

ICECA

International Conference Enumerative Combinatorics and Applications University of Haifa – Virtual – September 4-6, 2023

Continued fractions using a Laguerre digraph interpretation of the Foata–Zeilberger bijection and its variants

Bishal Deb

Department of Mathematics, University College London, London WC1E 6BT, UK

bishal.deb.19@ucl.ac.uk

A continued fraction of Jacobi-type (J-fraction) is of the form

$$\sum_{n=0}^{\infty} a_n t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_1 t}}},$$
(1)

where a_n are its coefficients when expanded as a formal power series. Euler [4, section 21] discovered a Stieltjes-type continued fraction for $a_n = n!$ which can be contracted (see [13, p. V-31] for the contraction formula) to obtain a J-fraction for $a_n = n!$ with coefficients $\gamma_n = 2n + 1$ and $\beta_n = n^2$. One can introduce new variables in this J-fraction by replacing

- $\gamma_n = 2n + 1$ with $\gamma_0 = z$, $\gamma_n = ([x_2 + (n-1)u_2] + [y_2 + (n-1)v_2] + w$ for $n \ge 1$;
- and $\beta_n = n^2$ with $\beta_n = [x_1 + (n-1)u_1][x_2 + (n-1)v_1];$

and then ask what permutation statistics are enumerated by the 10 variables x_1 , x_2 , y_1 , y_2 , u_1 , u_2 , v_1 , v_2 , w, z. Sokal and Zeng systematically answered this question in [11]. In fact, they provide two interpretations for this J-fraction. However, their second interpretation was left as a conjecture [11, Conjecture 2.3] and they could only prove it with a specialisation. We have proved this conjecture in [2].

Statement of result

Given a permutation $\sigma \in \mathfrak{S}_n$, an index *i* can be classified as per the *cycle classification* into the following five disjoint categories: cycle peak if $\sigma^{-1}(i) < i > \sigma(i)$; cycle valley if $\sigma^{-1}(i) > i < \sigma(i)$;

cycle double rise if $\sigma^{-1}(i) < i < \sigma(i)$; cycle double fall if $\sigma^{-1}(i) > i > \sigma(i)$; and fixed point if $\sigma^{-1}(i) = i = \sigma(i)$.

Additionally, an index i can also be classified using the *record classification*. Following [8, p. 4] we also reformulate these statistics in terms of mesh patterns.

- record (or left-to-right maximum) if $\sigma(j) < \sigma(i)$ for all j < i; i.e., an occurrence of pattern \mathbb{Z}_{+} ;
- antirecord (or right-to-left minimum) if $\sigma(j) > \sigma(i)$ for all j > i; i.e., an occurrence of pattern $-\frac{1}{2}$;
- exclusive record if it is a record and not also an antirecord; i.e., an occurrence of pattern $\frac{2}{100}$;
- exclusive antirecord if it is an antirecord and not also a record; i.e., an occurrence of pattern
- record-antirecord if it is both a record and an antirecord; i.e., an occurrence of pattern $\mathbb{Z}_{\mathbb{Z}_{2}}$;
- neither-record-antirecord if it is neither a record nor an antirecord ; i.e., an occurrence of pattern #, which is the pattern 321.

Every index i thus belongs to exactly one of the latter four types.

Furthermore, one can apply the record and cycle classifications simultaneously, to obtain 10 disjoint categories of the *record-and-cycle classification*: exclusive records that are either cycle valleys (ereccval) or cycle double rises (ereccdrise); exclusive antirecords that are either cycle peaks (eareccpeak) or cycle double falls (eareccdfall); record-antirecords (these are always fixed points) (rar); neither-record-antirecords that are either cycle peaks (nrcpeak) or are cycle valleys (nrcval) or cycle double rises (nrcdrise) or cycle double falls (nrcdfall) or fixed points (nrfix).

Using the record-and-cycle classification and the count of cycles the following 11-variable polynomial \widehat{Q}_n [11, Equation (2.29)] can be defined

$$\widehat{Q}_{n}(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, z, w, \lambda) = \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\operatorname{eareccpeak}(\sigma)} y_{1}^{\operatorname{reccval}(\sigma)} y_{2}^{\operatorname{reccval}(\sigma)} z_{2}^{\operatorname{rar}(\sigma)} \times u_{1}^{\operatorname{nrccpeak}(\sigma)} u_{2}^{\operatorname{nrccdfall}(\sigma)} v_{1}^{\operatorname{nrccdrise}(\sigma)} w_{2}^{\operatorname{nrcfix}(\sigma)} \lambda^{\operatorname{cyc}(\sigma)}$$
(2)

