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This talk is based on my paper [2].

Abstract Borcherds-Kac-Moody Lie superalgebras (referred to as BKM superalgebras)
represent a natural extension encompassing two important classes of Lie algebras: Borcherds
algebras (Generalized Kac-Moody algebras) and Kac-Moody Lie superalgebras. These al-
gebras have found widespread applications in the realm of mathematical physics. Notably,
physicists have harnessed the power of BKM superalgebras to describe various phenom-
ena, including supersymmetry, chiral supergravity, and Gauge theory etc. In essence, our
exploration revolves around the interplay between combinatorial structures and BKM su-
peralgebras, seeking to unveil the unique properties and relationships that free roots hold
within this mathematical framework.

Consider a Borcherds-Kac-Moody Lie superalgebra, denoted as g, associated with the
graph G. This Lie superalgebra is constructed from a free Lie superalgebra by introducing
three sets of relations on its generators:

(1) Chevalley relations,
(2) Serre relations, and
(3) the commutation relations derived from the graph G.

The Chevalley relations lead to a triangular decomposition of g as g = n+⊕h⊕n−, where
each root space gα is contained in either n+ or n−. Importantly, each gα is determined
solely by relations (2) and (3). We focus on the root spaces of g that are unaffected by
the Serre relations. We refer to these root spaces as ”free roots” of g 1. Since these root
spaces only involve commutation relations derived from the graph G, we can examine
them purely from a combinatorial perspective.

The graph G associated to BKM Lie superalgebra g has vertex set V and edge set E.
Graph polynomials serve as crucial graph invariants, providing valuable insights into the
properties of associated graphs. Among these, chromatic polynomials hold a prominent
position. They were first introduced by Birkhoff in his pursuit of solving the four-color
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conjecture, a famous problem in graph theory. Building on this foundation, previous
work ([3, Propositions 1 and 2]) established a link between the characters of integrable
representations of Kac-Moody Lie algebras and the coefficients of chromatic polynomials
for the corresponding Dynkin diagrams. This connection between algebraic structures
and graph theory was further extended in a subsequent study ([4]), wherein the chromatic
polynomial of a graph G was expressed in terms of root multiplicities of the associated Kac-
Moody Lie algebra. Expanding on these findings, another study ([1]) took this connection
to new heights, extending it to Borcherds algebras and the broader class of generalized
k-chromatic polynomials. This research also had applications, involving the construction
of bases for specific root spaces, referred to as ”free root spaces”.

Our results build upon these foundations by extending the connection between root
multiplicities in Borcherds algebras and the chromatic polynomial of the associated quasi-
Dynkin diagram. However, this extension goes beyond traditional Lie algebras, encom-
passing Borcherds-Kac-Moody Lie superalgebras. The goal is to explore the implications
and applications of this extended connection in combinatorics.

In summary, our results advances the understanding of algebraic structures and their
relationships with graph theory. By extending established connections to Borcherds-Kac-
Moody Lie superalgebras, it aims to uncover new insights and applications in combina-
torics.

The following theorem gives connection between k Chromatic polynomial of graph G
and root multiplicities, mult β(J), of free roots. This is our main result whose notations
are described after theorem in detail.

Theorem 1. Let G be the quasi Dynkin diagram of a BKM superalgebra g. Assume that
k = (ki : i ∈ I) ∈ ZI+ such that ki ≤ 1 for i ∈ Ire tΨ0. Then

πGk (q) = (−1)ht(η(k))
∑

J∈LG(k)

(−1)|J|+|J1|
∏
J∈J0

(
q mult(β(J))

D(J,J)

) ∏
J∈J1

(
−q mult(β(J))

D(J,J)

)
.

where LG(k) is the bond lattice of weight k of the graph G.

The following corollary gives us a recurrence formula for the root multiplicities of free
roots of g.

