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1 Introduction

Let p
(r)
n be the symmetric functions defined for any pair of integers (n, r) such that n ≥ r ≥ 1 by:

p(r)n =
∑

|λ|=n, l(λ)=r

mλ (1.1)

where the mλ are the monomial symmetric functions, the sum being over the integer partitions λ of n,

with length l(λ) = r. The functions p
(r)
n are introduced with this notation in exercise 19 p.33 of [10]. In

particular p
(1)
n is the power symetric function pn = mn. In [5] we have shown the following theorem for the

specialzation given by Equa (1.2) and sometimes called the q-deformation of the exponential.

Theorem 7.2 of [5] : For n ≥ r ≥ 1 and

Exp(t) =
∑∞

n=0
q(
n
2) t

n

n!
(1.2)

we have:

p(r)n = (1− q)n−r q(
r
2)

r! (n− r)!
Jn,r(q) (1.3)

where Jn,r is a monic polynomial with positive integer coefficients, a constant term equal to (n− r)! and
which degree is

(
n−1
2

)
−
(
r−1
2

)
. Moreover, for all r ≥ 1 Jr,r = 1.

When r = 1 this gives:

mn = pn = p(1)n =
(1− q)n−1

(n− 1)!
Jn (1.4)

where Jn = Jn,1 is the enumerator polynomial of inversions in trees on n vertices, introduced in [11]. More
generally, we have seen that Jn,r (q) are enumerator polynomials of inversions for sequences of ”colored”
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forests introduced by Stanley and Yan (see [17]), or level statistics enumerators introduced by the author in
Section 10 of [5]. Alternatively the reciprocal polynomial of Jn,r, denoted Jn,r in [5], is the sum enumerator of
generalized parking functions. We refer to [18] and [5] for more details on these combinatorial interpretations.

In this article, for all integer partitions λ and for the specialization (1.2), mλ is expressed using a
polynomial Jλ (q) whose coefficients belong to Z (Corollary 3.3). This is proved by induction with two total
orders on the set of integer partitions. The particular case of the partition λ = (n) gives again J(n) = Jn,
thus Corollary 3.3 can be seen as a generalization of (1.4). From the calculations of Jλ for n = |λ| ≤ 6, we
conjecture that for any partition λ the coefficients of Jλ are positive and log-concave. One arguments for
these conjectures is that it is possible to show the log-concavity of Jn,r using Huh’s results on the h-vector
of the matroid complex of representable matroids [8]. We also prove that the last n− 1 coefficients of Jλ are
proportional to the first n−1 coefficients of column n−r−1 of Pascal’s triangle, r being the length of λ. This
gives a third argument for stating the conjectures since it is well known that these columns are log-concave.
To conclude, it is underlined the need to strengthen the conjectures by continuing the calculations for larger
values of |λ|. We also show by computing J(3,2,1) that obtaining a complete proof of the log-concavity of Jλ
by an approach analogous to that used for Jn,r seems not possible.

2 Prerequisites

We assume the reader to have a certain familiarity with integer partitions and symmetric functions like
explained in Chap. 1 of [10]. We set out our notations. If λ = (λ1, λ2, ..., λr) is a partition of the integer n,
|λ| = λ1 + λ2 + ...+ λr = n, l(λ) = r, λ! = λ1!λ2!...λr! and

n(λ) =
∑
i≥1

(i− 1)λi =
∑
i≥1

(
λ′i
2

)
(2.1)

where λ′ = (λ′1, λ
′
2, ..) is the conjugate of the partition λ. If ri is the numbers of λ equal to i ∈ N∗, the

sequence of multiplicity is m (λ) = (r1, r2, ...), and we set |m (λ)| = r1 + r2 + ... = r, m (λ)! = r1!r2!...., we
also write λ = 1r12r2 ....
P and Pn are respectively the set of all the integer partitions of n ∈ N. In Pn �, ≤ and v will respectively

designate the reverse lexicographic order, the dominance order and the refinement order (see [10] respectively
p.6, p.7 and p.103) It is known ([10] Chap.1) that in Pn,

λ v µ⇒ λ ≤ µ⇒ λ � µ (2.2)

We generalize some definitions above to any strict composition of n, i.e. any r-multiplet u = (u1, u2, ..., ur)
of integers strictly greater than zero such that u1 + u2 + ... + ur = n, by setting |u| = u1 + u2 + ... + ur,
l(u) = r. Then Λ (u) is the partition of n, which is composed of the ui arranged in a non-increasing way.

