.e., a set with a binary operation) mea-
sures its nonassociativity while the associative-commutative spectrum measures both nonas-
sociativity and noncommutativity of the groupoid. The two spectra are also the coefficients
of the Hilbert series of certain operads. We establish upper bounds for the two spectra of
various varieties of groupoids defined by different sets of identities and provide examples
(often groupoids with three elements) for which the upper bounds are achieved. Our re-
sults have connections to many interesting combinatorial objects and integer sequences and
naturally lead to some questions for future studies.

1. Introduction

A groupoid (G, ∗) is a basic algebraic structure that consists of a set G together with a
binary operation ∗ defined on G. Associativity and commutativity are common properties
that could be satisfied by a groupoid. Csákány and Waldhauser [3] defined the associative
spectrum (also called the subassociativity type by Braitt and Silberger [2]) to measure the
failure of a groupoid to be associative, and we introduced the associative-commutative spec-
trum, or simply ac-spectrum, to measure both nonassociativity and noncommutativity of a
groupoid in earlier work [6]; see the definition below.

Definition 1. Fix a countable list of distinct variables x1, x2, . . .. Let Bn denote the set
of all bracketings of x1, . . . , xn, which are terms in the language of groupoids obtained by
inserting pairs of parentheses into the word x1x2 · · ·xn in all valid ways. Let Fn denote the
set of full linear terms over x1, . . . , xn, which are obtained by permuting the variables in the
bracketings of x1, . . . , xn. We can view Bn as a subset of Fn. Every term t ∈ Fn induces
an n-ary operation t∗ on a groupoid (G, ∗). It is often convenient to think about the terms
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2 ASSOCIATIVE-COMMUTATIVE SPECTRA FOR SOME VARIETIES OF GROUPOIDS

in Fn or the n-ary operations induced by them in terms of the corresponding (ordered, full)
binary trees with n labeled leaves; see the example below for B4, which can give F4 if the
variables are permuted in all possible ways.

1 2 3
4 1 2 3 4 1 2 3

4 1
2 3 4

1
2 3 4

((x1∗x2)∗x3)∗x4 (x1∗x2)∗(x3∗x4) (x1∗(x2∗x3))∗x4 x1∗((x2∗x3)∗x4) x1∗(x2∗(x3∗x4))

The associative spectrum (resp., ac-spectrum) of a groupoid (G, ∗), or of its binary operation
∗, is a sequence whose nth term is san(∗) := |Pn(∗)| (resp., sacn (∗) := |P n(∗)|), where Pn(∗) :=
{t∗ : t ∈ Bn} (resp., P n(∗) := {t∗ : t ∈ Fn}) for n = 1, 2, . . .. It turns out that {Pn(∗)}n≥1
(resp., {P n(∗)}n≥1) together with a composition function becomes a nonsymmetric operad
(resp., symmetric operad) that satisfies certain coherence axioms [12], and the Hilbert series
of this operad is the generating function (resp., exponential generating function) of the
associative spectrum (resp., ac-spectrum) of (G, ∗).

By the above definition, we have (i) san(∗) = 1 for n = 1, 2, (ii) sac1 (∗) = 1, and (iii) sac2 (∗)
is either 1 or 2, depending on whether ∗ is commutative. Thus we may assume n ≥ 3 when
necessary. It is easy to see that isomorphic or anti-isomorphic groupoids have the same
associative spectrum and the same ac-spectrum, where two groupoids (G, ∗) and (H,⊗) are
said to be anti-isomorphic, denoted by G ' Hop, if there is a bijection f : G→ H such that
f(a ∗ b) = f(b)⊗ f(a) for all a, b ∈ G.

