Sequentially constrained Hamilton Cycles in random graphs

Alan Frieze Wesley Pegden Carnegie Mellon University

4 ロ) (何) (日) (日)

E

 290

Choosing a graph at random

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ⊁

高山 2990 Choosing a graph at random

 $G_{n,p}$: Each edge *e* of the complete graph K_p is included independently with probability $p = p(n)$.

 $\mathsf{Whp}\; G_{n,p}$ has $\sim \binom{n}{2}$ $\binom{n}{2}$ *p* edges, provided $\binom{n}{2}$ $\binom{n}{2}$ *p* $\rightarrow \infty$

 $p = 1/2$, each subgraph of K_n is equally likely.

KOD KAP KED KED E YA G

Choosing a graph at random

Gn,*p*: Each edge *e* of the complete graph *Kⁿ* is included independently with probability $p = p(n)$.

 $\mathsf{Whp}\; G_{n,p}$ has $\sim \binom{n}{2}$ $\binom{n}{2}$ *p* edges, provided $\binom{n}{2}$ $\binom{n}{2}$ *p* $\rightarrow \infty$

 $p = 1/2$, each subgraph of K_n is equally likely.

Gn,*m*: Vertex set [*n*] and *m* random edges.

If $m \sim \binom{n}{2}$ $\frac{n}{2}$) p then $G_{n,p}$ and $G_{n,m}$ have "similar" properties.

KOD KAP KED KED E YA G

Random graphs first used to prove existence of graphs with certain properties:

重し 2990

イロメ イ押 メイヨメ イヨメ

Random graphs first used to prove existence of graphs with certain properties:

Erdős (1947): **Whp** the maximum size of a clique or independent set in $G_{n,1/2}$ is $\leq 2\log_2 n$.

Therefore

 $R(k, k) \geq 2^{k/2}$.

I.e. it is possible to color the edges of the complete graph on 2 *^k*/² vertices so that there is no mono-chromatic clique of size *k*.

イロト イ押 トイヨ トイヨ トー

ミー 200

Random graphs first used to prove existence of graphs with certain properties:

Mantel (1907): There exist triangle free graphs with arbitrarily large chromatic number.

Erdős (1959): There exist graphs of arbitrarily large girth and chromatic number.

 $m = cn$, $c > 0$ is a large constant. Whp G_{nm} has $o(n)$ vertices on cycles of length $\leq \log \log n$ and no independent set of size more than $\frac{2 \log c}{c} n$.

So removing the vertices on small cycles gives us a graph with girth \geq log log *n* and chromatic number $\geq \frac{c+o(1)}{2\log c}$ *2* log *c* ·

KOD KAP KED KED E LORO

Erdős and Rényi began the study of random graphs in their own right.

On Random Graphs I (1959): *m* = 1 $\frac{1}{2}n(\log n + c_n)$

$$
\lim_{n \to \infty} \Pr(G_{n,m} \text{ is connected}) = \begin{cases} 0 & c_n \to -\infty \\ e^{-e^{-c}} & c_n \to c \\ 1 & c_n \to +\infty \end{cases}
$$

$$
= \lim_{n \to \infty} \Pr(\delta(G_{n,m}) \ge 1)
$$

The evolution of a random graph, Erdős and Rényi (1960)

- *m* Structure of *Gn*,*^m* **whp**
- *o*(*n* 1/2) Isolated edges and vertices

イロト イ団ト イヨト イヨト

 \equiv 990

The evolution of a random graph, Erdős and Rényi (1960)

- *m* Structure of *Gn*,*^m* **whp**
- *o*(*n* 1/2) Isolated edges and vertices
- *n* 1/2 Isolated edges and vertices and paths of length 2

イロト イ伊 トイヨ トイヨ トー

 \equiv 990

The evolution of a random graph, Erdős and Rényi (1960)

- *m* Structure of *Gn*,*^m* **whp**
- $o(n^{1/2})$ Isolated edges and vertices
- *n* 1/2 log *n* Isolated edges and vertices and paths of length 2

n^{k-1}/_k log *n* Components are trees of vertex size 1, 2, . . . , *k*.