Corollary 2. Let η(k) =
∑

i∈I kiαi ∈ ∆+ such that ki ≤ 1 for all i ∈ Ire tΨ0. Then

mult(η(k)) =


∑̀
|k

µ(`)
`
|πGk/`(q)[q]|, if η(k) ∈ ∆0

+∑̀
|k

(−1)`+1µ(`)
`

|πGk/`(q)[q]|, if η(k) ∈ ∆1
+

where |πGk (q)[q]| denotes the absolute value of the coefficient of q in πGk (q) and µ is the
Mobius function. If ki’s are relatively prime (in particular if for some i ∈ I, ki = 1), we
have,

mult(η(k)) = |πGk (q)[q]| for any η(k) ∈ ∆+.

�

We now describe our results in detail.
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A Lie superalgebra is a Z2 graded algebra g = g0 ⊕ g1 with Lie bracket satisfying

• [a, b] = ab− (−1)āb̄ba (super commutativity).

• [a, [b, c]] = [[a, b], c] + (−1)āb̄[[a, c], b] (super-Jacobi identity).

for all homogeneous elements a, b ∈ g, where x̄ denotes the degree of homogeneous element
x.

Borcherds Kac-Moody(BKM) super matrix is a generalization of Generalized
Cartan Matrix (GCM). Fix a subset Ψ ⊂ I, a complex matrix (aij)i,j∈I together with the
choice of Ψ is said to be a BKM-supermatrix if the following are satisfied:

(B1) aii = 2 or aii ≤ 0.
(B2) aij ≤ 0 if i 6= j.
(B3) aij = 0 if and only if aji = 0
(B4) aij ∈ Z if aii = 2.
(B5) aij ∈ 2Z if aii = 2 and i ∈ Ψ.

We are interested only in symmetrizable BKM Lie superalgebras.

An index i ∈ I is said to be real if aii = 2 and imaginary if aii ≤ 0. Denote by
Ire = {i ∈ I : aii = 2}, Ψre = Ψ ∩ Ire, and Ψ0 = {i ∈ Ψ : aii = 0}.

The Borcherds-Kac-Moody Lie superalgebra (BKM superalgebra in short) as-
sociated with a BKM supermatrix (A,Ψ) is the Lie superalgebra g(A,Ψ) generated by
ei, fi, hi, i ∈ I with the following defining relations:

(i) [hi, hj] = 0 for i, j ∈ I,
(ii) [hi, ej] = aijej, [hi, fj] = −aijfj for i, j ∈ I,

(iii) [ei, fj] = δijhi for i, j ∈ I,
(iv) deg hi = 0, i ∈ I,
(v) deg ei = 0 = deg fi if i /∈ Ψ, deg ei = 1 = deg fi if i ∈ Ψ,

(vi) (ad ei)
1−aijej = 0 = (ad fi)

1−aijfj if i ∈ Ire and i 6= j,

(vii) (ad ei)
1−

aij
2 ej = 0 = (ad fi)

1−
aij
2 fj if i ∈ Ψre and i 6= j,

(viii) (ad ei)
1−

aij
2 ej = 0 = (ad fi)

1−
aij
2 fj if i ∈ Ψ0 and i = j,

(ix) [ei, ej] = 0 = [fi, fj] if aij = 0.

The relations (vi), . . ., (viii) are called the Serre relations of g.

The formal root lattice Q is defined to be a free abelian group generated by αi, i ∈ I
with a real valued bilinear form (αi, αj) = aij. These αi, i ∈ I are called the simple roots.
Let ∆ be root system of BKM superalgebra. ∆+ := ∆ ∩ Q+ denotes the set of positive

roots. For α =
j∑

k=1

αik ∈ Q, the root space gα (resp. g−α) is generated by the elements

[eij , [· · · [ei2 , ei1 ]]] (resp. [fij , [· · · [fi2 , fi1 ]]] ). If gα 6= 0 then the element α ∈ Q is said to
be a root of g. Such a root α is said to be an odd root if the number of ik, 1 ≤ k ≤ j
coming from I1 is odd otherwise it is an even root, denoted as ∆1 and ∆0 respectively.
So, a root space gα is either contained in the even part g0̄ or odd part g1̄ of the BKM
superalgebra g. The dimension of root space gα is called the multiplicity of root α. All
root spaces are finite dimensional. Observe that dim gαi

