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Abstract. Motivated by Kitaev and Zhang’s recent work on non-overlapping ascents in
stack-sortable permutations and Dumont’s permutation interpretation of the Jacobi ellip-
tic functions, we investigate some parity statistics on restricted permutations. Some new
related bijections are constructed and two refinements of the generating function for de-
scents over 321-avoiding permutations due to Barnabei, Bonetti and Silimbanian are ob-
tained. In particular, an open problem of Kitaev and Zhang about non-overlapping ascents
on 321-avoiding permutations is solved and several combinatorial interpretations for the
Catalan–Schett polynomials are found. The stack-sortable permutations are at the heart of
our approaches.

1. Introduction

Let Sn be the set of all permutations of rns :“ t1, 2, . . . , nu. A permutation π “

π1π2 ¨ ¨ ¨ πn P Sn is said to avoid pattern σ P Sk if there does not exist i1 ă i2 ă ¨ ¨ ¨ ă ik
such that the subsequence πi1πi2 . . . πik of π is order isomorphic to σ. Let

Snpσq :“ tπ P Sn : π avoids σu.
An element in Snpσq is called a σ-avoiding permutation. One of the classical enumerative
results in pattern avoiding permutations, attributed to MacMahon and Knuth (see [7]), is
that |Snpσq| “ Cn for each pattern σ P S3, where Cn “ 1

n`1

`2n
n

˘

is the n-th Catalan number.
Because of Knuth’s work [5], the class of 231-avoiding permutations was also known as
stack-sortable permutations.

The MacMahon–Knuth result has been refined several times in the literature. Robertson,
Saracino and Zeilberger [13] refined this result by proving that the distribution of “num-
ber of fixed points” is the same in 321-avoiding as in 132-avoiding permutations. Elizalde
and Pak [4] further refined Robertson et al.’s result by taking into account the “number of
excedances” in a permutation. Barnabei, Bonetti and Silimbanian [1] showed that
(1.1) pt2x´ t2 ` tqA2

` p2t2x2
´ 2tx ` 2xt´ xqA` t2x3

´ t2x2
` tx2

“ 0,
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where A is the enumerator of 321-avoiding permutations by the length (variable t) and
the number of descents (variable x). The main objective of this paper is to present new
refinements, from the aspects of both bijective combinatorics and the generating functions,
of the MacMahon–Knuth result using two classes of parity statistics on permutations.

We begin by introducing the first class of parity statistics. Given π P Sn, an index
i P rn ´ 1s is called an ascent of π if πi ă πi`1 and a descent of π if πi ą πi`1. Let ASCpπq
(resp., DESpπq) be the set of ascents (resp., descents) of π. To a subset S Ď rn ´ 1s with
elements s1 ă s2 ă ¨ ¨ ¨ ă sk, we associate the multiset

MpSq “
#

ts1, s2 ´ s1, . . . , sk ´ sk´1, n´ sku, if S ‰ H;
tnu, if S “ H.

Then, DRpπq :“ MpASCpπqq is the descending run multiset of π and ARpπq :“ MpDESpπqq
is the ascending run multiset of π. Note that DRpπq records the lengths of the decreasing
runs of π, while ARpπq records the lengths of the increasing runs of π. For instance, if
π “ 318972456 P S9, then we have DRpπq “ t3, 2, 14u as ASCpπq “ t2, 3, 6, 7, 8u, while
ARpπq “ t4, 3, 12u as DESpπq “ t1, 4, 5u. Introduce four parity statistics of π as

‚ odrpπq, the number of odd elements in DRpπq;
‚ edrpπq, the number of even elements in DRpπq;
‚ oarpπq, the number of odd elements in ARpπq;
‚ earpπq, the number of even elements in ARpπq.

Continuing with the running example, we have odrpπq “ 5, edrpπq “ 1, oarpπq “ 3 and
earpπq “ 1.

Another class of parity statistics that we consider are the even/odd left peaks of permu-
tations. Recall that a left peak of a permutation π P Sn is a value πi, i P rn ´ 1s, such that
πi´1 ă πi ą πi`1 with the convention π0 “ 0. Let LPKpπq be the set of left peaks of π.
Introduce the two parity statistics of π as

‚ lpkopπq, the number of odd elements in LPKpπq;
‚ lpkepπq, the number of even elements in LPKpπq.