If K is a commutative field, ΛK is the algebra of symmetric functions in the indeterminates X =
(xi)i≥1with coefficients in K. Here, K will be Q(q), the rational fractions in the indeterminate q. For
λ ∈ P, (mλ) , (eλ) and (pλ) and are the classical bases of ΛK . Agreeing that e0 = 1 we recall that
E(t) =

∑∞
n=0 ent

n =
∏
i≥1(1− xit).

Basic knowledge is required on poset, matroid, and Tutte polynomial as, for example, stated in Wikipedia
articles on these topics. Occasional references will also be made to [1], [13] for matroids and to [16] for poset.
If n ∈ N, [n]q = 1 + q + q2 + ... + qn−1 is the q-analog of n. If P (q) is a polynomial in q, 〈qm〉P (q) is the
coefficient of qm in P (q). Finally, if E is a finite set, |E| is the cardinality of E.

3 Expression of mλ for the specialization en = q(
n
2)/n!:

Let us define the augmented monomial symmetric functions by

m̃λ = m (λ)! mλ. (3.1)
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Theorem 3.1 For any partition λ and for the specialization Exp(t), m̃λ is given by

m̃λ = (1− q)|λ|−l(λ)Mλ(q) (3.2)

where Mλ(q) belongs to Q [q] and satisfies:
a) The degree of Mλ is

d(λ) =

(
|λ| − 1

2

)
+ l (λ)− 1 (3.3)

and 〈
qd(λ)

〉
Mλ =

(l (λ)− 1)!

(|λ| − 1)!
(3.4)

b) The valuation of Mλ is
val (Mλ) = n (λ) (3.5)

and 〈
qn(λ)

〉
Mλ =

m (λ)!

λ′!
(3.6)

c) For λ = (n) we have

M(n) =
Jn

(n− 1)!
(3.7)

Note that the highest degree monomial of Mλ only depends on |λ| and l (λ).
Sketch of proof: i) If λ = (n) which corresponds to c), then r = 1 and according to (1.4): m̃(n) =

pn = (1− q)n−1 Jn (q) / (n− 1)! where Jn is a monic polynomial of degree
(
n−1
2

)
, with a valuation equal to

0 and a constant term equal to (n− 1)!. Taking M(n) = Jn/ (n− 1)! Equation (3.2) and points a) and b)
are verified in this case and so c) also.

ii) Equation (3.2) and a) is proven in the general case by induction with the total order E defined on
P by:

λ C µ⇔
{

|λ| < |µ|
|λ| = |µ| and µ ≺ λ

This gives, with λ = (λ1, ..., λr), λ
∗ = (λ1, ..., λr−1) and λ(i) = Λ (λ1, ..., λi−1, λi + λr, λi+1, ..., λr−1),

the recurence:

Mλ = M(λr)Mλ∗ + (q − 1)

r−1∑
i=1

Mλ(i) (3.8)

iii) Let us now prove b) of Theorem 3.1. According to Equation (2.3) p. 20 of [10], for any partition λ:

mλ = eλ′ −
∑
µ<λ

aλµmµ

For Exp (q) it follows from (2.1): eλ′ =
∏
i≥1 q

(λ
′
i
2 )/λ′i! = qn(λ)/λ!. For λ = 1n, m̃1n = q(

n
2), therefore

M1n = q(
n
2) which verifies the equations of b). For λ 6= 1n and |λ| = n, b) is proven by induction on the

order � in Pn.

Corollary 3.2 Let (n, r) be a pair of positive integers, then:

For n ≥ r ≥ 1 q(
r
2) Jn,r
r! (n− r)!

=
∑

|λ|=n, l(λ)=r

Mλ

m (λ)!
(3.9)
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For n− 1 ≥ r ≥ 1 r!
∑

|λ|=n, l(λ)=r

Mλ

m (λ)!
= q(

r
2)

∑
|µ|=n−r

[r]
l(µ)
q

Mµ

m (µ)!
(3.10)

In particular for r = 1 and n ≥ 2

Jn
(n− 1)!

