Sequentially constrained Hamilton Cycles in random graphs

Alan Frieze Wesley Pegden Carnegie Mellon University

· 문 (· 문) · · · 문

Choosing a graph at random

イロン イボン イヨン イヨン

æ

Choosing a graph at random

 $G_{n,p}$: Each edge *e* of the complete graph K_n is included independently with probability p = p(n).

Whp $G_{n,p}$ has $\sim \binom{n}{2}p$ edges, provided $\binom{n}{2}p \to \infty$

p = 1/2, each subgraph of K_n is equally likely.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Choosing a graph at random

 $G_{n,p}$: Each edge *e* of the complete graph K_n is included independently with probability p = p(n).

Whp $G_{n,p}$ has $\sim \binom{n}{2}p$ edges, provided $\binom{n}{2}p \to \infty$

p = 1/2, each subgraph of K_n is equally likely.

 $G_{n,m}$: Vertex set [n] and m random edges.

If $m \sim \binom{n}{2}p$ then $G_{n,p}$ and $G_{n,m}$ have "similar" properties.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Random graphs first used to prove existence of graphs with certain properties:

イロト イポト イヨト イヨト

Random graphs first used to prove existence of graphs with certain properties:

Erdős (1947): Whp the maximum size of a clique or independent set in $G_{n,1/2}$ is $\leq 2 \log_2 n$.

Therefore

 $R(k,k)\geq 2^{k/2}.$

I.e. it is possible to color the edges of the complete graph on $2^{k/2}$ vertices so that there is no mono-chromatic clique of size *k*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Random graphs first used to prove existence of graphs with certain properties:

Mantel (1907): There exist triangle free graphs with arbitrarily large chromatic number.

Erdős (1959): There exist graphs of arbitrarily large girth and chromatic number.

m = cn, c > 0 is a large constant. Whp $G_{n,m}$ has o(n) vertices on cycles of length $\leq \log \log n$ and no independent set of size more than $\frac{2 \log c}{c} n$.

So removing the vertices on small cycles gives us a graph with girth $\geq \log \log n$ and chromatic number $\geq \frac{c+o(1)}{2\log c}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Erdős and Rényi began the study of random graphs in their own right.

On Random Graphs I (1959): $m = \frac{1}{2}n(\log n + c_n)$

$$\lim_{n \to \infty} \Pr(G_{n,m} \text{ is connected}) = \begin{cases} 0 & c_n \to -\infty \\ e^{-e^{-c}} & c_n \to c \\ 1 & c_n \to +\infty \\ e & \lim_{n \to \infty} \Pr(\delta(G_{n,m}) \ge 1) \end{cases}$$

The evolution of a random graph, Erdős and Rényi (1960)

- *m* Structure of *G*_{*n*,*m*} **whp**
- $o(n^{1/2})$ Isolated edges and vertices

ヘロト ヘアト ヘビト ヘビト

The evolution of a random graph, Erdős and Rényi (1960)

- *m* Structure of *G*_{*n*,*m*} **whp**
- $o(n^{1/2})$ Isolated edges and vertices
- $n^{1/2} \log n$ Isolated edges and vertices and paths of length 2

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

The evolution of a random graph, Erdős and Rényi (1960)

- *m* Structure of *G*_{*n*,*m*} **whp**
- $o(n^{1/2})$ Isolated edges and vertices
- $n^{1/2} \log n$ Isolated edges and vertices and paths of length 2
- $n^{\frac{k-1}{k}} \log n$ Components are trees of vertex size 1, 2, ..., k.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

m Structure of *G_{n,m}* **whp**

 $\frac{1}{2}n$ Complicated. Maximum component size order $n^{2/3}$. Has subsequently been the subject of moreintensive study e.g. Janson, Knuth, Łuczak and Pittel (1993).

 $\frac{1}{2}cn$ Unique giant component of size G(c)n. Remainder c > 1 almost all trees. Second largest component of size $O(\log n)$

m Structure of *G_{n,m}* **whp**

 $\frac{1}{2}n$ Complicated. Maximum component size order $n^{2/3}$. Has subsequently been the subject of moreintensive study e.g. Janson, Knuth, Łuczak and Pittel (1993).