KOD KAP KED KED E YA G

m Structure of *Gn*,*^m* **whp**

1 2 **Mainly trees. Some unicyclic components. Maximum** *c* < 1 component size *O*(log *n*)

1 2 *n* Complicated. Maximum component size order $n^{2/3}$. Has subsequently been the subject of moreintensive study e.g. Janson, Knuth, Łuczak and Pittel (1993).

1 2 *cn* Unique giant component of size *G*(*c*)n. Remainder \bar{c} > 1 almost all trees. Second largest component of size *O*(log *n*)

4 ロ) (何) (日) (日)

 QQ

m Structure of *Gn*,*^m* **whp**

1 2 **Mainly trees. Some unicyclic components. Maximum** *c* < 1 component size *O*(log *n*)

1 2 *n* Complicated. Maximum component size order $n^{2/3}$. Has subsequently been the subject of moreintensive study e.g. Janson, Knuth, Łuczak and Pittel (1993).

1 2 *cn* Unique giant component of size *G*(*c*)n. Remainder \bar{c} > 1 almost all trees. Second largest component of size *O*(log *n*)

 290 Only very simple probabilistic tools neede[d.](#page-11-0) [Ma](#page-13-0)[i](#page-10-0)[n](#page-11-0)[ly](#page-12-0) [fir](#page-0-0)[st](#page-51-0) [an](#page-0-0)[d](#page-51-0) Alan Frieze, Carnegie Mellon University

Connectivity threshold $p = (1 + \epsilon) \frac{\log n}{n}$ *n*

 X_k = number of *k*-components, $1 \leq k \leq n/2$. $X = X_1 + X_2 + \cdots + X_{n/2}$ $G_{n,p}$ is connected iff $X = 0$.

イロメ 不優 トメ ヨ メ ス ヨ メー

 2990

÷.

Connectivity threshold $p = (1 + \epsilon) \frac{\log n}{n}$ *n*

 X_k = number of *k*-components, $1 \leq k \leq n/2$. $X = X_1 + X_2 + \cdots + X_{n/2}$ $G_{n,p}$ is connected iff $X = 0$.

$$
Pr(X \neq 0) \leq E(X)
$$

\n
$$
\leq \sum_{k=1}^{n/2} {n \choose k} k^{k-2} p^{k-1} (1-p)^{k(n-k)}
$$

\n
$$
\leq \frac{n}{\log n} \sum_{k=1}^{n/2} \left(\frac{e \log n}{n^{(1+\epsilon)(1-k/n)}} \right)^k
$$

\n
$$
\to 0.
$$

ă

 $2Q$

Hitting Time: Consider $G_0, G_1, \ldots, G_m, \ldots$, where G_{i+1} is G_i plus a random edge. Let m_k denote the minimum *m* for which $\delta(G_m) > k$.

イロメ イ押メ イヨメ イヨメー

重し $2Q$

Hitting Time: Consider $G_0, G_1, \ldots, G_m, \ldots$, where G_{i+1} is G_i plus a random edge. Let m_k denote the minimum *m* for which $\delta(G_m) > k$.

Whp *m*¹ is the "time" when *G^m* first becomes connected.

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

ミー $2Q$

Hitting Time: Consider $G_0, G_1, \ldots, G_m, \ldots$, where G_{i+1} is G_i plus a random edge. Let m_k denote the minimum *m* for which $\delta(G_m) \geq k$.

- **Whp** *m*¹ is the "time" when *G^m* first becomes connected.
- **Whp** *m*¹ is the "time" when *G^m* first has a perfect matching. Erdős and Rényi (1966).

イロト イ押 トイヨ トイヨ トー

 \equiv Ω

Hitting Time: Consider $G_0, G_1, \ldots, G_m, \ldots$, where G_{i+1} is G_i plus a random edge. Let m_k denote the minimum *m* for which $\delta(G_m) \geq k$.

- **Whp** *m*¹ is the "time" when *G^m* first becomes connected.
- **Whp** *m*¹ is the "time" when *G^m* first has a perfect matching. Erdős and Rényi (1966).
- **Whp** m_2 is the "time" when G_m first has a Hamilton cycle. Ajtai, Komlós and Szemerédi (1985), Bollobás (1984).