= M(n) =
∑

|λ|=n−1

Mλ

m (λ)!
(3.11)

Corollary 3.3 We have the following generalization of (1.4) for any partition λ:

mλ = (1− q)|λ|−l(λ) qn(λ)

(|λ| − 1)! m (λ)!
Jλ (3.12)

with
Jλ (q) = (|λ| − 1)!Mλ (q) q−n(λ) (3.13)

Jλ is a polynomial with coefficients in Z, with zero valuation and degree equal to
(|λ|−1

2

)
+ l (λ)− 1− n (λ).

Proof. For λ = (n) Equation (3.12) gives (1.4) with J(n) = Jn, which shows that (3.12) is a generalization

of (1.4).Equations (3.12) and (3.13) follow easily from (3.1) and (3.2). The nullity of the valuation and the
value of the degree of Jλ come respectively from (3.5) and (3.3). The substitution of (3.13) in (3.8) gives for
all partitions λ = (λ1, λ2, ..., λr):

q(r−1)λrJλ = (|λ| − 1)!

(
|λ| − 2

λr − 1

)
JλrJλ∗ + (q − 1)

r−1∑
i=1

q(i−1)λrJλ(i) (3.14)

whith λ∗ and λ(i) defined above. Equation (3.14) is a recurrence whose coefficients are polynomials in q with
coefficients in Z . It makes it possible to calculate all the polynomials Jλ from the polynomials Jn which are
themselves with coefficients in N. So the coefficients of Jλ are in Z.

We give below Jλ for |λ| ≤ 4 ( Jn,r have already been given in [5])
|λ| = 1 J1 = 1
|λ| = 2 J2 = 1, J12 = 1
|λ| = 3 J3 = 2 + q, J(2,1) = 1 + q, J13 = 2
|λ| = 4 J4 = 6 + 6q+ 3q2 + q3, J(3,1) = 3 + 3q+ 2q2 + q3, J(2,2) = 3 + 2q+ q2, J(2,1,1)=1221 = 2 + 2q+ 2q2,

J14 = 6

With (3.9) and (3.10) it is also possible to calculate the following particular cases:

For n ≥ 1 J1n = (n− 1)!Jn,n = (n− 1)! (3.15)

For n ≥ 2 J1n−22 = (n− 2)!Jn,n−1 = (n− 2)! [n− 1]q (3.16)

4 Conjectures about Jλ

Three heuristic arguments lead us to state the following conjectures.

Conjecture 1. For any partition λ the coefficients of Jλ are strictly positive.

Conjecture 2. For any partition λ, Jλ is log-concave.
If these two conjectures are true then Jλ is also unimodal (see Lemma 7.1.1 of [3]), thus we can also

state:
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Conjectures 3. For any partition λ, Jλ is unimodal.

Let us note that it is equivalent to formulate these conjectures for the polynomials Jλ or Mλ. The first
argument for stating these conjectures results from the calculations already made. The conjectures are
obviously true for J1nand J1n−22 given by (3.15) and (3.16). And we checked both conjectures for |λ| ≤ 6.
It is certain that it would be desirable to continue the calculations for values of |λ| much bigger, which we
intend to do.

The second argument in favor of these conjectures comes from the fact that the coefficients of polynomials
Jn,r are strictly positive and log-concave, which is a consequence of Huh’s famous work. This is actually

true, for the largest class of polynomials, denoted I
(a,b)
m in [18]. We have seen in [5] that these polynomials

are linked to Jn,r by Jn,r = I
(r,1)
n−r . Polynomials I

(a,b)
m and their reciprocal have been the subject of much

research, of which one will find a summary in [18]. It is likely that the following properties are known to

specialists but as we have not seen them in the literature (except the case I
(1,1)
n−1 = Jn ), we state them in

the following proposition.

Proposition 4.1 The sequence of the coefficients of the polynomials I
(a,b)
m (and their reciprocal) are strictly

positive and log-concave, hence unimodal.

Proof. Let

I(a,b)m (q) =

d∑
i=c

aiq
i

From the various properties of the polynomials I
(a,b)
m and their reciprocals (see [17] ) it is easy to see that

c = 0, d = ma+ b
(
m
2

)
and

a0 = m! ad = 1 (4.1)

In [17] p.662, it is shown that

I(a,b)m (1 + t) =
∑
G′

te(G
′)−m (4.2)

where the sum is over the multicolor graphs G
′

whose the set of vertices is V = {0, 1, 2, ...,m}, without loop.
The edges of G′ between two vertices i, j 6= 0 are to be taken among b colored edges 0, 1, ..., b− 1 and those
between 0 and i 6= 0 are to be taken among a colored edges 0, 1,..., a− 1. e (G′) is the number of edges of G′.