 $\frac{1}{2}cn$ Unique giant component of size G(c)n. Remainder c > 1 almost all trees. Second largest component of size $O(\log n)$

Only very simple probabilistic tools needed Mainly first and a constant of the second Mainly first and the second second

Connectivity threshold $p = (1 + \epsilon) \frac{\log n}{n}$

 X_k = number of k-components, $1 \le k \le n/2$. $X = X_1 + X_2 + \dots + X_{n/2}$ $G_{n,p}$ is connected iff X = 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Connectivity threshold $p = (1 + \epsilon) \frac{\log n}{n}$

 X_k = number of k-components, $1 \le k \le n/2$. $X = X_1 + X_2 + \dots + X_{n/2}$ $G_{n,p}$ is connected iff X = 0.

$$\begin{aligned} \Pr(X \neq 0) &\leq & \mathsf{E}(X) \\ &\leq & \sum_{k=1}^{n/2} \binom{n}{k} k^{k-2} p^{k-1} (1-p)^{k(n-k)} \\ &\leq & \frac{n}{\log n} \sum_{k=1}^{n/2} \left(\frac{e \log n}{n^{(1+\epsilon)(1-k/n)}} \right)^k \\ &\to & 0. \end{aligned}$$

Alan Frieze, Carnegie Mellon University

Hamilton Cycles

ъ

Hitting Time: Consider $G_0, G_1, \ldots, G_m, \ldots$, where G_{i+1} is G_i plus a random edge.

Let m_k denote the minimum *m* for which $\delta(G_m) \ge k$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Hitting Time: Consider $G_0, G_1, \ldots, G_m, \ldots$, where G_{i+1} is G_i plus a random edge. Let m_k denote the minimum *m* for which $\delta(G_m) \ge k$.

• Whp m_1 is the "time" when G_m first becomes connected.

Hitting Time: Consider $G_0, G_1, \ldots, G_m, \ldots$, where G_{i+1} is G_i plus a random edge. Let m_k denote the minimum *m* for which $\delta(G_m) \ge k$.

- Whp m_1 is the "time" when G_m first becomes connected.
- Whp m₁ is the "time" when G_m first has a perfect matching. Erdős and Rényi (1966).

Hitting Time: Consider $G_0, G_1, \ldots, G_m, \ldots$, where G_{i+1} is G_i plus a random edge. Let m_k denote the minimum *m* for which $\delta(G_m) \ge k$.

- Whp m_1 is the "time" when G_m first becomes connected.
- Whp m₁ is the "time" when G_m first has a perfect matching. Erdős and Rényi (1966).
- Whp *m*₂ is the "time" when *G_m* first has a Hamilton cycle. Ajtai, Komlós and Szemerédi (1985), Bollobás (1984).

Hitting Time: Consider $G_0, G_1, \ldots, G_m, \ldots$, where G_{i+1} is G_i plus a random edge. Let m_k denote the minimum *m* for which $\delta(G_m) \ge k$.

- Whp m_1 is the "time" when G_m first becomes connected.
- Whp m₁ is the "time" when G_m first has a perfect matching. Erdős and Rényi (1966).
- Whp *m*₂ is the "time" when *G_m* first has a Hamilton cycle. Ajtai, Komlós and Szemerédi (1985), Bollobás (1984).
- Whp At time m₂ there are (log n)^{n-o(n)} distinct Hamilton cycles.
 Cooper and Frieze (1989), Glebov and Krivelevich (2013).

Hitting Time: Consider $G_0, G_1, \ldots, G_m, \ldots$, where G_{i+1} is G_i plus a random edge. Let m_k denote the minimum *m* for which $\delta(G_m) \ge k$.

- Whp m_1 is the "time" when G_m first becomes connected.
- Whp m₁ is the "time" when G_m first has a perfect matching. Erdős and Rényi (1966).
- Whp *m*₂ is the "time" when *G_m* first has a Hamilton cycle. Ajtai, Komlós and Szemerédi (1985), Bollobás (1984).
- Whp m_k is the "time" when G_m first has k/2 edge disjoint Hamilton cycles. k = O(1) Bollobás and Frieze (1985).

Hitting Time: Consider $G_0, G_1, \ldots, G_m, \ldots$, where G_{i+1} is G_i plus a random edge. Let m_k denote the minimum *m* for which $\delta(G_m) \ge k$.