メロトメ 御 トメ 差 トメ 差 トー

ミー $2Q$

Hitting Time: Consider $G_0, G_1, \ldots, G_m, \ldots$, where G_{i+1} is G_i plus a random edge. Let m_k denote the minimum *m* for which $\delta(G_m) \geq k$.

- **Whp** *m*¹ is the "time" when *G^m* first becomes connected.
- **Whp** *m*¹ is the "time" when *G^m* first has a perfect matching. Erdős and Rényi (1966).
- **Whp** m_2 is the "time" when G_m first has a Hamilton cycle. Ajtai, Komlós and Szemerédi (1985), Bollobás (1984).
- **Whp** At time *m*² there are (log *n*) *ⁿ*−*o*(*n*) distinct Hamilton cycles. Cooper and Frieze (1989), Glebov an[d K](#page-18-0)[ri](#page-20-0)[v](#page-14-0)[el](#page-15-0)[e](#page-21-0)[v](#page-22-0)[ic](#page-0-0)[h \(](#page-51-0)[20](#page-0-0)[1](#page-51-0)[3\).](#page-0-0)

 290

Hitting Time: Consider $G_0, G_1, \ldots, G_m, \ldots$, where G_{i+1} is G_i plus a random edge. Let m_k denote the minimum *m* for which $\delta(G_m) > k$.

- **Whp** *m*¹ is the "time" when *G^m* first becomes connected.
- **Whp** *m*¹ is the "time" when *G^m* first has a perfect matching. Erdős and Rényi (1966).
- **Whp** m_2 is the "time" when G_m first has a Hamilton cycle. Ajtai, Komlós and Szemerédi (1985), Bollobás (1984).
- **Whp** m_k is the "time" when G_m first has $k/2$ edge disjoint Hamilton cycles. $k = O(1)$ Bollobás and Frieze (1985). イロト イ団ト イヨト イヨト

 $2Q$

Hitting Time: Consider $G_0, G_1, \ldots, G_m, \ldots$, where G_{i+1} is G_i plus a random edge. Let m_k denote the minimum *m* for which $\delta(G_m) > k$.

- **Whp** *m*¹ is the "time" when *G^m* first becomes connected.
- **Whp** *m*¹ is the "time" when *G^m* first has a perfect matching. Erdős and Rényi (1966).
- **Whp** m_2 is the "time" when G_m first has a Hamilton cycle. Ajtai, Komlós and Szemerédi (1985), Bollobás (1984).

• Recently, results of Krivelevich and Samotii and Knox, Kühn and Osthus proved the much more difficult result, **allowing** *k* **to grow up to** $k \sim n/2$ **.**
Alan Frieze, Carnegie Mellon University Hamilton Cycles **K ロ ト K 何 ト K ヨ ト K ヨ ト** Alan Frieze, Carnegie Mellon University

 $2Q$

In the random digraph *Dn*,*^p* we include each possible directed edge (*u*, *v*) ∈ [*n*] ² with probability *p*. For *Dn*,*^m* we choose *m* random directed edges.

イロト イ押 トイヨ トイヨト

重。 $2Q$

In the random digraph *Dn*,*^p* we include each possible directed edge (*u*, *v*) ∈ [*n*] ² with probability *p*. For *Dn*,*^m* we choose *m* random directed edges.

m Structure of *Dn*,*^m* **whp**

1 2 **Strong components are small cycles.**

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

ほい $2Q$

In the random digraph *Dn*,*^p* we include each possible directed edge (*u*, *v*) ∈ [*n*] ² with probability *p*. For *Dn*,*^m* we choose *m* random directed edges.

- *m* Structure of *Dn*,*^m* **whp**
- 1 2 **Strong components are small cycles.**
- 1 2 *cn*, *c* > 1 Unique giant strong component of size $\sim G(c)^2n$ where $G(c)n$ is the size of the giant in $G_{n,p}$ Karp (1990).

イロト イ伊 トイヨ トイヨ トー

重し $2Q$

In the random digraph *Dn*,*^p* we include each possible directed edge (*u*, *v*) ∈ [*n*] ² with probability *p*. For *Dn*,*^m* we choose *m* random directed edges.

- *m* Structure of *Dn*,*^m* **whp**
- 1 2 **Strong components are small cycles.**
- 1 2 *cn*, *c* > 1 Unique giant strong component of size $\sim G(c)^2n$ where $G(c)n$ is the size of the giant in $G_{n,p}$ Karp (1990).

