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Evolution of random graphs

Choosing a graph at random

Gn,p: Each edge e of the complete graph Kn is included
independently with probability p = p(n).

Whp Gn,p has ∼
(n

2

)
p edges, provided

(n
2

)
p →∞

p = 1/2, each subgraph of Kn is equally likely.

Gn,m: Vertex set [n] and m random edges.

If m ∼
(n

2

)
p then Gn,p and Gn,m have “similar” properties.
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Evolution of random graphs
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certain properties:
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Evolution of random graphs

Random graphs first used to prove existence of graphs with
certain properties:

Erdős (1947): Whp the maximum size of a clique or
independent set in Gn,1/2 is ≤ 2 log2 n.

Therefore
R(k , k) ≥ 2k/2.

I.e. it is possible to color the edges of the complete graph on
2k/2 vertices so that there is no mono-chromatic clique of size
k .
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Evolution of random graphs

Random graphs first used to prove existence of graphs with
certain properties:

Mantel (1907): There exist triangle free graphs with arbitrarily
large chromatic number.
Erdős (1959): There exist graphs of arbitrarily large girth and
chromatic number.

m = cn, c > 0 is a large constant. Whp Gn,m has o(n) vertices
on cycles of length ≤ log log n and no independent set of size
more than 2 log c

c n.

So removing the vertices on small cycles gives us a graph with
girth ≥ log log n and chromatic number ≥ c+o(1)

2 log c .
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Evolution of random graphs

Erdős and Rényi began the study of random graphs in their
own right.
On Random Graphs I (1959): m = 1

2n(log n + cn)

lim
n→∞

Pr(Gn,m is connected) =


0 cn → −∞
e−e−c

cn → c
1 cn → +∞

= lim
n→∞

Pr(δ(Gn,m) ≥ 1)

Pr(Gn,m is connected)

m
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Evolution of random graphs

The evolution of a random graph, Erdős and Rényi (1960)

m Structure of Gn,m whp

o(n1/2) Isolated edges and vertices

n1/2 log n Isolated edges and vertices and paths of length 2

n
k−1

k log n Components are trees of vertex size 1,2, . . . , k .

Each possible such tree appears.
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Evolution of random graphs

m Structure of Gn,m whp

1
2cn Mainly trees. Some unicyclic components. Maximum
c < 1 component size O(log n)

1
2n Complicated. Maximum component size order n2/3.

Has subsequently been the subject of moreintensive
study e.g. Janson, Knuth, Łuczak and Pittel (1993).

1
2cn Unique giant component of size G(c)n. Remainder
c > 1 almost all trees. Second largest component of

size O(log n)

Only very simple probabilistic tools needed. Mainly first and
second moment method.
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Evolution of random graphs

Connectivity threshold

p = (1 + ε)
log n

n

Xk = number of k -components, 1 ≤ k ≤ n/2.
X = X1 + X2 + · · ·+ Xn/2
Gn,p is connected iff X = 0.

Pr(X 6= 0) ≤ E(X )

≤
n/2∑
k=1

(
n
k

)
kk−2pk−1(1− p)k(n−k)

≤ n
log n

n/2∑
k=1

(
e log n

n(1+ε)(1−k/n)

)k

→ 0.
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Evolution of random graphs

Hitting Time: Consider G0,G1, . . . ,Gm, . . . , where Gi+1 is Gi
plus a random edge.
Let mk denote the minimum m for which δ(Gm) ≥ k .

Whp m1 is the “time” when Gm first becomes connected.

Whp m1 is the “time” when Gm first has a perfect matching.
Erdős and Rényi (1966).

Whp m2 is the “time” when Gm first has a Hamilton cycle.
Ajtai, Komlós and Szemerédi (1985), Bollobás (1984).

Whp At time m2 there are (log n)n−o(n) distinct Hamilton
cycles.
Cooper and Frieze (1989), Glebov and Krivelevich (2013).

Whp mk is the “time” when Gm first has k/2 edge disjoint
Hamilton cycles. k = O(1)
Bollobás and Frieze (1985).

Recently, results of Krivelevich and Samotij and Knox,
Kühn and Osthus proved the much more difficult result,
allowing k to grow up to k ∼ n/2.
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Random Digraphs – strong components

In the random digraph Dn,p we include each possible directed
edge (u, v) ∈ [n]2 with probability p. For Dn,m we choose m
random directed edges.

m Structure of Dn,m whp

1
2cn, c < 1 Strong components are small cycles.