- Whp m_1 is the "time" when G_m first becomes connected.
- Whp m₁ is the "time" when G_m first has a perfect matching. Erdős and Rényi (1966).
- Whp *m*₂ is the "time" when *G_m* first has a Hamilton cycle. Ajtai, Komlós and Szemerédi (1985), Bollobás (1984).

• Recently, results of Krivelevich and Samotij and Knox, Kühn and Osthus proved the much more difficult result, allowing k to grow up to $k \sim n/2$.

In the random digraph $D_{n,p}$ we include each possible directed edge $(u, v) \in [n]^2$ with probability *p*. For $D_{n,m}$ we choose *m* random directed edges.

ヘロン 人間 とくほ とくほ とう

In the random digraph $D_{n,p}$ we include each possible directed edge $(u, v) \in [n]^2$ with probability *p*. For $D_{n,m}$ we choose *m* random directed edges.

m Structure of *D_{n,m}* **whp**

 $\frac{1}{2}$ cn, c < 1 Strong components are small cycles.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

In the random digraph $D_{n,p}$ we include each possible directed edge $(u, v) \in [n]^2$ with probability *p*. For $D_{n,m}$ we choose *m* random directed edges.

- *m* Structure of *D_{n,m}* **whp**
- $\frac{1}{2}$ cn, c < 1 Strong components are small cycles.
- $\begin{array}{l} \frac{1}{2}cn,c>1 & \mbox{Unique giant strong component of size} \sim G(c)^2n \\ & \mbox{where } G(c)n \mbox{ is the size of the giant in } G_{n,p} \\ & \mbox{Karp (1990).} \end{array}$

<ロ> (四) (四) (三) (三) (三)

In the random digraph $D_{n,p}$ we include each possible directed edge $(u, v) \in [n]^2$ with probability *p*. For $D_{n,m}$ we choose *m* random directed edges.

- *m* Structure of *D_{n,m}* whp
- $\frac{1}{2}$ cn, c < 1 Strong components are small cycles.
- $\frac{1}{2}cn, c > 1 \qquad \text{Unique giant strong component of size} \sim G(c)^2 n$ where G(c)n is the size of the giant in $G_{n,p}$ Karp (1990).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $n(\log n + \omega)$ Strongly connected.

Pr(D_{n,p} is Hamiltonian) ≥**Pr**(G_{n,p} is Hamiltonian).McDiarmid (1980).
So if $p ≥ \frac{\log n + \log \log n + \omega}{n}$ then D_{n,p} is Hamiltonian w.h.p.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pr(D_{n,p} is Hamiltonian) ≥**Pr**(G_{n,p} is Hamiltonian).McDiarmid (1980).
So if $p ≥ \frac{\log n + \log \log n + \omega}{n}$ then D_{n,p} is Hamiltonian w.h.p.

If $p \ge \frac{\log n + \omega}{n}$ then $D_{n,p}$ is Hamiltonian w.h.p. Frieze (1988).

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Let e_1, e_2, \ldots, e_N be an enumeration of the edges of the complete graph K_n . Each $e_i = \{v_i, w_i\}$ gives rise to two directed edges $\overrightarrow{e_i} = (v_i, w_i)$ and $\overleftarrow{e_i} = (w_i, v_i)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Let e_1, e_2, \ldots, e_N be an enumeration of the edges of the complete graph K_n . Each $e_i = \{v_i, w_i\}$ gives rise to two directed edges $\overrightarrow{e_i} = (v_i, w_i)$ and $\overleftarrow{e_i} = (w_i, v_i)$.

In the digraph Γ_i we include $\overrightarrow{e_j}$ and $\overleftarrow{e_j}$ independently of each other, with probability p, for $j \le i$. While for j > i we include both or neither with probability p.

ヘロン 人間 とくほ とくほ とう

Let e_1, e_2, \ldots, e_N be an enumeration of the edges of the complete graph K_n . Each $e_i = \{v_i, w_i\}$ gives rise to two directed edges $\overrightarrow{e_i} = (v_i, w_i)$ and $\overleftarrow{e_i} = (w_i, v_i)$.

In the digraph Γ_i we include $\overrightarrow{e_j}$ and $\overleftarrow{e_j}$ independently of each other, with probability p, for $j \le i$. While for j > i we include both or neither with probability p.