It is clear that san(∗) = 1 for all n ∈ N if and only if ∗ associative and that sacn (∗) = 1 for
all n ∈ N if and only if ∗ is associative and commutative, where N := {1, 2, . . .}. On the
other hand, we have san(∗) ≤ Cn−1, where Cn := 1

n+1

(
2n
n

)
is the ubiquitous Catalan number,

and thus sacn (∗) ≤ n!Cn−1. We showed in previous work [6] that a commutative groupoid
(G, ∗) must have sacn (∗) ≤ Dn−1, where Dn := (2n!)/(2nn!) is the solution to Schröder’s third
problem [14, A001147], and that an associative groupoid (G, ∗) must have sacn (∗) ≤ n!, which
holds as an equality if the groupoid is noncommutative and has an identity element.

In addition, the precise values of the associative spectrum and ac-spectrum have been
determined for various groupoids [3, 4, 5, 6, 9, 10], including 2-element groupoids, general-
izations of addition and subtraction, exponentiation, arithmetic/geometric/harmonic mean,
cross product, Lie algebras with an sl2-triple, graph algebras, and so on. The results show
connections with interesting combinatorial objects, avoided patterns, and integer sequences.
However, the ac-spectra of 3-element groupoids are largely undetermined.

According to the Siena Catalog [1], there are 3330 non-isomorphic 3-element groupoids,
which are indexed from 1 to 3330. Each of these groupoids is determined by a binary oper-
ation ∗ defined on the set {0, 1, 2}. We write them as SC1, SC2, . . . , SC3330. There are 729
idempotent 3-element groupoids, which can be labeled in a different way: ID0, ID1, . . . , ID728.
Csákány and Waldhauser [3] showed the following (see Table 1).

• Both ID35 = SC271(' SC1610op) and ID68 = SC356(' SC2032op) have associative
spectrum san(∗) = 2n−2 for n ≥ 2.
• Both SC1066 and SC10(' SC367op) have associative spectrum san(∗) = n − 1 for
n ≥ 1.
• Both SC405 and SC3242(' SC3302op) have associative spectrum san(∗) = 3 for n > 3

(it is easy to check that san(∗) = 1 for n = 1, 2 and san(∗) = 2 for n = 3).
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• The groupoid SC79 has associative spectrum san(∗) = Fn+1− 1 for n ≥ 2, where Fn+1

is the Fibonacci number defined by Fn+1 := Fn + Fn−1 for n ≥ 1 and Fi = i for
i = 0, 1,

Our original motivation for this work was to determine the ac-spectra of the above 3-
element groupoids, whose Cayley tables are given in Table 1.

∗ 0 1 2
0 0 0 0
1 1 1 0
2 2 2 2

∗ 0 1 2
0 0 0 0
1 2 1 1
2 1 2 2

∗ 0 1 2
0 0 0 2
1 0 0 2
2 2 2 1

∗ 0 1 2
0 0 0 0
1 0 0 0
2 1 0 0

∗ 0 1 2
0 0 0 1
1 0 0 1
2 1 1 0

∗ 0 1 2
0 1 1 1
1 2 2 2
2 0 0 0

∗ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 1

SC271 SC356 SC1066 SC10 SC405 SC3242 SC79
' SC1610op ' SC2032op = SC1066op ' SC367op ' SC405op ' SC3302op ' SC79op

∗ 0 1 2
0 0 1 1
1 0 1 2
2 0 1 2

∗ 0 1 2
0 0 1 2
1 0 1 2
2 1 0 2

∗ 0 1 2
0 0 0 1
1 0 0 0
2 0 0 0

∗ 0 1 2
0 1 2 0
1 1 2 0
2 1 2 0

SC1610 SC2032 SC367 SC3302

Table 1. Some 3-element groupoids

However, we are able to establish more general results on various varieties of groupoids,
where a variety of groupoids axiomatized by a set Σ of identities is the family of all groupoids
satisfying the identities in Σ. For each variety of groupoids considered in this paper, we
establish an upper bound for the associative spectra and an upper bound for the ac-spectra
of the groupoids belonging to this variety; if the latter upper bound is reached by a member
of the variety, so is the former. Moreover, we show that both upper bounds are attained by
at least one 3-element groupoid.

