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Abstract: It is broadly known that any parallelepiped tiles space by translating copies of itself
along its edges. In earlier work relating to higher-dimensional sandpile groups, the second
author discovered a novel construction which fragments the parallelpiped into a collection
of smaller tiles. These tiles fill space with the same symmetry as the larger parallelepiped.
Their volumes are equal to the components of the multi-row Laplace determinant expansion,
so this construction only works when all these signs are non-negative (or non-positive).

In this work, we extend the construction to work for all parallelepipeds, without requir-
ing the non-negative condition. This naturally gives tiles with negative volume, which we
understand to mean canceling out tiles with positive volume. In fact, with this cancellation,
we prove that every point in space is contained in exactly one more tile with positive volume
than tile with negative volume. This is a natural definition for a signed tiling.

Our main technique is to show that the net number of signed tiles doesn’t change as a
point moves through space. This is a relatively indirect proof method, and the underlying
structure of these tilings remains mysterious.

This extended abstract is made of three sections. In Section 1, we state our main theorem
(Theorem 1.7) after providing necessary definitions. In Section 2, we give three examples of
tilings obtained from our construction. Finally, in Section 3, we give a brief sketch of the
outline of our proof of Theorem 1.7. For more details, see our full paper on ArXiv [DM23].

1Doolittle was supported by the Austrian Science Fund FWF, Project P 33278. Their work was also
supported by the ANR-FWF International Cooperation Project PAGCAP, funded by the FWF Project I
5788.
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1. Signed Tiling Construction

Fix positive integers r and k as well as an (r + k) × (r + k) matrix M with real entries.
Additionally, fix a generic direction vector w ∈ Rr+k.

Definition 1.1. Let N be an (r + k)× (r + k) matrix with real entries. Define Π(N) to be
the set of p ∈ Rr+k such that for all sufficiently small ε > 0, the point p + εw is in∑

i∈[m]

{xiNi : 0 ≤ xi ≤ 1} .

The set Π(N) is called the (half-open) parallelepiped of N .

Although definition 1.1 depends on w, we omit it for conciseness.
We present a simple observation about translating parallelepipeds, which will be the foun-

dation of our construction.

Lemma 1.2. For any choice of M , we have

Rr+k =
⊔

z∈Zr+k
(Π(M) +Mz) .

This lemma follows from the fact that the unit cube tiles space, and the displacement
between cubes in this tiling is all Z-valued vectors. The lemma describes this same tiling,
after applying M as a linear transformation. Our main construction is of a more complicated
tiling under the same translation lattice, which is formed by fragmenting M .

Definition 1.3. Let σ ∈
(

[r+k]
r

)
, i.e., σ ⊂ [r+ k] with |σ|= r. The σ-fragment matrix of M ,

written Sσ(M), is the matrix obtained from M by the following 3 step process:

(1) For each i 6∈ σ, replace the first r entries of column i with 0.
(2) For each i ∈ σ, replace the last k entries of column i with 0.
(3) Negate all of the entries in the last k rows.

Example 1.4. Let r = k = 2. Any (r + k) × (r + k) matrix M has 6 associated fragment

matrices corresponding to the subsets of
(

[4]
2

)
. For example, if

M =


3 2 −4 1
1 0 2 2
2 0 −1 1
0 1 −2 3

 and σ = {1, 4}, then Sσ(M) =


3 0 0 1
1 0 0 2
0 0 1 0
0 −1 2 0

 .
To form a signed tiling, we parameterize tiles formed by translating the fundamental

parallelepiped of fragment matrices by integer combinations of the columns of M .

Definition 1.5. For any z ∈ Zr+k and σ ∈
(

[r+k]
r

)
, the tile parameterized by the pair (z, σ)

is defined as

T (z, σ) := Π(Sσ(M)) +Mz.

Using this parameterization, we can collect tiles into useful groups.
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Definition 1.6. Consider the sets of tiles

T+(M) : =
⊔

z∈Zr+k

 ⊔
σ∈([r+k]

r ), det(Sσ(M))>0

T (z, σ)

 ,

and T−(M) : =
⊔

z∈Zr+k

 ⊔
σ∈([r+k]

r ), det(Sσ(M))<0

T (z, σ)

 .

The set T+(M) is the set of positive tiles, and T−(M) is the set of negative tiles. We also
write T(M) := T+(M)tT−(M). Note that we don’t include the tiles where det(Sσ(M)) = 0,
but in this case, Sσ(M) is not invertible, and Π(Sσ(M)) is empty.

Definition 1.6 allows us to cleanly state our main result. Note that we write 1T for the
indicator function of a tile T .

Theorem 1.7. The function f(p) : Rr+k → Z, defined by

f(p) :=

 ∑
T∈T+(M)

1T (p)

−
 ∑
T∈T−(M)

1T (p)

 ,

is constant with value (−1)k sgn(det(M)).

When one of T+(M) or T−(M) is empty, Theorem 1.7 specializes to a result about more
traditional tilings. We state only the version where T−(M) is empty, but the same statement
holds if “non-negative” is replaced with “non-positive”.