Thus Γ_0 is just $G_{n,p}$ with each edge $\{v, w\}$ replaced by a pair of directed edges (v, w), (w, v) and $\Gamma_N = \mathbb{D}_{n,p}$. McDiarmid's result follows from

 $\mathbf{Pr}(\Gamma_i \text{ is Hamiltonian}) \geq \mathbf{Pr}(\Gamma_{i-1} \text{ is Hamiltonian}).$

To prove this we condition on the existence or otherwise of directed edges associated with $e_1, \ldots, e_{i-1}, e_{i+1}, \ldots, e_N$. Let C denote this conditioning.

Either

- (a) C gives us a Hamilton cycle without arcs associated with e_i, or
- (b) not (a) and there exists a Hamilton cycle if at least one of $\overrightarrow{e_i}, \overleftarrow{e_i}$ is present, or
- (c) $\not\exists$ a Hamilton cycle even if both of $\overrightarrow{e_i}$, $\overleftarrow{e_i}$ are present.

ヘロト ヘアト ヘヨト ヘ

프 > 프

Either

- (a) C gives us a Hamilton cycle without arcs associated with e_i , or
- (b) not (a) and there exists a Hamilton cycle if at least one of $\overrightarrow{e_i}, \overleftarrow{e_i}$ is present, or
- (c) $\not\exists$ a Hamilton cycle even if both of $\overrightarrow{e_i}$, $\overleftarrow{e_i}$ are present.

(a) and (c) give the same conditional probability of Hamiltonicity in Γ_i, Γ_{i-1} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Either

- (a) C gives us a Hamilton cycle without arcs associated with e_i , or
- (b) not (a) and there exists a Hamilton cycle if at least one of $\overrightarrow{e_i}, \overleftarrow{e_i}$ is present, or
- (c) $\not\exists$ a Hamilton cycle even if both of $\overrightarrow{e_i}$, $\overleftarrow{e_i}$ are present.

(a) and (c) give the same conditional probability of Hamiltonicity in Γ_i, Γ_{i-1} .

In Γ_{i-1} (b) happens with probability *p*. In Γ_i either (i) exactly one of $\overrightarrow{e_i}$, $\overrightarrow{e_i}$ yields Hamiltonicity and in this case the conditional probability is *p* or (ii) either of $\overrightarrow{e_i}$, $\overleftarrow{e_i}$ yields Hamiltonicity and in this case the conditional probability is $1 - (1 - p)^2 > p$.

Edge colored graphs – rainbow structures

A set of edges *S* is said to be rainbow colored if each edge has a different color.

Edge colored graphs – rainbow structures

A set of edges *S* is said to be rainbow colored if each edge has a different color.

We consider the graph process, e_1, e_2, \ldots, e_m where we randomly color each edge independently from a set of *k* colors.

 $\tau_c = \min_t : n - 1 \text{ distinct colors are used on } e_1, \dots, e_t.$ $\tau_T = \min_t : e_1, \dots, e_t \text{ contains a spanning tree.}$ $\tau_{BT} = \min_t : e_1, \dots, e_t \text{ contains a rainbow spanning tree.}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Frieze and McKay (1994). $\tau_{RT} = \max{\{\tau_c, \tau_T\}}$ w.h.p.

Relies on Edmund's matroid intersection theorem.

Hamilton cycles

 $\tau_{c} = \min_{t} : n \text{ distinct colors are used on } e_{1}, \dots, e_{t}.$ $\tau_{H} = \min_{t} : e_{1}, \dots, e_{t} \text{ contains a Hamilton cycle.}$ $\tau_{RH} = \min_{t} : e_{1}, \dots, e_{t} \text{ contains a rainbow Hamilton cycle.}$

Conjecture: $\tau_{RH} = \max{\{\tau_c, \tau_H\}}$ w.h.p.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Hamilton cycles

 $\tau_{c} = \min_{t} : n \text{ distinct colors are used on } e_{1}, \dots, e_{t}.$ $\tau_{H} = \min_{t} : e_{1}, \dots, e_{t} \text{ contains a Hamilton cycle.}$ $\tau_{RH} = \min_{t} : e_{1}, \dots, e_{t} \text{ contains a rainbow Hamilton cycle.}$

Conjecture: $\tau_{RH} = \max{\{\tau_c, \tau_H\}}$ w.h.p.