1
2cn, c > 1 Unique giant strong component of size ∼ G(c)2n

where G(c)n is the size of the giant in Gn,p
Karp (1990).

n(log n + ω) Strongly connected.
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Random Digraphs – Hamiltonicity

Pr(Dn,p is Hamiltonian) ≥ Pr(Gn,p is Hamiltonian).

McDiarmid (1980).
So if p ≥ log n+log log n+ω

n then Dn,p is Hamiltonian w.h.p.

If p ≥ log n+ω
n then Dn,p is Hamiltonian w.h.p. Frieze (1988).
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Random Digraphs – Hamiltonicity

Let e1,e2, . . . ,eN be an enumeration of the edges of the
complete graph Kn. Each ei = {vi ,wi} gives rise to two directed
edges −→ei = (vi ,wi) and←−ei = (wi , vi).

In the digraph Γi we include −→ej and←−ej independently of each
other, with probability p, for j ≤ i . While for j > i we include both
or neither with probability p.

Thus Γ0 is just Gn,p with each edge {v ,w} replaced by a pair of
directed edges (v ,w), (w , v) and ΓN = Dn,p. McDiarmid’s result
follows from

Pr(Γi is Hamiltonian) ≥ Pr(Γi−1 is Hamiltonian).

To prove this we condition on the existence or otherwise of
directed edges associated with e1, . . . ,ei−1,ei+1, . . . ,eN . Let C
denote this conditioning.
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Random Digraphs – Hamiltonicity

Either
(a) C gives us a Hamilton cycle without arcs associated with

ei , or
(b) not (a) and there exists a Hamilton cycle if at least one of
−→ei ,
←−ei is present, or

(c) 6 ∃ a Hamilton cycle even if both of −→ei ,
←−ei are present.

(a) and (c) give the same conditional probability of Hamiltonicity
in Γi , Γi−1.

In Γi−1 (b) happens with probability p. In Γi either (i) exactly one
of −→ei ,

←−ei yields Hamiltonicity and in this case the conditional
probability is p or (ii) either of −→ei ,

←−ei yields Hamiltonicity and in
this case the conditional probability is 1− (1− p)2 > p.
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Edge colored graphs – rainbow structures

A set of edges S is said to be rainbow colored if each edge has
a different color.

We consider the graph process, e1,e2, . . . ,em where we
randomly color each edge independently from a set of k colors.

τc = min
t

: n − 1 distinct colors are used on e1, . . . ,et .

τT = min
t

: e1, . . . ,et contains a spanning tree.

τRT = min
t

: e1, . . . ,et contains a rainbow spanning tree.

Frieze and McKay (1994). τRT = max {τc , τT} w.h.p.

Relies on Edmund’s matroid intersection theorem.
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Edge colored graphs – rainbow structures

Hamilton cycles

τc = min
t

: n distinct colors are used on e1, . . . ,et .

τH = min
t

: e1, . . . ,et contains a Hamilton cycle.

τRH = min
t

: e1, . . . ,et contains a rainbow Hamilton cycle.

Conjecture: τRH = max {τc , τH} w.h.p.

It is known that if we have n + o(n) colors and (1 + o(1))n log n
random edges then w.h.p. there is a rainbow Hamilton cycle.
Frieze and Loh (2014), Ferber and Krivelevich (2015).
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Edge colored graphs – patterns

Let Gn,p;α denote Gn,p where each edge is independently given
a random color i from the palette [k ] with probability αi .

A color pattern will be a sequence c = (c1, c2, . . . , cn).

Given a sequence c we say that the Hamilton cycle
H = (x1, x2, . . . , xn, x1) (as a sequence of vertices) is c-colored
if c({xi , xi+1}) = ci for i = 1,2, . . . ,n.

Theorem
Let c be an arbitrary sequence of colors. Let
p = (log n + log log n + ω)/n where ω →∞. Then w.h.p. Gn,βp;α
contains a c-colored Hamilton cycle, where β = 1/αmin.
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Edge colored graphs – patterns

Previous works Espig,F,Krivelevich or Anastos,F dealt with
sequences that were repetitions of a small fixed sequence e.g.
Black/White/Black/White/... “zebraic”.

Previous works proved hitting time results, not so here.

In our result, an adversary chooses the sequence c and then
we generate Gn,p;α. It would be much harder if things were
done in reverse order.

We do not claim that w.h.p. Gn,p;α simultaneously contains a
cycle of every pattern.
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Edge colored graphs – patterns

Let N =
(n

2

)
and consider the following sequence of (partially)

edge colored graphs Γm,m = 0,1, . . . ,N.

Let e1,e2, . . . ,eN be an enumeration of the edges of Kn.

