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Abstract We provide an explicit description of the recurrent configurations of the sand-
pile model on a family of graphs Ĝµ,ν , which we call clique-independent graphs, indexed
by two compositions µ and ν. Moreover, we define a delay statistic on these configura-
tions, and we show that, together with the usual level statistic, it can be used to provide a
new combinatorial interpretation of the celebrated shuffle theorem of Carlsson and Mellit.
More precisely, we will see how to interpret the polynomials 〈∇en, eµhν〉 in terms of these
configurations.

1. Introduction

1.1. Shuffle theorem. The shuffle theorem of Carlsson and Mellit [4] is a recent break-
through that provided a positive solution to a long-standing conjecture about a combina-
torial formula for the Frobenius characteristic of the so-called diagonal harmonics. More
precisely, this theorem provides the monomial expansion of the symmetric function ∇en,
where en is the elementary symmetric function of degree n in the variables x1, x2, . . . , and
∇ is the famous nabla operator introduced by Bergeron and Garsia in the 90’s. In this
formula, to each labelled Dyck path of size n corresponds a monomial, where the variables
x1, x2, . . . keep track of the labels, while the variables q and t keep track of the bistatistic
(dinv, area).

In [6] Loehr and Remmel provided an alternative combinatorial interpretation of the same
symmetric function in terms of the same objects, but using the bistatistic (area, pmaj).
In particular, they showed bijectively that the two combinatorial formulas coincide. In
our work we provide a new combinatorial interpretation of this symmetric function by
proving a bijection to the Loehr–Remmel model.

1.2. Sandpile model. The (abelian) sandpile model is a combinatorial dynamical sys-
tem on graphs first introduced by Bak, Tang and Wiesenfeld [2] in the context of “self-
organized criticality” in statistical mechanics. The sandpile model (and variants of it)
have found applications in a wide variety of mathematical contexts including enumerative
combinatorics, tropical geometry, and Brill–Noether theory, among others: see [5] for a
nice introductory monograph. For now we only consider the sandpile model with a sink.
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A well-known link between the combinatorics of this dynamical system and that of the
underlying graph is given by the so-called recurrent configurations (see Definition 3.3).
For example, the recurrent configurations of the sandpile model are in bijection with
the spanning trees of the graph (see e.g. [3]). If the underlying graph presents some
symmetries, then it is natural to look at the recurrent configurations “modulo” those
symmetries. For example, for the complete graph we can identify recurrent configurations
that are the same up to a permutation of the vertices (not moving the sink); perhaps
unsurprisingly, we still get interesting combinatorics, as in this case we find Catalan many
such “sorted” configurations.

More formally, consider the sandpile model on a graph G, and let Aut(G) be the auto-
morphism group of G. Consider a subgroup Γ of the stabilizer of the sink. Now Γ acts
naturally on the set Rec(G) of recurrent configurations: we are interested in the orbits of
this action, that we will call sorted recurrent configurations.

1.3. Main result. We will consider an explicit family of graphs Ĝµ,ν indexed by pairs
of compositions µ and ν. For such a graph Ĝµ,ν we will look at a subgroup Γ of its
automorphism group that will be isomorphic to the Young subgroup Sµ × Sν of the
symmetric group Sn, where n = |µ| + |ν|. We denote by SortRec(µ, ν) the set of the
corresponding sorted recurrent configurations of Ĝµ,ν .

For every recurrent configuration κ of Ĝµ,ν , we will define a new statistic, called the
delay of κ (denoted delay(κ)), which we will couple with the usual level statistic (denoted
level(κ)). To state our main result, we need a few more definitions.

Given a composition µ = (µ1, µ2, . . . ), we denote by eµ the product eµ1eµ2 · · · , and
similarly hµ = hµ1hµ2 · · · , where hn is the complete homogeneous symmetric function of
degree n. Finally, we denote by 〈−,−〉 the Hall scalar product on symmetric functions.

Theorem 1.1. For every pair of compositions µ, ν such that n = |µ|+ |ν| we have

〈∇en, eµhν〉 =
∑

κ∈SortRec(µ,ν)

qlevel(κ)tdelay(κ).