It is known that if we have n + o(n) colors and $(1 + o(1))n \log n$ random edges then w.h.p. there is a rainbow Hamilton cycle. Frieze and Loh (2014), Ferber and Krivelevich (2015).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Edge colored graphs – patterns

Let $G_{n,p;\alpha}$ denote $G_{n,p}$ where each edge is independently given a random color *i* from the *palette* [*k*] with probability α_i .

A color pattern will be a sequence $\mathbf{c} = (c_1, c_2, \dots, c_n)$.

Given a sequence **c** we say that the Hamilton cycle $H = (x_1, x_2, ..., x_n, x_1)$ (as a sequence of vertices) is **c**-colored if $c(\{x_i, x_{i+1}\}) = c_i$ for i = 1, 2, ..., n.

Theorem

Let **c** be an arbitrary sequence of colors. Let $p = (\log n + \log \log n + \omega)/n$ where $\omega \to \infty$. Then w.h.p. $G_{n,\beta p;\alpha}$ contains a **c**-colored Hamilton cycle, where $\beta = 1/\alpha_{\min}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Edge colored graphs – patterns

Previous works Espig,F,Krivelevich or Anastos,F dealt with sequences that were repetitions of a small fixed sequence e.g. Black/White/Black/White/... "zebraic".

Previous works proved hitting time results, not so here.

In our result, an *adversary* chooses the sequence **c** and then we generate $G_{n,p;\alpha}$. It would be much harder if things were done in reverse order.

We do not claim that w.h.p. $G_{n,p;\alpha}$ simultaneously contains a cycle of every pattern.

ヘロン ヘアン ヘビン ヘビン

Edge colored graphs – patterns

Let $N = \binom{n}{2}$ and consider the following sequence of (partially) edge colored graphs $\Gamma_m, m = 0, 1, \dots, N$.

Let e_1, e_2, \ldots, e_N be an enumeration of the edges of K_n .

To construct Γ_t we include e_1, e_2, \ldots, e_t independently with probability kp and give each included edge a random color using distribution α .

Then for i > t we include each edge independently with probability p.

Thus Γ_0 is a copy of $G_{n,p}$ and Γ_N is a copy of $G_{n,kp;\alpha}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Edge colored graphs

A Hamilton cycle $H = (e_{\pi(i)}, i = 1, 2, ..., n)$ (as a sequence of edges) of Γ_t is (\mathbf{c}, t) -proper if $c(e_{\pi(j)}) = c_j$ for $\pi(j) \le t$.

Let \mathcal{G}_t denote the set of graphs containing a (\mathbf{c}, t) -proper Hamilton cycle.

We claim that

 $\mathbf{Pr}(\Gamma_t \in \mathcal{G}_t) \leq \mathbf{Pr}(\Gamma_{t+1} \in \mathcal{G}_{t+1}) \text{ for } t \geq 0.$

We modify McDiarmid's argument.

Vertex colored graphs – patterns

Suppose now that each vertex of $G_{n,p}$ is given one of k colors. Let V_i denote the vertices of color i and assume that $|V_i| = \alpha_i n$ for $i \in [k]$.

Given a sequence **c** we now say that the Hamilton cycle $H = (x_1, x_2, ..., x_n, x_1)$ (as a sequence of vertices) is **c**-colored if $c(x_i) = c_i$ for i = 1, 2, ..., n.

Theorem

Let **c** be an arbitrary sequence of colors where each color *j* appears exactly $\alpha_j n$ times. Let $p = K \log n/n$ where K = K(k) is sufficiently large. Then w.h.p. $G_{n,p}^{[k]}$ contains a **c**-colored Hamilton cycle.

・ロン・西方・ ・ ヨン・

э

The proof relies on the breakthrough result of Frankston, Kahn, Narayanan and Park (2021) on *spread hypergraphs*.

ヘロト ヘアト ヘビト ヘビト

The proof relies on the breakthrough result of Frankston, Kahn, Narayanan and Park (2021) on *spread hypergraphs*.

A hypergraph \mathcal{H} is *r*-bounded if $e \in \mathcal{H}$ implies that $|e| \leq r$.

ヘロン 人間 とくほ とくほ とう

The proof relies on the breakthrough result of Frankston, Kahn, Narayanan and Park (2021) on *spread hypergraphs*.

A hypergraph \mathcal{H} is *r*-bounded if $e \in \mathcal{H}$ implies that $|e| \leq r$.