KOD KAP KED KED E YA G

 $n(\log n + \omega)$ Strongly connected.

Pr($D_{n,p}$ is Hamiltonian) \geq **Pr**($G_{n,p}$ is Hamiltonian). McDiarmid (1980). So if $\rho \geq \frac{\log n + \log \log n + \omega}{n}$ $\frac{g \log n + \omega}{n}$ then $D_{n,p}$ is Hamiltonian w.h.p.

イロト イ押 トイヨ トイヨ トー

 $E = \Omega Q$

Pr($D_{n,p}$ is Hamiltonian) \geq **Pr**($G_{n,p}$ is Hamiltonian). McDiarmid (1980). So if $\rho \geq \frac{\log n + \log \log n + \omega}{n}$ $\frac{g \log n + \omega}{n}$ then $D_{n,p}$ is Hamiltonian w.h.p.

If $p \geq \frac{\log n + \omega}{n}$ $\frac{n+\omega}{n}$ then $D_{n,p}$ is Hamiltonian w.h.p. Frieze (1988).

KOD KAP KED KED E YA G

Let e_1, e_2, \ldots, e_N be an enumeration of the edges of the complete graph *Kn*. Each *eⁱ* = {*vⁱ* , *wi*} gives rise to two directed edges $\overrightarrow{e_i} = (v_i, w_i)$ and $\overleftarrow{e_i} = (w_i, v_i)$.

 2990

ミー

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

Let e_1, e_2, \ldots, e_N be an enumeration of the edges of the complete graph *Kn*. Each *eⁱ* = {*vⁱ* , *wi*} gives rise to two directed edges $\overrightarrow{e_i} = (v_i, w_i)$ and $\overleftarrow{e_i} = (w_i, v_i)$.

In the digraph Γ_{*i***} we include** $\overrightarrow{e_j}$ **and** $\overleftarrow{e_j}$ **independently of each** other, with probability p , for $j < i$. While for $j > i$ we include both or neither with probability *p*.

イロト イ押 トイヨ トイヨ トー

÷. QQ

Let e_1, e_2, \ldots, e_N be an enumeration of the edges of the complete graph *Kn*. Each *eⁱ* = {*vⁱ* , *wi*} gives rise to two directed edges $\overrightarrow{e_i} = (v_i, w_i)$ and $\overleftarrow{e_i} = (w_i, v_i)$.

In the digraph Γ_{*i***} we include** $\overrightarrow{e_j}$ **and** $\overleftarrow{e_j}$ **independently of each** other, with probability p , for $j < i$. While for $j > i$ we include both or neither with probability *p*.

Thus Γ_0 is just $G_{n,p}$ with each edge $\{v, w\}$ replaced by a pair of directed edges (v, w) , (w, v) and $\Gamma_N = \mathbb{D}_{n,p}$. McDiarmid's result follows from

Pr(Γ*ⁱ* is Hamiltonian) ≥ **Pr**(Γ*i*−¹ is Hamiltonian).

To prove this we condition on the existence or otherwise of directed edges associated with $e_1, \ldots, e_{i-1}, e_{i+1}, \ldots, e_N$. Let C denote this conditioning. モニー・モン イミン イヨン エミ 299

Either

- (a) $\mathcal C$ gives us a Hamilton cycle without arcs associated with *ei* , or
- (b) not (a) and there exists a Hamilton cycle if at least one of $\overrightarrow{e_i}$, $\overleftarrow{e_i}$ is present, or
- (c) \overrightarrow{B} a Hamilton cycle even if both of $\overrightarrow{e_i}$, $\overleftarrow{e_i}$ are present.

イロメ イ押 メイヨメ イヨメ

÷. QQ

Either

- (a) $\mathcal C$ gives us a Hamilton cycle without arcs associated with *ei* , or
- (b) not (a) and there exists a Hamilton cycle if at least one of $\overrightarrow{e_i}$, $\overleftarrow{e_i}$ is present, or
- (c) \overrightarrow{B} a Hamilton cycle even if both of $\overrightarrow{e_i}$, $\overleftarrow{e_i}$ are present.