For example, if π “ 3271654, then LPKpπq “ t3, 6, 7u, so lpkopπq “ 2 and lpkepπq “ 1.
Our motivation to consider these parity statistics on restricted permutations comes from

the recent work by Kitaev and Zhang [8]. The notion of the maximum number of non-
overlapping occurrences of a consecutive pattern in a permutation was first considered by
Kitaev [6]. Kitaev and Zhang [8] focused on the maximum number of non-overlapping de-
scents (resp., ascents), denoted mndpπq (resp., mnapπq), of a permutation π. In other words,
we have

mndpπq “
ÿ

iPDRpπq

X i

2
\

and mnapπq “
ÿ

iPARpπq

X i

2
\

.

Notice that

(1.2) mndpπq “ n´ odrpπq
2 and mnapπq “ n´ oarpπq

2 .

The main results in [8] are outlined as follows.

Theorem 1.1 (Kitaev and Zhang [8]). The following two results hold:
(i) the pair pmna,mndq is symmetric over Snp231q;
(ii) |tπ P Snp231q : mndpπq “ ku| “ 1

n`1

`

n`1
2k`1

˘`

n`k
k

˘

.
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Figure 1. An example of the bijection Θ “ V ˝ ϕ.

Let despπq “ |DESpπq| be the number of descents of π. As mndpπq “ despπq for any
π P Snp321q, the distribution of “mnd” over 321-avoiding permutations has been computed
by Barnabei et al. [1]. Kitaev and Zhang [8] posed the following open problem, resolving
which would complete the enumeration of “mnd” and “mna” over permutations avoiding a
pattern of length 3.

Problem 1.2 (Kitaev and Zhang [8]). Find the distribution of “mna” over 321-avoiding
permutations.

The refinement of Catalan numbers

(1.3) 1
n` 1

ˆ

n` 1
2k ` 1

˙ˆ

n` k

k

˙

appears in Theorem 1.1 also has other known combinatorial interpretations. A binary tree
is a special type of rooted tree in which every internal node has either one left child or one
right child or both. Let Bn be the set of all binary trees with n nodes. Given a binary tree,
its left chain (resp., right chain) is any maximal path composed of only left (resp., right)
edges. The order of a left/right chain is the number of its nodes. Let LCpT q (resp., RCpT q)
be the multiset of all orders of the left (resp., right) chains of a tree T P Bn. For instance,
the binary tree in Fig. 1 has 5 right chains, which are 4 ´ 3 ´ 2, 9 ´ 8, 7 ´ 6, 1 and 5, and
so RCpT q “ t3, 22, 12u. Define two statistics of T as

X pT q “
ÿ

iPLCpπq

X i

2
\

and YpT q “
ÿ

iPRCpπq

X i

2
\

.

For the running example tree T , we have X pT q “ 2 and YpT q “ 3. Sun [16] proved
combinatorially that the number (1.3) enumerates binary trees T P Bn with X pT q “ k.
Kitaev and Zhang [8] constructed a bijection between tT P Bn : X pT q “ ku and tπ P
Snp231q : mndpπq “ ku, providing the first proof of Theorem 1.1 (ii).

The original impetus of this work lies in an unexpected connection between the joint
distribution of pX ,Yq over binary trees and the multiset Schett polynomials introduced by
Ma and the first author [11]. The Jacobi elliptic function (see [11]) snpu, αq may be defined
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by the inverse of an elliptic integral:

snpu, αq “ y iff u “

ż y

0

dt
a

p1´ t2qp1´ α2t2q
,

where α P p0, 1q is a real number. When a “ 1, snpu, αq becomes the sine function sinpuq.
For a multiset M , a binary tree whose nodes are labeled exactly by M such that each child
node receives a label weakly greater than its parent is called a weakly increasing binary trees
on M . According to the work in [11, 10], the multiset Schett polynomials SMpx, yq, which
extends the Jacobi elliptic function from sets to multisets, can be interpreted as

SMpx, yq “
ÿ

TPBM

xolcpT qyorcpT q,

where BM is the set of weakly increasing binary trees onM and olcpT q (resp., orcpT q) denotes
the number of left (resp., right) chains of T with odd orders. Note that weakly increasing
binary trees on rns are exactly increasing binary trees on rns, while weakly increasing trees
on t1nu are in obvious bijection with Bn. For convenience, we write SMpx, yq as Snpx, yq
(resp., Cnpx, yq) when M “ rns (resp., M “ t1nu). Then, Snpx, yq are the classical Schett
polynomials (see [14, 3, 11]) that specialize to the Jacobi elliptic function snpu, αq. The first
combinatorial interpretation of Snpx, yq, which is in terms of plpko, lpkeq on permutations,
was found by Dumont [3]. The bivariate extension of Catalan numbers Cnpx, yq will be
named the Catalan–Schett polynomials. The first few values of Cnpx, yq are:

C1px, yq “ xy, C2px, yq “ x2
` y2, C3px, yq “ x3y ` xy3

` 3xy,
C4px, yq “ x4

` 8y2x2
` y4

` 2x2
` 2y2,

C5px, yq “ x5y ` 5x3y3
` xy5

` 15x3y ` 15xy3
` 5xy

C6px, yq “ x6
` 27x4y2

` 27y4x2
` y6

` 8x4
` 54y2x2

` 8y4
` 3x2

` 3y2.

