THREE-EDGE-COLORING PROJECTIVE PLANAR CUBIC GRAPHS: A GENERALIZATION OF THE FOUR COLOR THEOREM

KEN-ICHI KAWARABAYASHI
National Institute of Informatics, Chiyoda City, Japan

We prove that every cyclically 4 -edge-connected cubic graph that can be embedded in the projective plane, with the single exception of the Petersen graph, is 3 -edge-colorable. In other words, the only (non-trivial) snark that can be embedded in the projective plane is the Petersen graph.

This implies that a 2 -connected cubic (multi)graph that can be embedded in the projective plane is not 3 -edge-colorable if and only if it can be obtained from the Petersen graph by replacing each vertex by a 2 -edge-connected planar cubic (multi)graph. Here, a replacement of a vertex v in a cubic graph G is the operation that takes a 2 -connected planar (cubic) multigraph H containing some vertex u of degree 3 , unifying $G-v$ and $H-u$, and connecting the vertices in $N_{G}[v]$ in $G-v$ with the three neighbors of u in $H-u$ with 3 edges. Any graph obtained in such a way is said to be Petersen-like.

This result is a nontrivial generalization of the Four Color Theorem, and its proof requires a combination of extensive computer verification and computer-free extension of existing proofs on colorability.

