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Abstract The stochastic sandpile model (SSM) generalises the standard Abelian sandpile model
(ASM) by making topplings of unstable vertices random. When unstable, a vertex sends one grain
to each of its neighbours independently with probability p ∈ (0, 1). We study the SSM on complete
bipartite graphs. We characterise recurrent configurations of the model in terms of a simple series
of inequalities. This allows us to exhibit a bijection between sorted recurrent configurations and
pairs of compatible Ferrers diagrams. We also provide a stochastic version of Dhar’s burning algo-
rithm to check if a given (stable) configuration is recurrent or not, with linear complexity on sorted
configurations.

1. Introduction

The Abelian sandpile model (ASM), originally introduced by Bak, Tang and Wiesenfeld [1, 2],
is a random process on a graph, where vertices are assigned a number of grains of sand. At each
unit of time, a grain is added to a randomly chosen vertex. If this causes a vertex’s number of
grains to exceed its degree, the vertex is called unstable, and topples, sending one grain to each of its
neighbours. A special vertex, the sink, absorbs grains, and so the process eventually stabilises.

Of central interest in the ASM are the recurrent configurations – those which appear infinitely
often in the long-time running of the model. A fruitful direction of ASM research has focussed on
combinatorial studies of these for graph families with high levels of symmetry, such as complete
graphs [5], complete bipartite [10] and multi-partite [4] graphs, complete split graphs [9, 7] (see
also [6]), wheel and fan graphs [14], Ferrers graphs [12], permutation graphs [11], and so on.

In the ASM, the only randomness lies in the choice of vertex where grains are added at each time
step. After this, the toppling and stabilisation processes are entirely deterministic. In this work,
we study a stochastic variant of the ASM, called stochastic sandpile model (SSM), as introduced
in [3], in which topplings are made according to (biased) random coin flips. The SSM was studied
on complete graphs in [13]. We begin by setting some notation and formally defining the model.

As usual, N denotes the set of strictly positive integers. We let Z+ := N ∪ {0} denote the set of
non-negative integers. For n ∈ N, we define [n] := {1, . . . , n}. For a vector a = (a1, . . . , an) ∈ Rn, we
write inc (a) = (ã1, . . . , ãn) for the non-decreasing rearrangement of a. In this abstract, we consider
the complete bipartite graph K0

m,n. This is the graph with vertex set {vt0, vt1, · · · , vtm} t {vb1, · · · , vbn}
and edge set {(vti , vbj); i ∈ [m] ∪ {0}, j ∈ [n]}. We refer to vertices vti , resp. vbj , as top, resp. bottom,
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vertices in K0
m,n. We will use the notation v∗i to refer to any arbitrary vertex of K0

m,n. The vertex
vt0, called the sink, will play a special role in the SSM. Finally, we fix a probability p ∈ (0, 1).

A (sandpile) configuration on K0
m,n is a vector c = (ct1, · · · , ctm; cb1, · · · , cbn) ∈ Zm+n

+ . For simplicity,

we write c = (ct; cb). We think of c∗i as the number of grains at vertex v∗i . We denote by Configm,n the

set of all configurations on K0
m,n. A top vertex vti (for i ∈ [m]), resp. bottom vertex vbj (for j ∈ [n]),

is stable if cti < n, resp. cbj < m + 1 (i.e. the number of grains at the vertex is less than its degree).
A configuration is stable if all of its vertices are stable. The set of stable configurations is denoted
Stablem,n. Unstable vertices topple. If a top vertex vti is unstable, then for each bottom neighbour vbj
we draw a Bernoulli random variable Bj with parameter p (the Bj’s are independent of each other
and of all prior topplings). If Bj = 1, then vbj receives one grain from vti when it topples, otherwise

vertex vti keeps that grain. The process is the same for toppling a bottom vertex vbj (here we include
the sink vt0 in the set of neighbours). The sink never topples, representing the system’s exit point.