As
X pT q “ n´ olcpT q

2 and YpT q “ n´ orcpT q
2

for any T P Bn, we have
Cnpx, yq “

ÿ

TPBn

xn´2X pT qyn´2YpT q.

Our first main result provides a new interpretation of Cnpx, yq in terms of stack-sortable
permutations.

Theorem 1.3. There is a bijection Υ : π ÞÑ T between Snp231q and Bn such that

(1.4) pDRpπq,ARpπ´1
qq “ pLCpT q,RCpT qq.

Consequently,

(1.5)
ÿ

πPSnp231q
xmndpπqymnapπ´1q

“
ÿ

TPBn

xX pT qyYpT q

and there follows the permutation interpretation for the Catalan–Schett polynomials

Cnpx, yq “
ÿ

πPSnp231q
xodrpπqyoarpπ´1q.
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Figure 2. A plane tree with four marked nodes (in magenta).

Combining Υ with several known bijections, we can prove another interpretation of the
Catalan–Schett polynomials in terms of 321-avoiding permutations, with the role of descents
replaced by excedances.

There is another interpretation of the number (1.3) in terms of plane trees found by
Callan [2]. Recall that a plane tree is a rooted tree in which the children of each node are
linearly ordered. An internal node (other than the root) in a plane tree is marked if it has
a leaf as its child. See Fig. 2 for a plane tree with four marked nodes. Let Tn be the set of
plane trees with n edges and let markpT q be the number of marked nodes in a tree T P Tn.
Callan [2] proved that the number (1.3) counts plane trees T P Tn with markpT q “ k. In
order to provide the second proof of Theorem 1.1 (ii), Zhang and Kitaev [8] constructed
a recursive bijection, involving five different cases, between tT P Tn : markpT q “ ku and
tπ P Snp231q : mndpπq “ ku. Here we provide a case-free recursive bijection which requires
extra decompositions of plane trees.
Theorem 1.4. There is a bijection ϑ : Tn Ñ Snp231q such that markpT q “ mndpϑpT qq for
any T P Tn.

Various bijections and equidistributions between Snp231q and Snp321q have already been
investigated in the literature; see Kitaev’s monograph [7, Chap. 4] for a survey. Inspired
by Dumont’s permutation interpretation for the Schett polynomials, we find the following
unexpected equidistribution.
Theorem 1.5. There is a bijection Ψ : Snp321q Ñ Snp231q preserving the set-valued statis-
tic “LPK”. Consequently,
(1.6)

ÿ

πPSnp321q
xlpkepπqylpkopπq “

ÿ

πPSnp231q
xlpkepπqylpkopπq.

Note that LPKpπq “ DESpπq for any π P Snp321q. Using the bijection Ψ and a bijection of
Krattenthaler [9] between 321-avoiding permutations and Dyck paths, we prove the following
two refinements of Barnabei et al.’s generating function formula (1.1).
Theorem 1.6. Let
Gpt, x, yq “

ÿ

ně1
tn

ÿ

πPSnp321q
xoarpπqyearpπq and Mpt, x, yq “

ÿ

ně1
tn

ÿ

πPSnp321q
xlpkepπqylpkopπq.

Then both generating functions G and M are algebraic.
(i) G satisfies an algebraic equation of degree 4. In particular, if we set A “ Gpt, x, 1q,

then A satisfies
pt5 ` 4t4x` 4t3qA4

“p8t3x2
` 8t2x´ 4t5 ´ 14t4x´ 16t3qA3

´ p6t5 ` 2t4x3

` 18t4x` 22t3 ` 5t2x3
` 5tx2

´ 13t3x2
´ 17t2x´ tqA2
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´ p4t5 ` 4t4x3
` 10t4x` 12t3 ` 3tx2

` x´ 2t3x4
´ 2t3x2

´ 8t2x´ tx4
´ 2t´ x3

qA´ pt5 ` 2t4x3
` 2t4x` t3x6

` 3t3x2
` 2t3 ` 2t2x5

` t2x` tx4
´ 2t3x4

´ 3t2x3
´ tx2

q,

which solves Problem 1.2 in view of (1.2).
(ii) M satisfies an algebraic equation of degree 6.
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