Corollary 1.8. [McD21b, Corollary 9.2.8] If the sign of det(Sσ(M)) is non-negative for each

σ ∈
(

[r+k]
r

)
, then

Rr+k =
⊔
z∈Z

 ⊔
σ∈([r+k]

r )

T (z, σ)

 .

Remark 1.9. The conditions required on M for Corollary 1.8 to apply are discussed
in [McD21b, Section 6.7]. The original proof of the corollary relies on these properties,
so we needed different methods to prove the more general Theorem 1.7. A special case of
Corollary 1.8 was used in [McD21a] to define a family of multijections between the sandpile
group and cellular spanning forests for a large class of cell complexes. This generalizes a
construction of Backman Baker and Yuen which used zonotopal tilings to answer questions
about chip-firing on regular matroids [BBY19].

2. Example Tilings

Example 2.1. Suppose that

M =

[
1 2
−1 3

]
. Then, S{1}(M) =

[
1 0
0 −3

]
and S{2}(M) =

[
0 2
1 0

]
.
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Figure 1. On the left is the tiling from Example 2.1. Translates of S{1}(M)
are given in orange and translates of S{2}(M) are given in blue. When the
partial tilings are combined, we get a full periodic tiling of R2. On the center/
right is the signed tiling from Example 2.2. The darker regions indicate where
two parallelepipeds overlap, while the lighter region is the portion covered by a
single paralellepiped. By Theorem 1.7, the overlap region in the center image
corresponds precisely to the shaded region on the rightmost image.

In this example, both fragment matrices have negative determinant. Thus, by Corollary 1.8,
we get the traditional tiling presented on the left in Figure 1.

Example 2.2. Suppose that

M =

[
1 2
1 5

]
. Then, S{1}(M) =

[
1 0
0 −5

]
and S{2}(M) =

[
0 2
−1 0

]
.

In this example, det(S{1}(M)) < 0 while det(S{2}(M)) > 0. This means that Corollary 1.8
no longer applies and the tiles in T(M) contain some overlap. Nevertheless, the overlap of
the negative tiles is precisely the region that is “cancelled out” by the positive tiles. This
tiling is shown in the center/right of Figure 1).

Example 2.3. For the matrix M from Example 1.4, the set T(M) consists of 6 families of
4-dimensional parallelepipeds, where each family contains infinitely many translations of a
single fragment.

By taking the determinant of each fragment, we find that

T+(M) =
⊔

z∈Zr+k

 ⊔
σ∈{(1,2),(1,3),(1,4),(2,3),(2,4)}

T (z, σ)

 , and

T−(M) =
⊔

z∈Zr+k
T (z, {3, 4}).

Confirming that Theorem 1.7 holds for this example is not a completely straightforward
task, even with the help of a computer. Nevertheless, regardless of the choice of w, one can
show that each p ∈ R4 is contained in

• one tile in T+(M) and no tiles in T−(M),
• two tiles in T+(M) and one tile in T−(M), or
• three tiles in T+(M) and two tiles in T−(M).
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det(S{1,2}(M)) = 2 det(S{1,3}(M)) = 10 det(S{1,4}(M)) = 5

det(S{2,3}(M)) = 24 det(S{2,4}(M)) = 16 det(S{3,4}(M)) = −20

Figure 2. Here we show the contributions of each of the six classes of tiles
in Example 2.3 to a 2-dimensional slice of the tiling.

In each case, the value of f(p) is 1, which is also the sign of det(M).
It is possible to visualize this tiling by taking a 2-dimensional slice which fixes the last 2

coordinates in R4. Each of the six families of tiles are given in Figure 2.
Recall that the first 5 families are made up of positive tiles, while the last is made up

of negative tiles. Figure 3 gives an enlarged view of the collection of all positive tiles. By
Theorem 1.7, this is the same picture obtained by adding the negative tiles to the set of all
points in R2.

3. An Outline of the Proof

Our proof of Theorem 1.7 is structured in the following way.

(1) First, we show that the average value of f is (−1)k sgn(det(M)).
(2) Next, we group the facets of the tiles into collections that lie in the same hyperplane.
(3) After this, we imagine a particle crossing a point contained in one of these collections

of facets. We show that when doing so, it crosses exactly two facets. Furthermore,
in one crossing it enters a positive tile or exits a negative tile, while in the other
crossing, it exits a positive tile or enters a negative tile.
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Figure 3. This figure is formed by overlapping the first 5 images in Figure 2.
We showed in Example 2.3 that these are precisely the tiles in T+(M). If
we “subtract” the final image in Figure 2 from this picture, each point in R2

would be covered once.

(4) From these observations, we conclude that f is constant. Theorem 1.7 then follows
from our first observation.

To find the average value of f , we use the multiple row version of Laplace’s determinant
expansion formula as well as some basic calculus techniques. One important observation is
the following chain of equalities, which holds for any σ ∈

(
[r+k]
r

)
.

∑
z∈Zr+k

∫
Π(M)

1T (z,σ)(x)dx =

∫
Rr+k

1T (0,σ)(x)dx =

∫
Rr+k

1Sσ(M)(x)dx = |det(Sσ(M))|.

The longest and most technical part of our proof is the facet grouping result. This ar-
gument required careful bookkeeping and several applications of Cramer’s rule. After this
hurdle, the final steps of the proof were relatively straightforward.
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