Let us consider now the graph introduced in [14] p. 3115 with the notation Kb,a
m+1. This graph is defined as

a complete graph on vertices V = {0, 1, 2, ...,m} with the edges (i, j), i, j 6= 0 of multiplicity b and the edges
(0, i), i 6= 0 of multiplicity a. It is clear that there is a bijection between the graphs G′ and the connected

spanning graphs of Kb,a
m+1. The Tutte polynomial of Kb,a

m+1 is:

T (x, y) =
∑
A

(x− 1)
c(A)−1

(y − 1)
c(A)+e(A)−(m+1)

(4.3)

where the sum is over the spanning graphs A of Kb,a
m+1, c (A) being the number of connected components of

A, and e (A) its number of edges. The comparison of (4.2) and (4.3) shows that

I(a,b)m (q) = T (1, q) (4.4)

Let us consider now the matroid M associated to Kb,a
m+1. This matroid is representable over any field so its

dualM∗also ( Corollary 2.2.9 of [13]). By noting T ∗ the Tutte polynomial ofM∗, we have T ∗ (y, x) = T (x, y),

therefore I
(a,b)
m (q) = T ∗ (q, 1). Let ρ be the rank of M∗ and (h0, h1, ..., hρ) be the h-vector of the matroid

complex IN (M∗). It is known that ( see [1] p.142):

ρ∑
k=0

hkq
ρ−k = T ∗ (q, 1)
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From Theorem 3 of [8] it results that I
(a,b)
m are log-concave. Moreover, by the same theorem, we know that the

coefficients have non internal zeros. But these coefficients are positive or zero (this comes for example, from
their combinatorial definition). Therefore all the coefficients are strictly positive and unimodality follows
from Lemma 7.1.1 of [3].

The polynomials Jn,r = I are therefore strictly positive and log-concave. We deduce that for the particular
case λ = (n), J(n) = Jn = Jn,1 satisfies the two conjectures. This gives the second argument to state the
conjectures.

We will now see the third argument.

5 Pascalian part of Mλ

Theorem 5.1 Let λ be a partition integer with |λ| = n, l (λ) = r and set

v (λ) = d (λ)− n+ 2 =

(
n− 2

2

)
+ r − 1 (5.1)

For λ 6= 1n the part of Mλ of degree ≥ v (λ) is given by the following polynomial which only depends on n
and r:

Pn,r (q) =
(r − 1)!

(n− 1)!

n−2∑
i=0

(
n− r − 1 + i

n− r − 1

)
qd(λ)−i =

(r − 1)!

(n− 1)!

n−2∑
j=0

(
2n− r − 3− j
n− 2− j

)
qv(λ)+j (5.2)

v (λ) is the valuation of Pn,r. Theorem 5.1 shows that the n − 1 coefficients of ((n− 1)!/(r − 1!))Mλ

with highest degree are given by the n− 1 first coefficients of the column n− r− 1 of Pascal’s triangle. Pn,r
and it coefficients will be called Pascalian part, resp. Pascalian coefficients, of Mλ (likewise for the parts
and coefficients, corresponding to Jλ).

Sketch of the proof: We prove it by a double induction on n and r.
The third announced argument is the following corollary.

Corollary 5.2 For any partition λ such that λ 6= 1|λ|, the |λ| − 1 last coefficients of Jλ are strictly positive
and log-concave, then unimodal. If l (λ) < |λ| − 1 these coefficient are in fact strictly log-concave.

6 Further Developments

The first thing to do is to continue the calculations using recurrence (3.8) -or (3.14) if one prefers to work with
integers- to verify conjectures numerically up to a value of n = |λ| as high as possible. If these calculations
do not contradict the conjectures, two ways can be considered to prove them.

The first way is to generalize the proof by induction of Theorem 5.1. The ideal would be to find an
explicit formula, generalizing that one given by Theorem 5.1, to all coefficients. But it seems to me rather
unlikely that such a formula can be found.