(a) and (c) give the same conditional probability of Hamiltonicity in Γ*ⁱ* , Γ*i*−1.

重し

 200

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

Either

- (a) $\mathcal C$ gives us a Hamilton cycle without arcs associated with *ei* , or
- (b) not (a) and there exists a Hamilton cycle if at least one of $\overrightarrow{e_i}$, $\overleftarrow{e_i}$ is present, or
- (c) \overrightarrow{B} a Hamilton cycle even if both of $\overrightarrow{e_i}$, $\overleftarrow{e_i}$ are present.

(a) and (c) give the same conditional probability of Hamiltonicity in Γ*ⁱ* , Γ*i*−1.

In Γ*i*−¹ (b) happens with probability *p*. In Γ*ⁱ* either (i) exactly one of $\overline{e_i}$, $\overline{e_i}$ yields Hamiltonicity and in this case the conditional or e_i , e_j yields Hamiltonicity and in the same sensitivity and in probability is *p* or (ii) either of $\overline{e_i}$, $\overline{e_i}$ yields Hamiltonicity and in this case the conditional probability is $1 - (1 - p)^2 > p$.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

重。 299

Edge colored graphs – rainbow structures

A set of edges *S* is said to be rainbow colored if each edge has a different color.

 \equiv 990

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

Edge colored graphs – rainbow structures

A set of edges *S* is said to be rainbow colored if each edge has a different color.

We consider the graph process, e_1, e_2, \ldots, e_m where we randomly color each edge independently from a set of *k* colors.

 $\tau_c = \min_{t} : n - 1$ distinct colors are used on $e_1, \ldots, e_t.$ $\tau_{\mathcal{T}} = \min_{t} : e_1, \ldots, e_t$ contains a spanning tree. $\tau_{\mathsf{RT}} = \min_{t} : \boldsymbol{e}_1, \dots, \boldsymbol{e}_t$ contains a rainbow spanning tree.

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

Frieze and McKay (1994). $\tau_{BT} = \max\{\tau_c, \tau_T\}$ w.h.p.

Relies on Edmund's matroid intersection theorem.

Hamilton cycles

 $\tau_c = \min_t : n$ distinct colors are used on $e_1, \ldots, e_t.$ $\tau_H = \min_t : \boldsymbol{e}_1, \dots, \boldsymbol{e}_t$ contains a Hamilton cycle. $\tau_{RH} = \min_{t} : e_1, \ldots, e_t$ contains a rainbow Hamilton cycle.

Conjecture: $\tau_{BH} = \max\{\tau_c, \tau_H\}$ w.h.p.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ⊙ Q @

Hamilton cycles

 $\tau_c = \min_t : n$ distinct colors are used on $e_1, \ldots, e_t.$ $\tau_H = \min_t : \boldsymbol{e}_1, \dots, \boldsymbol{e}_t$ contains a Hamilton cycle. $\tau_{RH} = \min_{t} : e_1, \ldots, e_t$ contains a rainbow Hamilton cycle.

Conjecture: $\tau_{BH} = \max\{\tau_c, \tau_H\}$ w.h.p.

It is known that if we have $n + o(n)$ colors and $(1 + o(1))n \log n$ random edges then w.h.p. there is a rainbow Hamilton cycle. Frieze and Loh (2014), Ferber and Krivelevich (2015).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① Q ①

Edge colored graphs – patterns

Let $G_{n,p;\alpha}$ denote $G_{n,p}$ where each edge is independently given a random color *i* from the *palette* [k] with probability α_i .

A color pattern will be a sequence $\mathbf{c} = (c_1, c_2, \ldots, c_n)$.

Given a sequence **c** we say that the Hamilton cycle $H = (x_1, x_2, \ldots, x_n, x_1)$ (as a sequence of vertices) is **c**-colored if $c(\{x_i, x_{i+1}\}) = c_i$ for $i = 1, 2, ..., n$.

Theorem

Let **c** *be an arbitrary sequence of colors. Let* $p = (\log n + \log \log n + \omega)/n$ where $\omega \to \infty$. Then w.h.p. $G_{n, \beta p, \alpha}$ *contains a* **c***-colored Hamilton cycle, where* $\beta = 1/\alpha_{\min}$.

