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Abstract: A hyperplane arrangement in Rn is a finite collection of affine hyperplanes. The regions of an
arrangement are the connected components of the space obtained when its hyperplanes are deleted from
Rn. By a theorem of Zaslavsky, the number of regions of an arrangement is the sum of the absolute
values of the coefficients of its characteristic polynomial. Arrangements consisting of hyperplanes parallel
to those whose defining equations are xi − xj = 0 form an important class called deformations of the braid
arrangement. In a recent work, Bernardi showed that regions of certain deformations are in one-to-one
correspondence with certain labeled trees. We define a statistic on these trees such that the distribution is
given by the coefficients of the characteristic polynomial. In particular, our statistic applies to well-studied
families like extended Catalan, Shi, Linial and semiorder. This is based on joint work with Priyavrat
Deshpande.

1. INTRODUCTION

A hyperplane arrangement A is a finite collection of affine hyperplanes (i.e., codimension 1 subspaces
and their translates) in Rn. A region of A is a connected component of Rn \

⋃
A. The number of regions

of A is denoted by r(A). The poset of non-empty intersections of hyperplanes in an arrangement A
ordered by reverse inclusion is called its intersection poset denoted by L(A). The ambient space of the
arrangement (i.e., Rn) is an element of the intersection poset; considered as the intersection of none of
the hyperplanes. The characteristic polynomial of A is defined as

χA(t) :=
∑

x∈L(A)

µ(0̂, x) tdim(x)

where µ is the Möbius function of the intersection poset and 0̂ corresponds to Rn. Using the fact that
every interval of the intersection poset of an arrangement is a geometric lattice, we have

(1) χA(t) =
n∑

i=0

(−1)n−iciti
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where ci is a non-negative integer for all 0 ≤ i ≤ n [8, Corollary 3.4]. The characteristic polynomial is
a fundamental combinatorial and topological invariant of the arrangement and plays a significant role
throughout the theory of hyperplane arrangements.

We have the following seminal result by Zaslavsky for obtaining the number of regions of an
arrangement from its characteristic polynomial.

Theorem 1.1. [10] Let A be an arrangement in Rn. Then the number of regions of A is given by
r(A) = (−1)nχA(−1)

=
n∑

i=0

ci.

When the regions of an arrangement are in bijection with a certain combinatorially defined set, one
could ask if there is a corresponding ‘statistic’ on the set whose distribution is given by the ci’s. For
example, the regions of the braid arrangement in Rn (whose hyperplanes are given by the equations
xi − xj = 0 for 1 ≤ i < j ≤ n) correspond to the n! permutations of [n]. The characteristic polynomial
of this arrangement is t(t− 1) · · · (t− n+ 1) [8, Corollary 2.2]. Hence, ci’s are the unsigned Stirling
numbers of the first kind. Consequently, the distribution of the statistic ‘number of cycles’ on the set of
permutations is given by the coefficients of the characteristic polynomial.

We consider arrangements where each hyperplane is of the form xi − xj = s for some s ∈ Z. Such
arrangements are called deformations of the braid arrangement. Recently, Bernardi [3] obtained a method
to count the regions of any deformation of the braid arrangement using certain objects called boxed
trees. For certain special deformations, which he calls transitive, he also obtained an explicit bijection
between the regions of the arrangement and a certain set of trees. Our main aim is to describe a statistic
on such trees, which we call the branch statistic, whose distribution is given by the coefficients of the
characteristic polynomial of the corresponding arrangement.

We begin with a short account of Bernardi’s work [3] in Section 2. In Section 3 we describe the branch
statistic. In Section 4 we exhibit some properties of the coefficients of the characteristic polynomial that
can be proved using this combinatorial interpretation. Details can be found in [4].

2. PRELIMINARIES

A tree is a graph with no cycles. A rooted tree is a tree with a distinguished vertex called the root. We
will draw rooted trees with their root at the bottom. Children of a vertex v in a rooted tree are those
vertices w that are adjacent to v and such that the unique path from the root to w passes through v.
Similarly, we can define the parent of a vertex v to be the vertex w for which v is the child of w. Any
non-root vertex has a unique parent. All the vertices that have at least one child are called nodes and
those that do not are called leaves.

A rooted plane tree is a rooted tree with a specified ordering for the children of each node. When
drawing a rooted plane tree, the children of any node will be ordered from left to right. The left siblings
of a vertex v are the vertices that are also children of the parent of v but are to the left of v. We denote
the number of left siblings of v as lsib(v).

Definition 2.1. An (m+ 1)-ary tree is a rooted plane tree where each node has exactly (m+ 1) children. We
will denote by T (m)(n) the set of all (m+ 1)-ary trees with n nodes labeled with distinct elements from [n].

For trees in T (m)(n), we use i to denote the node having label i ∈ [n].