= 1 = dim g−αi
, i ∈ I.
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Let G be a countable (possibly infinite) simple graph with vertex set V = {αi : i ∈ I}.
For a subset Ψ ⊆ I, the pair (G,Ψ) is called a supergraph. The vertices parameterized
by Ψ (resp. I\Ψ) are called odd (resp. even) vertices of G. If A is the classical adjacency
matrix of the graph G then the pair (A,Ψ) is called the adjacency matrix of the supergraph
(G,Ψ).

An element α =
∑
i∈I
kiαi ∈ Q+, where ki ≤ 1 for i ∈ Ire t Ψ0, is called a free root.

We define supp (α) = {j : kj 6= 0}. A root α ∈ ∆ is called real if and only if (α, α) > 0
otherwise we call it an imaginary root. The set of real roots is denoted by ∆re and
imaginary roots by ∆im = ∆ \∆re.

Denominator identity of BKM superalgebras. Let Ω be the set of all γ ∈ Q+ such
that

(1) γ =
∑r

j=1 αij +
∑s

k=1 likβik where the αij (resp. βik) are distinct even (resp. odd)
imaginary simple roots,

(2) (αij , αik) = (βij , βik) = 0 for j 6= k; (αij , βik) = 0 for all j, k;
(3) if lik ≥ 2, then (βik , βik) = 0.

The following denominator identity of BKM superalgebras is proved in [5, Section 2.6]:

U :=
∑
w∈W

∑
γ∈Ω

ε(w)ε(γ)ew(ρ−γ)−ρ =

∏
α∈∆0

+
(1− e−α)mult(α)∏

α∈∆1
+

(1 + e−α)mult(α)
(0.1)

where mult(α) = dim gα, ε(w) = (−1)l(w) and ε(γ) = (−1)ht γ.

Notations:

• For w ∈ W , fix a reduced word w = si1 · · · sik and let I(w) = {αi1 , . . . , αik}.
• For γ =

∑
i∈I
miαi ∈ Ω, we set Im(γ) is the multiset {αi, . . . , αi︸ ︷︷ ︸

mi times

: i ∈ I} and I(γ) is

the underlying set of Im(γ).
• Ψ0(γ) := I(γ)∩Ψ0 and J (γ) := {w ∈ W\{e} : I(w)∪I(γ) is an independent set}.

Multicoloring and the k-chromatic polynomial of G. For any finite set S, let P(S)
be the power set of S. For a tuple of non–negative integers k = (ki : i ∈ I), we have
supp(k) = {i ∈ I : ki 6= 0}.
Definition 3. Let G be a graph with vertex set I and the edge set E(G). Let k ∈ ZI+.
We call a map τ : I → P

(
{1, . . . , q}

)
a proper vertex k-multicoloring of G if the following

conditions are satisfied:

(i) For all i ∈ I we have |τ(i)| = ki,
(ii) For all i, j ∈ I such that (i, j) ∈ E(G) we have τ(i) ∩ τ(j) = ∅.

The case ki = 1 for i ∈ I corresponds to the classical graph coloring of graph G.