One can show (see [3, Theorem 2.2]) that, starting from an unstable configuration c and successively
toppling unstable vertices, we eventually reach a (random) stable configuration c′. Moreover, the
configuration c′ reached does not depend on the order in which vertices are toppled. We write
c′ = Stab (c) and call it the stabilisation of c. Figure 1 shows an example of the stabilisation process
for the configuration c = (2, 1; 0, 2). Here, blue vertices are unstable, green edges represent grains
being sent from an unstable vertex to a neighbour, while red edges represent no movement of grain.
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Figure 1. Illustrating a possible stabilisation for c = (2, 1; 0, 2) ∈ Config2,2. Vertices
under the arrows represent the vertex being toppled in that phase.

We define a Markov chain on the set Stablem,n. At each step, we add a grain to a non-sink vertex
of K0

m,n, chosen uniformly at random, and stabilise the resulting configuration. A configuration c
is called recurrent if it appears infinitely often in the long-time running of this Markov chain. We
denote by Recm,n the set of recurrent configurations on K0

m,n. The following is a consequence of [13,
Theorem 2.6] in the complete bipartite graph case.

Theorem 1.1. Let c = (ct; cb) ∈ Stablem,n be a stable configuration on K0
m,n. Then c ∈ Recm,n if,

and only if, for all subsets A ⊆ [m], B ⊆ [n], we have:

(1)
∑
i∈A

cti +
∑
j∈B

cbj ≥ |A| · |B|.

If A,B do not satisfy Inequality (1), we say that (A,B) is a forbidden subconfiguration.

The symmetries of K0
m,n make it natural to study Recm,n up to re-ordering in each part. We

therefore say that a configuration c = (ct; cb) ∈ Configm,n is sorted if ct and cb are both weakly
increasing. We denote by SortedRecm,n the set of sorted recurrent configurations.

A popular statistic on recurrent configurations c ∈ Recm,n is their level, defined by:

(2) level (c) :=
∑
i∈[m]

cti +
∑
j∈[n]

cbj −m·n,

which satisfies 0 ≤ level (c) ≤ m(n− 1) (see e.g. [13, Equation (8)]).
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2. Our results

This section states our main results for the SSM on complete bipartite graphs. We sketch proofs
for brevity; full proofs will appear in an upcoming companion paper [15].

2.1. Characterisation of Recm,n. We start by exhibiting a necessary and sufficient condition under
which a (stable) configuration on K0

m,n is recurrent.

Theorem 2.1. Let c = (ct; cb) ∈ Stablem,n be a stable configuration on K0
m,n. For j ∈ [n], define

kj := |{i ∈ [m]; cti < j}|. Then c ∈ Recm,n if, and only if,

(3) ∀j ∈ [n], c̃b1 + · · ·+ c̃bj ≥ k1 + · · ·+ kj,

where inc
(
cb
)

:=
(
c̃b1, · · · , c̃bn

)
is the non-decreasing re-arrangement of cb. Moreover, if c is recurrent,

we have level (c) = cb1 + · · ·+ cbn − (k1 + · · ·+ kn).

Proof sketch. It is sufficient to show the result when c is sorted, in which case, for j ≥ 0, we have
cti = j if, and only if, kj < i ≤ kj+1 (with the convention k0 = 0). Fix j ∈ [n]. We have:

(4)

kj∑
i=1

cti = 0·(k1 − k0) + 1·(k2 − k1) + · · ·+ (j − 1)·(kj − kj−1) = j ·kj − (k1 + · · ·+ kj).

It follows that Inequality (3) is equivalent to Inequality (1) when we take A = [kj], B = [j]. It
therefore suffices to show that if there exists a forbidden subconfiguration (A,B) for c, then there
exists j such that ([kj], [j]) is a forbidden subconfiguration for c.