For example, we showed in earlier work [6] that a commutative groupoid must have sacn (∗) ≤
Dn−1 and if the equality in this upper bound holds, so does the equality in the upper bound
san(∗) ≤ Cn−1. In the same paper, we showed that sacn (∗) = Dn−1 for a 3-element groupoid
called the rock-paper-scissors groupoid, which turns out to be isomorphic to SC1108, and the
proof is also valid for SC2407 and SC3093. Therefore, we have the following result.

∗ 0 1 2
0 0 0 2
1 0 1 1
2 2 1 2

∗ 0 1 2
0 1 0 0
1 0 2 0
2 0 0 0

∗ 0 1 2
0 1 1 0
1 1 2 0
2 0 0 1

SC1108 SC2407 SC3093

Theorem 2 ([6]). A groupoid (G, ∗) satisfying the identity xy ≈ yx must have sacn (∗) ≤ Cn−1
and sacn (∗) ≤ Dn−1 for n = 1, 2, . . ., where the first inequality holds as an equality whenever
the second does and both equalities hold for the 3-element groupoids SC1108, SC2407, and
SC3093.

In this paper, we provide a series of results that are similar to the above one. A summary
of our results is given by Table 2, where we use the well-known Bell number Bn counting
partitions of the set {1, 2, . . . , n} into unordered nonempty blocks, the restricted Bell number
Bn,m counting partitions of {1, 2, . . . , n} into unordered nonempty blocks of size at most
m [13], and the ordered Bell number or Fubini number B′n counting partitions of {1, 2, . . . , n}
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Identities satisfied by (G, ∗) n ≥ san(∗) ≤ sacn (∗) ≤ Examples for =

(1) 1, 1 1 n SC275(' SC2029op)

(3), (4), (5), (7) 3, 3 2 n+ 1 SC7('SC4op)
SC28('SC5op)

(2), (7), (15) 4, 4 3 n+ 1 SC405

(3), (5), (7), (8), (9) 3, 3 2 2n SC189(' SC170op)

(5), (7), (10), (11), (12), (16) 4, 4 3 3n SC3242(' SC3302op)

(5), (7), (11), (13), (17), (18) 4, 4 4 2n2 SC3162(' SC2467op)

(2), (7) 2, 2 n− 1 2n−1 − 1 SC1066

(4), (5), (7) 2, 1 n− 1 n! +
n−3∑
k=0

k!

(
n

k

)
SC367(' SC10op)

(3), (6), (14) 2, 2 2n−2 2n − 2 SC2302(' SC2155op)

(3), (7), (12) 2, 2 2n−2 n(2n−1 − 1) SC271('SC1610op)
SC356('SC2032op)

(2), (11) 2, 2 Fn+1 − 1 Bn,2 − 1 SC79, SC1701

(3), (5) 2, 1 2n−2 nBn−1
SC41('SC398op)
SC96('SC1069op)

(5), (7) 2, 1 2n−2 nB′n−1
SC262('SC1441op)
SC1812('SC1793op)
SC2446('SC2430op)

(1) xy ≈ x (2) xy ≈ yx (3) (xy)z ≈ (xz)y (4) x(yz) ≈ y(xz) (5) x(yz) ≈ x(zy)
(6) x(yz) ≈ z(yx)

(7) w(x(yz)) ≈ w((xy)z) (8) (wx)(yz) ≈ (w(xy))z (9) w(x(yz)) ≈ ((wx)y)z

(10) ((wx)y)z ≈ ((wy)x)z (11) ((wx)y)z ≈ ((wx)z)y (12) (wx)(yz) ≈ (wy)(xz)

(13) (w(xy))z ≈ (w(xz))y (14) w(x(yz)) ≈ (w(xy))z (15) (v(wx))(yz) ≈ (vw)(x(yz))