Definition 4. The number of ways a graph G can be k–multicolored using q colors is a
polynomial in q, called the generalized k-chromatic polynomial (k-chromatic polynomial
in short) and denoted by πGk (q). The k-chromatic polynomial has the following well–
known description. We denote by Pk(k, G) the set of all ordered k–tuples (P1, . . . , Pk)
such that:
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(1) each Pi is a non–empty independent subset of I, i.e. no two vertices have an edge
between them; and

(2) For all i ∈ I, αi occurs exactly ki times in total in the disjoint union P1∪̇ · · · ∪̇Pk.
Then we have

πGk (q) =
∑
k≥0

|Pk(k, G)|
(
q

k

)
. (0.2)

We have the following relation between the ordinary chromatic polynomials and the
k-chromatic polynomials. We have

πGk (q) =
1

k!
π
G(k)
1 (q) (0.3)

where π
G(k)
1 (q) is the chromatic polynomial of the graph G(k) and k! =

∏
i∈I ki!. The

graph G(k) (the join of G with respect to k) is constructed as follows: For each j ∈
supp(k), take a clique (complete graph) of size kj with vertex set {j1, . . . , jkj} and join
all vertices of the r–th and s–th cliques if (r, s) ∈ E(G).

For the rest of this paper, we fix an element k ∈ ZI+ satisfying ki ≤ 1 for i ∈ Ire t Ψ0,
where Ψ0 is the set of odd roots of zero norm.

Bond lattice and an isomorphism of lattices.

Definition 5. Let LG(k) be the weighted bond lattice of G, which is the set of J =
{J1, . . . , Jk} satisfying the following properties:

(i) J is a multiset, i.e. we allow Ji = Jj for i 6= j
(ii) each Ji is a multiset and the subgraph spanned by the underlying set of Ji is a

connected subgraph of G for each 1 ≤ i ≤ k and
(iii) For all i ∈ I, αi occurs exactly ki times in total in the disjoint union J1∪̇ · · · ∪̇Jk.
For J ∈ LG(k) we denote by D(Ji,J) the multiplicity of Ji in J and set mult(β(Ji)) =

dim gβ(Ji), where β(Ji) =
∑

α∈Ji α. We define J0 = {Ji ∈ J : β(Ji) ∈ ∆0
+} and J1 = J\J0.

Lemma 6. [5, Proposition 2.40] Let i ∈ I im and α ∈ ∆+\{αi} such that α(hi) < 0. Then
α + jαi ∈ ∆+ for all j ∈ Z+.

Lemma 7. [1, Lemma 3.4] Let P be the collection of multisets γ = {β1, . . . , βr} (we
allow βi = βj for i 6= j) such that each βi ∈ ∆+ and β1 + · · · + βr = η(k). The map
ψ : LG(k)→ P defined by {J1, . . . , Jk} 7→ {β(J1), . . . , β(Jk)} is a bijection.

The following lemma is a generalization of [4, Lemma 2.3] (for Kac-Moody Lie algebras)
and [1, Lemma 3.6] (for Borcherds algebras) to the setting of BKM superalgebras. Since
the proof of this lemma is similar to the proof of the Borcherds algebras case, we omit
the proof here. Recall that k = (ki : i ∈ I) satisfies ki ≤ 1 for i ∈ Ire tΨ0.

Lemma 8. Let w ∈ W and γ =
∑

i∈I\Ψ0

αi +
∑
i∈Ψ0

miαi ∈ Ω. We write ρ − w(ρ) + w(γ) =∑
α∈Π bα(w, γ)α. Then we have

(i) bα(w, γ) ∈ Z+ for all α ∈ Π and bα(w, γ) = 0 if α /∈ I(w) ∪ I(γ).
(ii) bα(w, γ) ≥ 1 for all α ∈ I(w).

(iii) bα(w, γ) = 1 if α ∈ I(γ)\Ψ0(γ) and bα(w, γ) = mα if α ∈ Ψ0(γ).
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(iv) If w ∈ J (γ), then bα(w, γ) = 1 for all α ∈ I(w) ∪ (I(γ)\Ψ0(γ)), bα(w, γ) = mα

for all α ∈ Ψ0(γ).
(v) If w /∈ J (γ) ∪ {e}, then there exists α ∈ I(w) ⊆ Πre such that bα(w, γ) > 1.

The following proposition is an easy consequence of the above lemma and essential to
prove Theorem 1. Let U be the sum-side of the denominator identity (Equation (0.1)).