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

B

 QQ

Edge colored graphs – patterns

Previous works Espig,F,Krivelevich or Anastos,F dealt with sequences that were repetitions of a small fixed sequence e.g. Black/White/Black/White/... "zebraic".

Previous works proved hitting time results, not so here.

In our result, an *adversary* chooses the sequence **c** and then we generate $G_{n,p;\alpha}$. It would be much harder if things were done in reverse order.

We do not claim that w.h.p. *G_{n.p;α}* simultaneously contains a cycle of every pattern.

4 ロ) (何) (日) (日)

÷. QQ

Edge colored graphs – patterns

Let $N = \binom{n}{2}$ $\binom{n}{2}$ and consider the following sequence of (partially) edge colored graphs Γ_m , $m = 0, 1, \ldots, N$.

Let e_1, e_2, \ldots, e_N be an enumeration of the edges of K_n .

To construct Γ*^t* we include *e*1, *e*2, . . . , *e^t* independently with probability *kp* and give each included edge a random color using distribution α .

Then for *i* > *t* we include each edge independently with probability *p*.

Thus Γ_0 is a copy of $G_{n,p}$ and Γ_N is a copy of $G_{n,kp,q}$

KOD KAP KED KED E YA G

Edge colored graphs

A Hamilton cycle $H = (\boldsymbol{e}_{\pi(i)}, i=1,2,\ldots,n)$ (as a sequence of edges) of Γ_t is (\mathbf{c},t) *proper* if $\mathbf{c}(\boldsymbol{e}_{\pi(j)}) = c_j$ for $\pi(j) \leq t$.

Let \mathcal{G}_t denote the set of graphs containing a (c, t) -proper Hamilton cycle.

We claim that

Pr($\Gamma_t \in \mathcal{G}_t$) \leq **Pr**($\Gamma_{t+1} \in \mathcal{G}_{t+1}$) for $t \geq 0$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ⊙ Q @

We modify McDiarmid's argument.

Vertex colored graphs – patterns

Suppose now that each vertex of *Gn*,*^p* is given one of *k* colors. Let V_i denote the vertices of color i and assume that $|V_i| = \alpha_i n$ for $i \in [k]$.

Given a sequence **c** we now say that the Hamilton cycle $H = (x_1, x_2, \ldots, x_n, x_1)$ (as a sequence of vertices) is **c**-colored if $c(x_i) = c_i$ for $i = 1, 2, ..., n$.

Theorem

Let **c** *be an arbitrary sequence of colors where each color j appears exactly* α_i *n times. Let* $p = K \log n/n$ *where* $K = K(k)$ *is sufficiently large. Then w.h.p. G* [*k*] *ⁿ*,*^p contains a* **c***-colored Hamilton cycle.*

イロメ 不優 トメ ヨ メ ス ヨ メー

B

 QQ

The proof relies on the breakthrough result of Frankston, Kahn, Narayanan and Park (2021) on *spread hypergraphs*.

イロメ イ押 メイヨメ イヨメ

÷.

 $2Q$

The proof relies on the breakthrough result of Frankston, Kahn, Narayanan and Park (2021) on *spread hypergraphs*.

A hypergraph H is r bounded if $e \in H$ implies that $|e| \le r$.

イロト イ伊 トイヨ トイヨト

重 $2Q$

The proof relies on the breakthrough result of Frankston, Kahn, Narayanan and Park (2021) on *spread hypergraphs*.

A hypergraph H is r bounded if $e \in H$ implies that $|e| \le r$.

For a set $S \subseteq X = V(H)$ we let $\langle S \rangle = \{T : S \subseteq T \subseteq X\}$ denote the subsets of X that contain *S*. We say that H is κ -spread if we have the following bound on the number of edges of $\mathcal H$ that contain a particular set *S*:

$$
|\mathcal{H}\cap\langle S\rangle|\leq \frac{|\mathcal{H}|}{\kappa^{|S|}},\quad \forall S\subseteq X.
$$

K ロ ト K 御 ト K ヨ ト K

÷. QQ

Let X_p denote a subset of X where each $x \in X$ is included independently in *X^p* with probability *p*.