Notice that for µ = ∅, the coefficient 〈∇en, hν〉 is simply the coefficient of xν = xν11 x
ν2
2 · · ·

in ∇en, hence this formula gives in particular a new combinatorial interpretation of the
monomial expansion of the symmetric function ∇en in terms of the sandpile model.

In the rest of this extended abstract we introduce all of the definitions necessary for
Theorem 1.1.

2. The clique-independent graphs Ĝµ,ν

Definition 2.1. Let µ, ν be two compositions (i.e. tuples of positive integers). Set n =
|µ|+ |ν|. We define a graph Gµ,ν with set of vertices [n] := {1, 2, . . . , n} consisting of the
following components :

• `(µ) clique components, i.e. complete graphs, Kµ1 , Kµ2 , . . . , on µ1, µk, . . . vertices
respectively. The vertices of Kµ1 are n, n− 1, . . . , n− µ1 + 1; the vertices of Kµ2

are n− µ1, n− µ1 − 1, . . . , n− µ1 − µ2 + 1; and so on.
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Figure 1. The graph Ĝ(4,3),(3,2).

• `(ν) independent components, i.e. graphs without edges, Iν1 , Iν2 , . . . , on ν1, ν2, . . .
vertices respectively; the vertices of Iν1 are 1, 2, . . . , ν1; the vertices of Iν2 are
ν1 + 1, ν1 + 2, . . . , ν1 + ν2; and so on.

Finally, two vertices in distinct components are always connected by an edge.

Example 2.2. If µ = ∅, then G∅,ν is the complete multipartite graph Kν1,ν2,.... If ν = ∅,
then Gµ,∅ is isomorphic to the complete graph K|µ|; however, for our purposes we will
distinguish between G(|µ|),∅ and G(µ1,µ2,... ),∅, as we will consider the action of different
groups of automorphisms, which will lead to different sorted configurations.

Given one of our labelled graphs Gµ,ν , we define the graph Ĝµ,ν simply as Gµ,ν to which
we add a vertex 0, and we connect it with every other vertex. We will consider the
sandpile on Ĝµ,ν , where 0 is the sink. Figure 1 is an illustration of the graph Ĝ(4,3),(3,2).

3. Basics of the sandpile model

Definition 3.1. LetG be a finite, undirected, simple graph on the vertex set {0, 1, . . . , n}.

A configuration of the sandpile (model) on G is a map κ : [n] ∪ {0} → Z that assigns a
(integer) number of “grains of sand” to each nonzero vertex of G.

If 0 ≤ κ(v) ≤ deg(v), we say that v is stable, and otherwise it is unstable. Any vertex can
topple (or fire), and “donate a single grain” to each of its neighbors: the result is a new
configuration κ′ in which κ′(v) = κ(v)− deg(v) and for any w 6= v

κ′(w) =

{
κ(w) + 1, if (v, w) is an edge
κ(w), otherwise.

For any v ∈ {0, . . . , n} we write φv for the toppling operator at vertex v. That is φv(κ) is
a new configuration obtained from κ by toppling the vertex v.

The vertex 0 is special in this model, and we call it the sink, while we call all the others
nonsink vertices. We say that a configuration κ is non-negative if all of its nonsink
vertices are non-negative, stable if all of its nonsink vertices are stable, and unstable if at
least one of its nonsink vertices is unstable.
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Remark 3.2. Notice that the notion of stable configuration has no dependency on the value
on the sink. Therefore, as it is customary, we will ignore the value of a configuration on
the sink, and consider the configurations as restricted on the nonsink vertices. Moreover,
we will identify every configuration κ with the word κ(n)κ(n− 1) · · ·κ(2)κ(1).