Definition 2.2. If a node i in a tree T ∈ T (m)(n) has at least one child that is a node, the cadet of i is the
rightmost such child, which we denote by cadet(i).
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Example 2.3. Figure 1 shows an element of T (1)(4) where
• 4 is the root,
• lsib(2) = 0, lsib(3) = 0, lsib(1) = 1,
• cadet(4) = 2, and cadet(2) = 1.

Definition 2.4. For any finite set of integers S with m = max{|s| | s ∈ S}, define TS(n) to be the set of trees
in T (m)(n), such that if cadet(i) = j:

• lsib(j) /∈ S ∪ {0} ⇒ i < j .
• − lsib(j) /∈ S ⇒ i > j .

Example 2.5. T{0,1}(n) is the set of labeled binary trees with n nodes where any right node has a label smaller
than its parent. A tree in T{0,1}(4) is shown in Figure 1.

4
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3 1

FIGURE 1. A tree in T{0,1}(4)

For any finite set of integers S, we define the arrangement AS(n) as the deformation of the braid
arrangement in Rn with hyperplanes

{xi − xj = k | k ∈ S, 1 ≤ i < j ≤ n}.

Though Bernardi [3] derived results for more general deformations, we will only be focused on these.

Definition 2.6. A finite set of integers S is said to be transitive if for any s, t /∈ S ,
• st > 0⇒ s+ t /∈ S .
• s > 0 and t ≤ 0⇒ s− t /∈ S and t− s /∈ S .

Example 2.7. For any m ≥ 1, the sets {−m, . . . ,m}, {−m+ 1, . . . ,m}, {−m, . . . ,m} \ {0}, and {−m+
1, . . . ,m} \ {0} are all transitive. The arrangements AS(n) corresponding to these sets when m = 1 are called
the Catalan, Shi, semiorder, and Linial arrangements respectively.

We can now state the result for arrangements AS(n) where S is transitive.

Theorem 2.8. [3, Theorem 3.8] For any transitive set of integers S , the regions of the arrangement AS(n) are
in bijection with the trees in TS(n).

3. A BRANCH STATISTIC

We first break up a tree into twigs and group twigs together to form branches.

Definition 3.1. The trunk of a tree in T (m)(n) is the path from the root to the leftmost leaf. The nodes on the
trunk of the tree break up the tree into sub-trees, which we call twigs (blue boxes in Figure 2).



4

Let the nodes on the trunk of a tree be v1, v2, . . . , vk, where v1 is the root and vi+1 is the leftmost
child of vi for any i ∈ [k − 1]. If vi = max{v1, . . . , vk}, then the first branch of the tree consists of the
twigs corresponding to the nodes v1, . . . , vi. If vj = max{vi+1, . . . , vk}, then the second branch of the
tree consists of the twigs corresponding to the nodes vi+1, . . . , vj . Continuing this way, we group twigs
to form branches.

Note that the number of branches of the tree is just the number of right-to-left maxima of the
sequence v1, v2, . . . , vk of nodes on the trunk, i.e., the number of vi such that vi > vj for all j > i. We
will call such vi the branch nodes of the trunk.

Example 3.2. The tree in Figure 2 has 3 twigs and 2 branches. The first branch consists of just the first twig
since 6 is the largest node in the trunk. The second branch consists of the second and third twigs since 5 is larger
than 4. Here 6 and 5 are the branch nodes.

6
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5 71
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FIGURE 2. A labeled 3-ary tree with twigs and branches specified.

Theorem 3.3. For a transitive set of integers S , the absolute value of the coe�cient of tj in χAS(n)(t) is the
number of trees in TS(n) with j branches.

The main idea behind the proof is that the sequence of arrangements (AS(n))n≥0 forms an exponential
sequence of arrangements [8, Definition 5.14] and that branches give trees an exponential structure [7,
Example 5.2.2 ].

Example 3.4. When S = {0}, we obtain the braid arrangement. Here, T{0}(n) corresponds to permutations
of [n] and Theorem 3.3 states that the absolute value of the coe�cient of tj in χA{0}(n)(t) is the number of
permutations of [n] with j right-to-left maxima. By [6, Corollary 1.3.11], this agrees with the observation in
Section 1 that the coe�cients are the Stirling numbers of the first kind.

Example 3.5. The Linial arrangement Ln in Rn is the deformation A{1}(n). The trees in T{1}(n), called
Linial trees, are those binary trees where any node has a larger label than its cadet. The Linial trees for n = 3 are
given in Figure 3. Counting the branches in these trees, we get χL3(t) = t3 − 3t2 + 3t, which agrees with the
known formula for the characteristic polynomial ( for example, see [2, Theorem 4.2]).
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FIGURE 3. Linial trees for n = 3.