Theorem

Let H *be an r-bounded,* κ*-spread hypergraph and let* $X = V(H)$. There is an absolute constant $C > 0$ such that if

> $\rho \geq \frac{C \log r}{\rho}$ κ

then w.h.p. X^p contains an edge of H*. Here w.h.p. assumes that* $r \to \infty$ *.*

イロト イ押 トイヨ トイヨト

÷. QQ

Let X_p denote a subset of X where each $x \in X$ is included independently in *X^p* with probability *p*.

Theorem

Let H *be an r-bounded,* κ*-spread hypergraph and let* $X = V(H)$. There is an absolute constant $C > 0$ such that if

> $\rho \geq \frac{C \log r}{\rho}$ κ

then w.h.p. X^p contains an edge of H*. Here w.h.p. assumes that* $r \to \infty$.

We let $X = \binom{[n]}{2}$ $\binom{n}{2}$. Each $x = \{u, v\} \in X$ will have colored endpoints $\{c(u), c(v)\}$. Our hypergraph H consists of sets of *n* edges with colored endpoints that together make up a **c**-colored Hamilton cycle. We find that H has spread $\kappa = \Omega(n)$.

不優 トメ 重 メ ス 重 メー 重

 2990

A fixed order for a subset of vertices

We have a fixed set $S_0 \subseteq [n]$ and a fixed ordering of the vertices in S_0 .

Theorem

Let $p = (\log n + \log \log n + \omega)/n$, $\omega = o(\log \log n)$ *and* $S_0 \subseteq [n], |S_0| = s_0 = \omega_1 n / \log n$ *where* $\omega_1 = o(\log \log \log n)$. *Then w.h.p. Gn*,*^p contains a Hamilton cycle in which the vertices S*⁰ *appear in natural order.*

The natural constraint on ω_1 should be $o(\log \log n)$.

This is related to work of Robinson and Wormald who consider random regular graphs and Hamilton cycles that contain a give[n](#page-0-0) set of $o(n^{2/5})$ edges to be contained [in](#page-47-0) [or](#page-49-0)[d](#page-47-0)[er](#page-48-0) [i](#page-49-0)n [th](#page-51-0)[e c](#page-0-0)[yc](#page-51-0)[le](#page-0-0)[.](#page-51-0)

 290

A fixed order for a subset of vertices

We begin by partitioning $G_{n,p}$ into $\Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4$.

We use Γ_1, Γ_2 to "bury" each $v \in S_0$ inside a short path P_v with endpoints x_v, y_v .

The internal vertices of the P_v 's play no further role.

We then use Γ_1 to find vertex disjoint paths Q_v from y_v to x_{v+1} for $v \in S_0$: let $P^* = (P_1, Q_1, P_2, \ldots, Q_{s_0-1}, P_{s_0})$

$$
x_1 \t P_1 \t y_1 \t Q_1 \t x_2 \t x_3 \t P_{s_0} \t y_3
$$

KOD KAP KED KED E YA G

We then contract P^{*} to an edge e^{*} and use fairly standard ideas to find a Hamilton cycle containing the edge *e* ∗ .

Bounds on the number of inversions

We place a restiction on the number $\iota(H)$ of invertions in the permutation of [*n*] that defined by the Hamilton cycle *H*.

Theorem

Suppose that $M = \Omega(n \log n)$ *. If* $p \geq \frac{Kn \log n}{M}$ *M then w.h.p. Gn*,*^p contains a Hamilton cycle H with* ι(*H*) ≤ *M. If* $p \leq (1 - \epsilon)$ min $\left\{\frac{\log n}{n}\right\}$ $\left\{\frac{g n}{n}, \frac{n}{e M}\right\}$ then w.h.p. $G_{n,p}$ does not.

In addition

Theorem

If $M \leq Kn^2/\log^2 n$ and $p \geq \frac{10 \max\{K,1\}n}{M}$ *M then w.h.p. Gn*,*^p contains a Hamilton cycle H with* ι(*H*) ≤ *M.*

The first theorem is non-constructive, relying on spread, while the second relies on the analysis of a simple greedy algorithm.

 $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

 2990

THANK YOU

Alan Frieze, Carnegie Mellon University [Hamilton Cycles](#page-0-0)

KO K K (F) K E K (E) K E K Y Q (A)