Proposition 9. Let q ∈ Z. We have

U q[e−η(k)] = (−1)ht(η(k)) πGk (q),

where U q[e−η(k)] denotes the coefficient of e−η(k) in U q.

Proof of Theorem 1 and Corollary 2

Proof of Theorem 1. Now, we can prove Theorem 1 using the product side of the
denominator identity (0.1). Proposition 9 and Equation (0.1) together imply that the
k-chromatic polynomial πGk (q) is given by the coefficient of e−η(k) in

(−1)ht(η(k))

∏
α∈∆0

+
(1− e−α)qmult(α)∏

α∈∆1
+

(1 + e−α)qmult(α)
= (−1)ht(η(k))

∏
α∈∆+

(1− ε(α)e−α)ε(α)qmult(α). (0.4)

where ε(α) = 1 if α ∈ ∆0
+ and − 1 if α ∈ ∆1

+. Now,∏
α∈∆+

(1− ε(α)e−α)ε(α)qmult(α) =
∏
α∈∆+

(∑
k≥0

(−ε(α))k
(
ε(α)qmultα

k

)
e−kα

)
.

A direct calculation of the coefficient of e−η(k) in the right-hand side of the above equation
completes the proof of Theorem 1. �

We consider the algebra of formal power series A := C[[Xi : i ∈ I]]. For a formal power

series ζ ∈ A with constant term 1, its logarithm log(ζ) = −
∑

k≥1
(1−ζ)k
k

is well–defined.

Proof of Corollary 2: (Formula for multiplicities of free roots) We consider
U as an element of C[[e−αi : i ∈ I]] where Xi = e−αi [c.f. Lemma 8]. From the proof of
Proposition 9 we obtain that the coefficient of e−η(k) in −log U is equal to

(−1)ht(η(k))
∑
k≥1

(−1)k

k
|Pk(k, G)|

which by Equation (0.2) is equal to |πGk (q)[q]|. Now applying −log to the right hand side
of the denominator identity (0.1) gives

|πGk (q)[q]| =


∑

`∈N
`|k

1
`

mult
(
η (k/`)

)
, if β(k) ∈ ∆+

0∑
`∈N
`|k

(−1)l+1

`
mult

(
η (k/`)

)
, if β(k) ∈ ∆+

1

The statement of the corollary is now an easy consequence of the following Mobius
inversion formula: g(d) =

∑
d|n f(d) ⇐⇒ f(n) =

∑
d|n µ(n

d
)g(d) where µ is the Mobius

function. �



GENERALIZED k CHROMATIC POLYNOMIALS AND MULTIPLICITIES OF FREE ROOT SPACES 7

Example 10. Let I = {1, 2, 3, 4, 5, 6},Ψ = {3, 5}. Consider the BKM supermatrix

A =


2 −1 0 0 0 0
−1 −3 −4 −1 0 0
0 −4 −4 0 0 −1
0 −1 0 2 −1 0
0 0 0 −1 −2 0
0 0 −1 0 0 −3

 .
The quasi-Dynkin diagram G of L is as follows:

α1 α2

α3

α4

α6

α5

Let α = 3α3 + 3α6 ∈ ∆1
+, i.e. k = (0, 0, 3, 0, 0, 3) then πGk (q) =

(
q
3

)(
q−3

3

)
.

The k-chromatic polynomial of the quasi Dynkin diagram G of g is equal to

πGk (q) =

(
q

3

)(
q − 3

3

)
=

1

3!3!
q(q − 1)(q − 2)(q − 3)(q − 4)(q − 5).

By Corollary 2, since η(k) is odd,

mult(η(k)) =
∑
`|k

(−1)l+1µ(`)

`
|πGk/`(q)[q]|

= |πGk (q)[q]|+ µ(3)

3
|πGk′(q)[q]| where k′ = (0, 0, 1, 0, 0, 1)

=
10

3
− 1

3
= 3
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