The second way, combinatorial in nature, would be to generalize to all Jλ the method which made
it possible to deduce log-concavity of Jn,r. It would therefore be a question of associating to each Jλ a
combinatorial object, itself associated to a matroid Mλ whose Tutte polynomial Tλ satisfies the following
analogue of (4.4), Jλ (q) = Tλ (1, q). This way would allow to prove the three conjectures at the same time.
Let us note in this regard that the log-concavity of the h-vector of the matroid complex has recently been
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demonstrated for any matroid in [2]. Thus the potentiel matroid Mλ, is not limited to graphic matroids.
However there is an obstacle for this way. Indeed we have calculated that:

J(3,2,1) (q) = 10 + 30q + 35q2 + 35q3 + 30q4 + 20q5 + 12q6 + 6q7 + 2q8

2 and 35 being coprime, J(3,2,1) cannot be reduced to a monic polynomial with integer coefficients. But
if we find a matroid M of which the Tutte polynomial T verifies J(3,2,1) (q) = T (1, q). We would have with

(1.23) p.138 of [1]: T (1, q) =
∑

(q − 1)
|A|−ρ

where the sum is over all the subsets A of the ground set E
of M, which rank is equal to ρ. The leading monomial of T (1, q) is thus clearly q|E|−ρ, therefore T (1, q)
would be monic, which leads to a contradiction.There are then two possibilities:

* The obstacle noted belove can be circumvented by remaining within the framework of matroids and
theorems on the log-concavity attached to them.

* The obstacle is inherent to the matroids and it will become necessary to associate to Jλ an algebraic or
geometric structure distinct from the matroids. One thinks, for example, of some (graded) poset (see chap.3
of [16]) or convex polytopes, interval greedoids, etc.., for which some log-concavity results have been proven
or conjectured (see [3], [4], [6], [9] and [15]).
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[3] P. Bränden, Unimodality, Log-concavity, Real-rootedness and Beyond, In Handbook of Enumerative
Combinatorics, CRC Press, Boca Raton, FL, 2015, 437–483.

[4] F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics and geometry: an update, In
Jerusalem combinatorics 93, vol. 178 of Comtemp. Math., 71–89, Amer. Math. Soc., Providence, RI,
1994.

[5] V. Brugidou, A q-analog of certain symmetric functions and one of its specializations, 2023,
arXiv:2302.11221v2.

[6] S. H. Chan and I. Pak. Log-concave poset inequalities, 2021, arXiv:2110.10740.

[7] L. Comtet, Advanced Combinatorics, Springer Netherlands, Dordrecht, 1974.

[8] J. Huh, h-vectors of matroids and logarithmic concavity, Adv. Math. 270 (2015), 49–59.

[9] J. Huh, Combinatorial applications of the Hodge-Riemann relations, in Proc. ICM Rio de Janeiro, vol
IV, World Sci., Hackensack, NJ, 2018, 3093–3111.

[10] I. G. Macdonald, Symmetric functions and Hall polynomials, Second ed., Oxford University Press, New
York, 1995.

[11] C. L. Mallows and J. Riordan, The inversion enumerator for labeled trees, Bull. Amer. Soc. 74 (1968),
92–94.

[12] M. Merca, Augmented monomials in terms of power sums, SpringerPlus 4:724 (2015), DOI
10.11686/s40064-015-1506-5.

[13] J. Oxley, Matroid Theory, second edition. Oxford Graduate Texts in Mathematic, Oxford university
Press, second edition, 2011.

7



[14] A. Postnikov and B. Shapiro, Trees, parking functions, syzygies, and deformations of monomial ideals,
Trans. of the Amer. Math. Soc. 356:8 (2004), 3109–3142.

[15] R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics and geometry, In Graph
Theory and its Applications: East and West (Jinan, 1986), Vol. 579 of Ann. New York Acad. Sci.,
500-535, New York Acad. Sci., New York, 1989.

[16] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Second edition, Cambridge University Press, Cam-
bridge, United Kingdom, 2012.

[17] C. H. Yan, Generalized parking functions, tree inversions, and multicolored graphs, Adv. in Appl. Math.
27(2-3) (2001), 641–670.

[18] C. H. Yan, Parking Functions, In Handbook of Enumerative Combinatorics, CRC Press, Boca Raton,
FL, 2015, 835–893.

8