Definition 3.3. Let κ be a stable configuration, and consider the configuration φ0(κ).
We say that κ is recurrent1 if there is an order of all the nonsink vertices such that
toppling the vertices in that order we always stay non-negative. Of course at the end
of this sequence of topplings we will be back to κ. More precisely, a configuration κ is
recurrent if there is a permutation σ = σ1σ2 · · ·σn ∈ Sn such that

φ0(κ), (φσ(1) ◦ φ0)(κ), (φσ(2) ◦ φσ(1) ◦ φ0)(κ), . . . , (φσ(n) ◦ · · · ◦ φσ(1) ◦ φ0)(κ) = κ

are all non-negative configurations. In this case, σ is the toppling word of this sequence
of topplings, and we say that this sequence verifies the recurrence of κ.

Remark 3.4. It is well known (see e.g. [1, Theorem 2.4]) that the condition for κ to
be recurrent is equivalent to say that starting from φ0(κ) there is no proper (possibly
empty) subset A of [n] such that toppling all the vertices of A brings φ0(κ) to a stable
configuration.

Definition 3.5. Given a recurrent configuration κ of G, we define its level as

level(κ) := −|Es(G)|+
n∑
i=1

κ(i)

where Es(G) is the set of edges of G that are not incident to the sink.

It is well-known that level(κ) ≥ 0, and there exists a recurrent configuration of level 0 if
G is connected [7].

Remark 3.6. For Ĝµ,ν with |µ|+ |ν| = n we have

|Es(Ĝµ,ν)| =
(
n

2

)
−
∑
i≥0

(
νi
2

)
.

Example 3.7. The configuration κ = 310 11 11810 11 104973 for Ĝ(4,3),(3,2) has level

level(κ) = −
(

12

2

)
+

(
3

2

)
+

(
2

2

)
+ 97 = 35.

Definition 3.8. A sorted configuration2 of the sandpile on Ĝµ,ν is a configuration κ that
is weakly decreasing inside each clique component of Ĝµ,ν and weakly increasing inside
each independent component of Ĝµ,ν : if i, j ∈ Kµr and i < j, then κ(i) ≤ κ(j); if i, j ∈ Iνs
and i < j, then κ(i) ≥ κ(j).

Example 3.9. The configuration κ = 310 11 11810 11 104973 is a sorted recurrent configu-
ration for Ĝ(4,3),(3,2) (recall that in our notation κ = κ(n)κ(n− 1) · · ·κ(1)).

1In the literature “recurrent” is sometimes used in a broader sense than in this paper. Configurations
that are recurrent in our sense are called critical in these settings.

2The relation with the general definition of sorted configuration given in Section 1.2 is simply that
we are picking a specific convenient element in each orbit.
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4. Toppling algorithm and delay

Consider the sandpile on a graph G with vertices {0} ∪ [n], where 0 is the sink. Let κ be
a recurrent configuration of G. Consider Algorithm 1.

Algorithm 1 Toppling algorithm
Input: A graph G and a recurrent configuration κ
Output: The word of nonsink vertices in the order they have been toppled
Topple the sink, i.e. compute φ0(κ)
Initialize the output word as empty
while there are nonsink vertices that are untoppled do

for i going from n to 1 (in decreasing order) do
if vertex i is unstable then

Topple vertex i
Append i to the output word

end if
end for

end while

Observe that by construction the algorithm terminates: since κ is recurrent, φ0(κ) is non-
negative and at least one of the vertices adjacent to the sink is unstable; then every time
we topple we stay non-negative, and since κ is recurrent the process must go through all
the nonsink vertices (otherwise we found a subset A of nonsink vertices such that after
we topple its vertices we are in a stable configuration, cf. Remark 3.4).

By construction the algorithm outputs a toppling sequence that verifies the recurrence of
κ. We can now define our new statistic on recurrent configurations.

Definition 4.1. Let κ be a recurrent configuration of G. For every i ∈ [n], let ri(κ) be
the number of for loop iterations in Algorithm 1 that occurred before the one in which
the vertex i is toppled (so if i is toppled in the first iteration, then ri(κ) = 0). Then we
define the delay of κ as

delay(κ) :=
n∑
i=1

ri(κ).

Remark 4.2. If σ is the output of Algorithm 1 applied to κ, then clearly

delay(κ) = maj(σnσn−1 · · ·σ1).
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