For this, take B ⊆ [n] to be a minimal subset such that there exists A ⊆ [m] with (A,B)
forbidden. Let q := maxB. We claim that for any q′ < q, we have cbq′ < |A|. Otherwise one

can check that (A, [q′] ∩ B) would be a forbidden subconfiguration (using that cbj ≥ cbq′ ≥ |A| for
j ∈ (q′, q]), contradicting the minimality of B. This implies that (A, [q]) is also forbidden. By a
similar argument on A, we can find a forbidden subconfiguration ([p], [q]). It is then straightforward
to check that ([kq], [q]) is also forbidden (distinguishing cases p > kq and p < kq). The level formula
follows from the definition (Equation (2)) and Equation (4) with j = n, noting that kn = m. �

2.2. A stochastic burning algorithm for complete bipartite graphs. In this part, we exhibit
an algorithm to check if a given stable configuration c ∈ Stablem,n is recurrent or not, in two steps.

Algorithm 1 Pre-processing: calculating the vector k = (k1, · · · , kn)

Require: ct = (ct1, · · · , ctm) ∈ {0, · · · , n− 1}m
Initialise: k′ = (k′0, · · · , k′n−1) = (0, · · · , 0); k = (k1, · · · , kn) = (0, · · · , 0); sum = 0
for i from 1 to m do

k′
cti
← k′

cti
+ 1 . Calculate k′j := |{i ∈ [m]; ci = j}|

end for
for j from 1 to n do

sum← sum + k′j−1; kj ← sum
end for
return k = (k1, · · · , kn)

We now describe the stochastic burning algorithm. The terminology burning algorithm refers to
Dhar’s process for the deterministic ASM (see [8, Section 6.2]).

Theorem 2.2. Algorithm 2 returns True if, and only if, the input (stable) configuration c is recurrent.
Moreover, the algorithm runs in O(m + n log(n)) time on unsorted configurations, and O(m + n)
time if the bottom part cb of c is sorted.
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Algorithm 2 Stochastic burning algorithm for complete bipartite graphs

Require: c = (ct; cb) ∈ Stablem,n

cb ← inc
(
cb
)

. Sort bottom part cb of configuration c
Pre-process: calculate vector k = (k1, · · · , kn) by Algorithm 1
Initialise: sumK = 0; sumC = 0
for j from 1 to n do

sumK← sumK + kj; sumC← sumC + cbj
if sumC < sumK then

return False
end if

end for
return True

Proof. The recurrence check follows from Theorem 2.1. The pre-processing of k has complexity
O(m+n), sorting cb has complexity O(n log(n)), and the rest of Algorithm 2 runs in O(n) time. �

2.3. Recurrent configurations as pairs of Ferrers diagrams. We now present a combinatorial
interpretation of Recm,n in terms of Ferrers diagrams. A Ferrers diagram is a left-aligned collection of
cells such that the number of cells in each row is weakly increasing from bottom to top (some rows may
be empty). We denote by Ferrersm,n, resp. Ferrers≤m,n, the set of Ferrers diagrams with m columns,
resp. at most m columns, and n rows. The area Area(F ) of a Ferrers diagram F is its number of cells.
Given a weakly increasing sequence s = (s1, · · · , sn) ∈ Zn

+, we denote F (s) ∈ Ferrerssn,n the Ferrers
diagram with si cells in row i (rows are ordered from bottom to top). For example, F (0, 1, 4) :=

is an element of Ferrers4,3 with area 5.
We consider the following two operations on Ferrers diagrams:

(1) Shift which shifts a cell of the diagram in a given row to some row below.
(2) Add which adds a cell to the right of a given row.

These operations are called legal if they still result in a Ferrers diagram (possibly with a different
number of columns). Figure 2 illustrates these operations.

Definition 2.3. We say that an ordered pair (F, F ′) of Ferrers diagrams is compatible if F ′ can be
obtained from F through a sequence of legal Shift and Add operations.