For a set $S \subseteq X = V(\mathcal{H})$ we let $\langle S \rangle = \{T : S \subseteq T \subseteq X\}$ denote the subsets of X that contain S. We say that \mathcal{H} is κ -spread if we have the following bound on the number of edges of \mathcal{H} that contain a particular set S:

$$|\mathcal{H} \cap \langle \boldsymbol{S} \rangle| \leq rac{|\mathcal{H}|}{\kappa^{|\boldsymbol{S}|}}, \quad \forall \boldsymbol{S} \subseteq \boldsymbol{X}.$$

ヘロト ヘアト ヘヨト ヘ

э.

Let X_p denote a subset of X where each $x \in X$ is included independently in X_p with probability p.

Theorem

Let \mathcal{H} be an *r*-bounded, κ -spread hypergraph and let $X = V(\mathcal{H})$. There is an absolute constant C > 0 such that if

 $p \geq rac{C \log r}{\kappa}$

then w.h.p. X_p contains an edge of \mathcal{H} . Here w.h.p. assumes that $r \to \infty$.

ヘロト ヘアト ヘビト ヘビト

Let X_p denote a subset of X where each $x \in X$ is included independently in X_p with probability p.

Theorem

Let \mathcal{H} be an *r*-bounded, κ -spread hypergraph and let $X = V(\mathcal{H})$. There is an absolute constant C > 0 such that if

 $p \geq rac{C \log r}{\kappa}$

then w.h.p. X_p contains an edge of \mathcal{H} . Here w.h.p. assumes that $r \to \infty$.

We let $X = {[n] \choose 2}$. Each $x = \{u, v\} \in X$ will have colored endpoints $\{c(u), c(v)\}$. Our hypergraph \mathcal{H} consists of sets of *n* edges with colored endpoints that together make up a **c**-colored Hamilton cycle. We find that \mathcal{H} has spread $\kappa = \Omega(n)$.

A fixed order for a subset of vertices

We have a fixed set $S_0 \subseteq [n]$ and a fixed ordering of the vertices in S_0 .

Theorem

Let $p = (\log n + \log \log n + \omega)/n$, $\omega = o(\log \log n)$ and $S_0 \subseteq [n]$, $|S_0| = s_0 = \omega_1 n/\log n$ where $\omega_1 = o(\log \log \log n)$. Then w.h.p. $G_{n,p}$ contains a Hamilton cycle in which the vertices S_0 appear in natural order.

The natural constraint on ω_1 should be $o(\log \log n)$.

This is related to work of Robinson and Wormald who consider random regular graphs and Hamilton cycles that contain a given set of $o(n^{2/5})$ edges to be contained in order in the cycle.

A fixed order for a subset of vertices

We begin by partitioning $G_{n,p}$ into $\Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4$.

We use Γ_1, Γ_2 to "bury" each $v \in S_0$ inside a short path P_v with endpoints x_v, y_v .

The internal vertices of the P_v 's play no further role.

We then use Γ_1 to find vertex disjoint paths Q_v from y_v to x_{v+1} for $v \in S_0$: let $P^* = (P_1, Q_1, P_2, \dots, Q_{s_0-1}, P_{s_0})$

 $x_1 P_1 y_1 Q_1 x_2 x_{s_0} P_{s_0} y_{s_0}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We then contract P^* to an edge e^* and use fairly standard ideas to find a Hamilton cycle containing the edge e^* .

Bounds on the number of inversions

We place a restiction on the number $\iota(H)$ of invertions in the permutation of [n] that defined by the Hamilton cycle H.

Theorem

Suppose that $M = \Omega(n \log n)$. If $p \ge \frac{Kn \log n}{M}$ then w.h.p. $G_{n,p}$ contains a Hamilton cycle H with $\iota(H) \le M$. If $p \le (1 - \epsilon) \min\left\{\frac{\log n}{n}, \frac{n}{eM}\right\}$ then w.h.p. $G_{n,p}$ does not.

In addition

Theorem

If $M \leq Kn^2/\log^2 n$ and $p \geq \frac{10 \max\{K,1\}n}{M}$ then w.h.p. $G_{n,p}$ contains a Hamilton cycle H with $\iota(H) \leq M$.

The first theorem is non-constructive, relying on spread, while the second relies on the analysis of a simple greedy algorithm.

프 > · · · 프 · · · 프

THANK YOU

Alan Frieze, Carnegie Mellon University Hamilton Cycles