The polynomials \widehat{Q}_n have a nice J-fraction:

Theorem 0.1 ([11, Conjecture 2.3], [2, Theorem 3.1]). The ordinary generating function of the polynomials \widehat{Q}_n specialised to $v_1 = y_1$ has the J-type continued fraction

$$\sum_{n=0}^{\infty} \widehat{Q}_{n}(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, y_{1}, v_{2}, \mathbf{w}, \lambda) t^{n} = \frac{1}{1 - \lambda w_{0}t - \frac{\lambda x_{1}y_{1}t^{2}}{1 - (x_{2} + y_{2} + \lambda w_{1})t - \frac{(\lambda + 1)(x_{1} + u_{1})y_{1}t^{2}}{1 - (x_{2} + y_{2} + u_{2} + v_{2} + \lambda w_{2})t - \frac{(\lambda + 2)(x_{1} + 2u_{1})y_{1}t^{2}}{1 - \cdots}}}{(3)}$$

with coefficients

$$\gamma_0 = \lambda w_0 \tag{4a}$$

$$\gamma_n = [x_2 + (n-1)u_2] + [y_2 + (n-1)v_2] + \lambda w_n \quad \text{for } n \ge 1$$
(4b)

$$\beta_n = (\lambda + n - 1)[x_1 + (n - 1)u_1]y_1 \tag{4c}$$

Overview of proof

We first provide an overview of the Foata–Zeilberger bijection [7], and then briefly mention how we reinterpet it to obtain the count of cycles in a permutation.

Let $\sigma \in \mathfrak{S}_n$ be a permutation on n letters. This permutation σ partitions the set [n] into excedance indices $(F = \{i \in [n] : \sigma(i) > i\})$, anti-excedance indices $(G = \{i \in [n] : \sigma(i) < i\})$, and fixed points (H). Similarly, σ also partitions [n] into excedance values $(F' = \{i \in [n] : i > \sigma^{-1}(i)\})$, anti-excedance values $(G' = \{i \in [n] : i < \sigma^{-1}(i)\})$, and fixed points. Clearly, $\sigma \upharpoonright F \colon F \to F'$, $\sigma \upharpoonright G \colon G \to G'$, and $\sigma \upharpoonright H \colon H \to H$ are bijections, and the permutation σ can be obtained from the following data:

- Two partitions of the set $[n] = F \cup G \cup H = F' \cup G' \cup H$.
- The two subwords of σ : $\sigma(x_1) \dots \sigma(x_m)$ and $\sigma(y_1) \dots \sigma(y_l)$, where $G = \{x_1 < x_2 < \dots < x_m\}$ and $F = \{y_1 < y_2 < \dots < y_l\}$.

In their construction, Foata and Zeilberger [7] use this data to describe a bijection between \mathfrak{S}_n to a set of labelled Motzkin paths of length n. One then uses Flajolet's theorem [5] to obtain continued fractions from this bijection while keeping track of a multitude of simultaneous permutation statistics.

The Foata–Zeilberger bijection consists of the following steps (following [11, Section 6.1]):

- Step 1: A Motzkin path ω is described from σ . The description of ω completely depends on the sets F, F', G, G', H.
- Step 2: The labels ξ associated to ω are obtained from σ . It turns out that the description of the labels depend on $\sigma \upharpoonright F \colon F \to F', \sigma \upharpoonright G \colon G \to G'$, and the set H, separately.
- Step 3: This step describes the construction of the inverse map $(\omega, \xi) \mapsto \sigma$ and can be further broken down as follows:
 - Step 3(a): The sets F, F', G, G', H are read off from the path ω .
 - Step 3(b): This description is the crucial part of the construction (at least for our purposes). We use the notion of *inversion tables* to construct the words $\sigma: \sigma(x_1) \dots \sigma(x_m)$ and $\sigma(y_1) \dots \sigma(y_l)$, the former is constructed using "right-to-left" inversion table and the latter is constructed using "left-to-right" inversion table.

It is, a priori, unclear how one might be able to track the number of cycles of σ in this construction. We resolve this issue by reinterpreting Step 3(b). We describe a "history" of this construction using Laguerre digraphs [6, 10]. A Laguerre digraph of size n is a directed graph where each vertex has a distinct label from the label set [n] and has indegree 0 or 1 and outdegree 0 or 1. Clearly, any subgraph of a Laguerre digraph is also a Laguerre digraph. A permutation σ in cycle notation is equivalent to a Laguerre digraph L ([12, pp. 22-23]). The directed edges of L are precisely $u \to \sigma(u)$.