We now return to our study of Recm,n. Note that the vectors k := (k1, · · · , kn) and inc
(
cb
)

=
(c̃1, · · · , c̃n) which appear in Inequality (3) are both weakly increasing. Moreover, we have kn = m
and c̃n ≤ m (the latter is the stability condition). This yields the following.

Theorem 2.4. For c = (ct; cb) ∈ Configm,n, let k = (k1, · · · , kn) be as in Theorem 2.1. Define

Ψ(c) :=
(
F (k), F

(
cb
) )
∈ Ferrersm,n×Ferrers≤m,n. Then Ψ is a bijection from the set SortedRecm,n

of sorted recurrent configurations on K0
m,n to the set of compatible pairs (F, F ′) ∈ Ferrersm,n ×

Ferrers≤m,n. Moreover, we have level (c) = Area
(
F
(
cb
) )
− Area (F (k)).

Proof sketch. By preceding remarks, if c ∈ Recm,n, then F (k) ∈ Ferrersm,n and F
(
cb
)
∈ Ferrers≤m,n.

It is reasonably straightforward to see that Inequality (3) implies that
(
F (k), F

(
cb
) )

is compatible,
and conversely that any compatible pair of Ferrers diagrams satisfies Inequality (3). To show that Ψ
is a bijection, we note that the vector k uniquely defines the non-decreasing re-arrangement inc (ct)
of the top part of c. The level formula follows from the level formula in Theorem 2.1. �

Example 2.5. Consider the sorted configuration c = (0, 2, 2; 2, 2, 2). We have k = (1, 1, 3), so c is
recurrent by Theorem 2.1. Figure 2 illustrates a possible legal sequence of Shift and Add operations
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to go from the k-diagram (left) to the cb-diagram (right). Note that this sequence is not unique: we
could instead first add a cell in the middle row, then shift a cell from the top to the bottom row.

Shift Add

Figure 2. Illustrating a legal sequence from F (1, 1, 3) to F (2, 2, 2), showing that the
configuration c = (0, 2, 2; 2, 2, 2) is recurrent.

Remark 2.6. The top configuration inc (ct) can be recovered from the Ferrers diagram F (k) by
taking the heights of horizontal steps along the South-East border of the diagram, from the bottom-
left corner to the top-right. For example, consider the Ferrers diagrams F (1, 1, 3) as on the left of
Figure 2. The South-East border can be written as HV V HHV , with H denoting a horizontal step,
and V a vertical one. Then we have ct = (0, 2, 2), corresponding to the heights of the H steps.

Remark 2.7. Theorem 2.4 gives a bijective representation of sorted recurrent configurations. For
the unsorted case, we label the Ferrers diagrams as follows. For the k-diagram F (k), we assign
bijectively to each column an element of [m] such that columns of the same height are labelled in
increasing order from left to right. Similarly, we label the rows of the cb-diagram with elements of [n]
such that rows of the same length are labelled in increasing order from bottom to top. This yields a
bijection from all recurrent configurations to the set of compatible labelled Ferrers diagrams.

Finally, we propose a representation of the compatibility notion through a directed acyclic graph
(DAG). The vertices of the graph are the Ferrers diagrams F ∈ Ferrers≤m,n satisfying Area(F ) ≥ m.
For every pair (F, F ′), we put an edge from F to F ′ if F ′ = Shift(F ) or F ′ = Add(F ). As in Figure 2,
Shift edges are coloured blue, and Add edges are red. We denote DAGm,n the DAG thus obtained.
Note that DAGm,n is bipolar : it has a unique source F (0, · · · , 0,m) and a unique sink F (m, · · · ,m).
With this representation, Ψ is a bijection from SortedRecm,n to pairs of vertices (F, F ′) of DAGm,n

such that F has m columns and there is a (directed) path from F to F ′ in DAGm,n. The level of the
configuration equals the number of red edges in such a path. Figure 3 illustrates this construction.

Figure 3. The graph DAG3,3.
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