(16) ((vw)x)y)z ≈ v(w(x(yz))) (17) v(w(x(yz))) ≈ ((v(wx))y)z (18)
((vw)(x(yz)) ≈ (((vw)x)y)z

Table 2. Summary of results

into ordered nonempty blocks [14, A000670]. The “n ≥” column in Table 2 gives the smallest
values of n for which the upper bounds of san(∗) and sacn (∗) are valid and sharp. Note that
different varieties of groupoids in the table may have the same associative spectrum upper
bound but different ac-spectrum upper bounds. Therefore, the ac-spectrum often offers a
finer distinction than the associative spectrum between groupoids satisfying different sets of
identities.

It is sometimes convenient to use not only identities but other conditions to describe a
family of groupoids satisfying certain upper bounds for their spectra. Recall that every
term t ∈ Fn corresponds to a binary tree with n leaves labeled by 1, . . . , n. Each leaf i has
its depth di(t) (resp. left depth δi(t) or right depth ρi(t)) defined as the number of edges
(resp., left/right edges) in the unique path to the root of t. By abuse of notation, we also
speak of these three kinds of depths for the variables in t. Previous work [4, 6] used the
congruence modulo m relation on depths to study the associative spectra and ac-spectra of
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certain groupoids, and some of the results there can be rephrased to include our result on
the variety of groupoids satisfying the identities (3), (6), (14) as a special case. We can also
similarly generalize our results on the two varieties of groupoids satisfying identities (3), (5),
(7), (8), (9) and (5), (7), (10), (11), (12), (16), respectively to the following theorem.

Theorem 3. Let (G, ∗) be a groupoid such that for all s, t ∈ Fn, we have s∗ = t∗ whenever s
and t have the same leftmost variable xi, whose left depths in s and t are congruent modulo
k. Then san(∗) ≤ k and sacn (∗) ≤ kn for n = k + 1, . . ., where the first inequality holds as an
equality if the second does. Moreover, both upper bounds are reached if “whenever” can be
replaced with “if and only if” in the above condition.

The first author, Mickey, and Xu [8] used the depth to find the associative spectrum of the
double minus operation a∗b := −a−b, and we determined the ac-spectrum of this operation
in previous work [6]. Both proofs are valid for any field with at least three elements, giving
the following result.

Theorem 4 ([8]). Suppose that two terms s, t ∈ Fn induce the same n-ary operation on a
groupoid (G, ∗) whenever di(s) ≡ di(t) (mod 2) for i = 1, . . . , n. Then san(∗) ≤ b2n/3c and
sacn (∗) ≤ (2n − (−1)n)/3 for n = 1, 2, . . ., where the first equality holds as an equality if the
second one does. Moreover, both upper bounds are reached if “whenever” can be replaced with
“if and only if” in the above condition. In particular, both upper bounds are achieved by the
double minus operation on any field with at least three elements.

The two upper bounds in the above theorem are both well studied [14, A000975, A001045]
from many other perspectives; the latter is known as the Jacobsthal sequence. The double
minus operation on a field of three elements is actually the 3-element groupoid SC2346.

∗ 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2
SC2346

To generalize the above theorem, one could use a primitive root of unity ω := e2πi/k to define
an operation a ∗ b := ωa+ ωb on the field of complex numbers, which reduces to the double
minus operation when k = 2; for k ≥ 3, the n-th term of the associative spectrum was shown
in [11] to coincide with the number of equivalence classes of the equivalence relation on n-leaf
binary trees that relates two trees if the depths of corresponding leaves are congruent modulo
k. Closed formulas for the associative spectrum and the ac-spectrum of this operation are
yet to be determined.

We use Sage (https://www.sagemath.org/) to help discover and verify the results in this
paper. Computations in Sage also give the initial terms of the ac-spectra of several other
varieties of groupoids, which coincide with some interesting sequences in OEIS [14]. The
reader is referred to the full-length paper of this work [7] for more details.
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