For a subset $S \subseteq [n]$, we let $L|_S$ denote the subgraph of L containing the same set of vertices [n], but only the edges $u \to \sigma(u)$, with $u \in S$ (we are allowed to have $\sigma(u) \notin S$). Let u_1, \ldots, u_n be a rewriting of [n]. We consider the "history" $L|_{\emptyset} \subset L|_{\{u_1\}} \subset L|_{\{u_1,u_2\}} \subset \ldots \subset L|_{\{u_1,\ldots,u_n\}} = L$ as a process of building up the permutation σ by successively considering the status of vertices u_1, u_2, \ldots, u_n . Thus, at each step we insert a new edge into the digraph, and at the end of this process, the resulting digraph obtained is the digraph of σ .

The crucial part of our construction is that the rewriting u_1, \ldots, u_n is obtained as follows: we first go through H in increasing order (we call this stage (a)), we then go through G in increasing order (stage (b)), finally we go through F but in decreasing order (stage (c)). This total order is suggested by the inversion tables. On building up the permutation σ using this history, we will see that the cycles can only be formed during stage (c) and we can now count the number of cycles. Our total order on [n] only depends on the sets F, G, H, and hence, only on the path ω and not on the labels ξ which is important for our proof to work.

Twist in the story and final remarks.

The continued fractions for permutations in [11] were classified as "second" or "first" depending on whether or not they involved the count of cycles. The proofs of the first and second continued fractions involved two different bijections: the first continued fractions used a variant of the Foata– Zeilberger bijections, whereas the second continued fractions used the Biane bijection [1]. However, our proof for the conjectured "second" continued fraction proceeds by employing the "first" bijection but then reinterpreting it differently. This was a surprise to us.

We can adapt our proof technique to also resolve [9, Conjecture 12] from 1996, and [3, Conjecture 4.1]; both of these are continued fractions generalising the Genocchi and median Genocchi numbers, respectively. More details can be found in [2].

References

- P. Biane, Permutations suivant le type d'excédance et le nombre d'inversions et interprétation combinatoire d'une fraction continue de Heine, European J. Combin. 14 (1993), 277–284.
- [2] B. Deb, Continued fractions using a Laguerre digraph interpretation of the Foata–Zeilberger bijection and its variants, preprint (April 2023), arxiv: 2304.14487.
- [3] B. Deb and A.D. Sokal, Classical continued fractions for some multivariate polynomials generalizing the Genocchi and median Genocchi numbers, preprint (December 2022), arXiv:2212.07232.
- [4] L. Euler, De seriebus divergentibus, Novi Commentarii Academiae Scientiarum Petropolitanae 5 (1760), 205–237; reprinted in Opera Omnia, ser. 1, vol. 14, pp. 585–617. [Latin original and

English and German translations available at http://eulerarchive.maa.org/pages/E247.html]

- [5] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32 (1980), 125–161.
- [6] D. Foata and V. Strehl, Combinatorics of Laguerre polynomials, in *Enumeration and Design*, edited by D.M. Jackson and S.A. Vanstone (Academic Press, Toronto, 1984), pp. 123–140.
- [7] D. Foata and D. Zeilberger, Denert's permutation statistic is indeed Euler-Mahonian, Stud. Appl. Math. 83 (1990), 31–59.
- [8] B. Han and J. Zeng, Equidistributions of mesh patterns of length two and Kitaev and Zhang's conjectures, Adv. Appl. Math. 127 (2021), 102149.
- [9] A. Randrianarivony and J. Zeng, Some equidistributed statistics on Genocchi permutations, Electron. J. Combin. 3:2 (1996), Research Paper #22.
- [10] A.D. Sokal, Multiple Laguerre polynomials: Combinatorial model and Stieltjes moment representation, Amer. Math. Soc. 150 (2022), 1997–2005.
- [11] A.D. Sokal and J. Zeng, Some multivariate master polynomials for permutations, set partitions, and perfect matchings, and their continued fractions, Adv. Appl. Math. 138 (2022), 102341.
- [12] R.P. Stanley, Enumerative Combinatorics, vol. 1, Second Edition, Cambridge University Press, 2012.
- [13] G. Viennot, Une théorie combinatoire des polynômes orthogonaux généraux, Notes de conférences données à l'Université du Québec à Montréal, septembre-octobre 1983. Available on-line at http://www.xavierviennot.org/xavier/polynomes_orthogonaux.html