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SUBSEQUENCE FREQUENCY IN BINARY WORDS

KRISHNA MENON

Abstract The numbers we study are of the form Bn,p(k), which is the number of binary
words of length n that contain the word p (as a subsequence) exactly k times. Our
motivation comes from the analogous study of pattern containment in permutations,
especially [1]. In our first set of results, we obtain explicit expressions for Bn,p(k) for small
values of k. We then focus on words p with at most 3 runs and study the maximum number
of occurrences of p that a word of length n can have. We also study the internal zeros
in the sequence (Bn,p(k))k≥0 for fixed n and discuss the unimodality and log-concavity of
such sequences. This is based on joint work with Anurag Singh [2].

Preliminaries. A binary word is a finite sequence w = w1w2 · · ·wn where wi ∈ {0, 1} for
all i ∈ [n]. Here n is called the length of w. An occurrence of a binary word p = p1p2 · · · pl
in a binary word w = w1w2 · · ·wn is a subsequence of w that matches p, i.e., a choice of
indices 1 ≤ i1 < i2 < · · · < il ≤ n such that wi1wi2 · · ·wil = p. In this context, we usually
call p a pattern. Analogous to the notation of [1], we denote the number of occurrences
of the pattern p in w by cp(w). For example, c10(10010) = 4.

For any binary word p and n, k ≥ 0, we define Bn,p(k) to be the number of binary words
of length n that have exactly k occurrences of the pattern p. That is,

Bn,p(k) = #{w ∈ {0, 1}n | cp(w) = k}.

Just as for permutation patterns, we say that two patterns are trivially equivalent if
one can be obtained from the other using reversal and complementation operations. For
example, the words 100, 001, 011, and 110 are all trivially equivalent One can check that
if p and q are trivially equivalent, then Bn,p(k) = Bn,q(k) for all n, k ≥ 0.

For use in the sequel, we also recall the following definitions. A sequence of non-negative
integers (ak)mk=0 is said to have an internal zero if there exist 0 ≤ k1 < k2 < k3 ≤ m such
that ak1 , ak3 6= 0 but ak2 = 0. The sequence is said to be unimodal if there exists an
i ∈ [0,m] such that a0 ≤ a1 ≤ · · · ≤ ai ≥ ai+1 ≥ · · · ≥ am. The sequence is said to be
log-concave if a2i ≥ ai−1ai+1 for all i ∈ [m− 1].
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Few occurrences of a pattern. A run in a binary word is a maximal subsequence of
consecutive terms that are equal. For instance, the word 11100001 = 130411 has three
runs, which are of sizes 3, 4, and 1 respectively.

Let p be a binary word of length l that has r runs, ri of which are of size i for each
i ≥ 1. We have the following expressions for Bn,p(k) for small values of k.

Proposition 1. For any n ≥ 0, we have the following.

• Bn,p(0) =
l−1∑
j=0

(
n

j

)
.

• Bn,p(1) =

(
n− r + 1

l − r + 1

)
.

• Bn,p(2) = r1

(
n− r

l − r + 1

)
if l ≥ 2, and Bn,p(2) =

(
n

2

)
if l = 1.

We obtain the results for k ≥ 1 by considering the spaces between the letters of the
pattern p as slots and studying how inserting letters into these slots affects the number of
occurrences of p. Similar ideas can be used to obtain expressions for Bn,p(3) and Bn,p(4)
as well [2].

For example, if p = 100011 then all words w such that cp(w) = 1 can be obtained by
adding appropriate letters in the slot diagram below.

0

1 0
1

0
1

0 1
0

1
0

Here the letters under the slots represent what types of letters can be inserted in them.
For example, inserting appropriate letters, we get the word 00100101001 that contains
exactly one occurrence of p (which has been highlighted).

We also note the following result which is easy to verify by studying how many occur-
rences of p there are in a word obtained by adding a letter to p.

Lemma 2. For any k ≥ 2, we have Bl+1,p(k) = rk−1.

Definition 3. We say that two patterns p, q are strong Wilf-equivalent if Bn,p(k) = Bn,q(k)
for all n, k ≥ 0.

Clearly, strong Wilf-equivalent patterns must have the same length. A consequence
of Lemma 2 is that two strong Wilf-equivalent patterns must have the same number of
runs of each size. We have already noted that trivially equivalent patterns are strong
Wilf-equivalent. Computations suggest that these are the only strong-Wilf equivalences.

Conjecture 4. The patterns p and q are strong Wilf-equivalent if and only if they are
trivially equivalent.

We have verified the above conjecture for patterns of length up to 13 using Sage [3].

Maximum occurrences and internal zeroes. Given n ≥ 0 and a pattern p, we set
Mn,p to be maximum possible number of occurrences of p in a binary word of length n.
Hence,

Mn,p = max{cp(w) | w ∈ {0, 1}n} = max{k | Bn,p(k) 6= 0}.
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A binary word w of length n is said to be p-optimal if cp(w) = Mn,p. We have the
following result for patterns that have at most 3 runs. Note that any such pattern is
trivially equivalent to a pattern of the form mentioned below.

Theorem 5. Let p = 1i0j1k for some i, k ≥ 0 and j ≥ 1.

• For any n ≥ 0, there exists a p-optimal word of length n that has the same number
of runs as p. Hence, we have

Mn,p = max

{(
a

i

)(
b

j

)(
c

k

)
| a + b + c = n

}
.

• The sequence (Mn,p)n≥0 is log-concave.
• If 1a0b1c is p-optimal, so is at least one word in {1a+10b1c, 1a0b+11c, 1a0b1c+1}.

The key points behind the proof of the above theorem are that 0s play a special role
when finding occurrences of p and that the binomial coefficients are log-concave.

Definition 6. A binary word p is said to have an internal zero at n if the sequence
(Bn,p(k))k≥0 has an internal zero.

For example, Lemma 2 shows that if p is of length l with maximum run size i, then p
does not have an internal zero at l + 1 if and only if p has a run of size j for all j ∈ [i].
We have the following result for patterns with at most 3 runs, where we say that a binary
word is alternating if all its runs are of size 1.

Theorem 7. Let p be a binary word of length l with at most 3 runs.

• If p is alternating, then p does not have an internal zero at any n ≥ 7.
• If p is not alternating, then p has an internal zero at all n ≥ l + 3. In fact, we
have Bn,p(Mn,p − 1) = 0.

Since sequences that have internal zeroes cannot be unimodal, when p has at most 3
runs, the sequence (Bn,p(k))k≥0 can be unimodal only if p is alternating. If p = 0 or 1,
this sequence is just (

(
n
k

)
)k≥0 which is not only unimodal, but log-concave. However, if p

is an alternating pattern of length 2 or 3, using Proposition 1 we have Bn,p(0) > Bn,p(1) <
Bn,p(2) for n ≥ 4 and hence the sequence (Bn,p(k))k≥0 is not unimodal.
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