4. PROPERTIES OF COEFFICIENTS

In this section, we present some properties of the coefficients that are consequences of the combinatorial
interpretation presented in the previous section. For any transitive set S, we use C(S, n, j) to denote the
absolute value of the coefficient of tj in χAS(n)(t).

Proposition 4.1. For any transitive set S and n, j ≥ 1, we have the following:
• C(S′, n, j) ≤ C(S, n, j) for any transitive set S′ ⊆ S .
• C(S, n, j) ≤ C(S, n+ 1, j + 1).
• C(S, n, j) ≤ C(S, n+ 1, j).

We can derive some more properties for a particular class transitive sets. This follows by using a
different exponential structure break-up of trees from the one presented in Section 3.

Proposition 4.2. Suppose S is a transitive set such that 0 ∈ S and there exists some s ≥ 1 such that s,−s ∈ S .
For any j ≥ 1, we have

C(S, n, j) ≥
n∑

k=j+1

C(S, n, k).

In particular, we have C(S, n, 1) ≥ C(S, n, 2) ≥ · · · ≥ C(S, n, n− 1) ≥ C(S, n, n).
4.1. Extended Catalan arrangement. We now focus on the case when S = {−m,−m+ 1, . . . ,m−
1,m} for some m ≥ 1. The corresponding arrangement AS(n) is called the m-Catalan arrangement
in Rn. We let C(m,n, j) denote the absolute value of the coefficient of tj in χAS(n)(t). Here TS(n) =
T (m)(n) and hence, from Theorem 3.3, C(m,n, j) is the number of (m+1)-ary trees with n nodes and
j branches. We obtain the following expression for C(m,n, j) using this combinatorial interpretation.

Proposition 4.3. We also have for any m,n, j ≥ 1,

C(m,n, j) =
n∑

k=j

(−1)k−jBm(n, k)c(k, j)
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where c(k, j) is the number of permutations of [k] with j right-to-left maxima (unsigned Stirling number of the
first kind) and

Bm(n, k) =
(n− 1)!

(k − 1)!

(
(m+ 1)n

n− k

)
.

The above expression follows since one can show, for example using [7, Theorem 5.3.10], that
Bm(n, k) is the number of ways to partition [n] into k blocks and associate to each block B a tree in
T (m)(|B|).

We now state some properties of C(m,n, j) that can be easily proved using this combinatorial
interpretation. We omit those that are consequences of the general properties we have already seen.

Proposition 4.4. For any m,n ≥ 1, we have the following:

• C(m)(n) :=
∑n

j=1C(m,n, j) =
n!

mn+1

(
(m+1)n

n

)
.

• C(m)(n) ≤ C(m+ 1, n, 1).
• C(m)(n) ≤ C(m,n+ 1, 1).

There are several combinatorial objects that correspond to the regions of the extended Catalan
arrangement (especially in the case m = 1, see [9]). One such is the generalized Dyck paths. We now
describe a corresponding statistic for these Dyck paths.

A labeled m-Dyck path on [n] is a sequence of (m+ 1)n terms where
• n terms are ‘+m’,
• mn terms are ‘−1’,
• the sum of any prefix of the sequence is non-negative, and
• each +m term is given a distinct label from [n].

A labeled m-Dyck path on [n] can be drawn in R2 in the natural way. Start the path at (0, 0), read
the labeled m-Dyck path and for each term move by (1,m) if it is +m and by (1,−1) if it is −1. Also,
label each +m step with its corresponding label in [n].

A Dyck path breaks up into primitive parts based on when it touches the x-axis. If a labeled Dyck
path has k primitive parts, then we break the path into compartments as follows. If the number n is in the
ith1 primitive part, then the primitive parts up to the ith1 form the first compartment. Let j be the largest
number in [n] \A where A is the set of numbers in first compartment. If j is in the ith2 primitive part
then the primitive parts after the ith1 up to the ith2 form the second compartment. Continuing this way,
we break up a labeled Dyck path into compartments.

Example 4.5. The labeled 1-Dyck path on [7] given in Figure 4 has 3 primitive parts and 2 compartments.

Using the same methods as for trees, we have the following.

Theorem 4.6. The number of labeled m-Dyck paths on [n] with j compartments is C(m,n, j).

5. CONCLUDING REMARKS

We note that a combinatorial interpretation for the coefficients of the characteristic polynomial of the
Linial arrangement is already given in [5, Corollary 4.2]. This is in terms of alternating trees.

For various deformations of the braid arrangement, expressions for the characteristic polynomials are
known (for example, see [1, 2]). Hence, for transitive sets S, these can be used to extract coefficients and
hence give formulas for the number of trees in TS(n) according to number of branches.
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FIGURE 4. A labeled 1-Dyck path with compartments specified.
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