To construct Γt we include e1,e2, . . . ,et independently with
probability kp and give each included edge a random color
using distribution α.

Then for i > t we include each edge independently with
probability p.

Thus Γ0 is a copy of Gn,p and ΓN is a copy of Gn,kp;α
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Edge colored graphs

A Hamilton cycle H = (eπ(i), i = 1,2, . . . ,n) (as a sequence of
edges) of Γt is (c, t)-proper if c(eπ(j)) = cj for π(j) ≤ t .

Let Gt denote the set of graphs containing a (c, t) -proper
Hamilton cycle.

We claim that

Pr(Γt ∈ Gt ) ≤ Pr(Γt+1 ∈ Gt+1) for t ≥ 0.

We modify McDiarmid’s argument.
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Vertex colored graphs – patterns

Suppose now that each vertex of Gn,p is given one of k colors.
Let Vi denote the vertices of color i and assume that |Vi | = αin
for i ∈ [k ].

Given a sequence c we now say that the Hamilton cycle
H = (x1, x2, . . . , xn, x1) (as a sequence of vertices) is c-colored
if c(xi) = ci for i = 1,2, . . . ,n.

Theorem
Let c be an arbitrary sequence of colors where each color j
appears exactly αjn times. Let p = K log n/n where K = K (k)

is sufficiently large. Then w.h.p. G[k ]
n,p contains a c-colored

Hamilton cycle.
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Vertex colored graphs

The proof relies on the breakthrough result of Frankston, Kahn,
Narayanan and Park (2021) on spread hypergraphs.

A hypergraph H is r -bounded if e ∈ H implies that |e| ≤ r .

For a set S ⊆ X = V (H) we let 〈S〉 = {T : S ⊆ T ⊆ X} denote
the subsets of X that contain S. We say that H is κ-spread if
we have the following bound on the number of edges of H that
contain a particular set S:

|H ∩ 〈S〉| ≤ |H|
κ|S|

, ∀S ⊆ X .
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Vertex colored graphs

Let Xp denote a subset of X where each x ∈ X is included
independently in Xp with probability p.

Theorem

Let H be an r-bounded, κ-spread hypergraph and let
X = V (H). There is an absolute constant C > 0 such that if

p ≥ C log r
κ

then w.h.p. Xp contains an edge of H. Here w.h.p. assumes
that r →∞.

We let X =
([n]

2

)
. Each x = {u, v} ∈ X will have colored

endpoints {c(u), c(v)}. Our hypergraph H consists of sets of n
edges with colored endpoints that together make up a
c-colored Hamilton cycle. We find that H has spread κ = Ω(n).
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A fixed order for a subset of vertices

We have a fixed set S0 ⊆ [n] and a fixed ordering of the vertices
in S0.

Theorem
Let p = (log n + log log n + ω)/n, ω = o(log log n) and
S0 ⊆ [n], |S0| = s0 = ω1n/ log n where ω1 = o(log log log n).
Then w.h.p. Gn,p contains a Hamilton cycle in which the
vertices S0 appear in natural order.

The natural constraint on ω1 should be o(log log n).

This is related to work of Robinson and Wormald who consider
random regular graphs and Hamilton cycles that contain a
given set of o(n2/5) edges to be contained in order in the cycle.
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A fixed order for a subset of vertices

We begin by partitioning Gn,p into Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

We use Γ1, Γ2 to “bury” each v ∈ S0 inside a short path Pv with
endpoints xv , yv .
The internal vertices of the Pv ’s play no further role.

vxv yv

We then use Γ1 to find vertex disjoint paths Qv from yv to xv+1
for v ∈ S0: let P∗ = (P1,Q1,P2, . . . ,Qs0−1,Ps0)

x1 P1 y1 Q1 x2 xs0 ys0Ps0

We then contract P∗ to an edge e∗ and use fairly standard
ideas to find a Hamilton cycle containing the edge e∗.
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Bounds on the number of inversions

We place a restiction on the number ι(H) of invertions in the
permutation of [n] that defined by the Hamilton cycle H.

Theorem

Suppose that M = Ω(n log n). If p ≥ Kn log n
M then w.h.p. Gn,p

contains a Hamilton cycle H with ι(H) ≤ M. If
p ≤ (1− ε) min

{
log n

n , n
eM

}
then w.h.p. Gn,p does not.

In addition

Theorem

If M ≤ Kn2/ log2 n and p ≥ 10max{K ,1}n
M then w.h.p. Gn,p

contains a Hamilton cycle H with ι(H) ≤ M.

The first theorem is non-constructive, relying on spread, while
the second relies on the analysis of a simple greedy algorithm.
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THANK YOU
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