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Abstract: In this paper, we report on recent progress concerning combinatorial aspects of normal ordering.

After giving a short introduction to the history and motivation of normal ordering, we present some recent

developments. Many of them are related to the quantum plane or the Weyl algebra or close relatives thereof.

Along the way, a few open problems are mentioned.
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1. Introduction

Maybe the first explicit results concerning normal ordering were derived by Scherk [120] in his dissertation from

1823. There he considered (in our terminology, see [22, Appendix A]) the two operators X and D acting on

functions of a real variable by

(Xf)(x) = xf(x), (Df)(x) =
df

dx
(x).

These two operators do not commute, but have the commutation relation

DX −XD = I, (1)

where I denotes the identity. An arbitrary word in X and D can be written as ω = Xr1Ds1Xr2Ds2 · · ·XrnDsn

for some rk, sk ∈ N0. Since the operators do not commute one has to be careful to respect the order of the

operators when acting on a function f . A word ω in the letters X and D is said to be in normal ordered form

if ω = ar,sX
rDs for r, s ∈ N0 (and arbitrary coefficients ar,s ∈ C). An expression consisting of a sum of words

is called normal ordered if each of the summands is normal ordered. The process of bringing a word – or a

sum of words – into a normal ordered form (by using the commutation relation) is called normal ordering. For

example, normal ordering the word D2XD yields DXD2 +D2. Writing a word ω in its normal ordered form,

ω =
∑
r,s∈N0

Sr,s(ω)XrDs, (2)

the uniquely determined coefficients Sr,s(ω) are called normal ordering coefficients. In our terminology, Scherk

[120] determined the normal ordered form of the words (XD)n and (XpD)n, for n ∈ N, and discussed combi-

natorial properties of the corresponding normal ordering coefficients. For example,

(XD)n =

n∑
k=1

S1,1(n, k)XkDk, (3)
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where the coefficients satisfy the recurrence relation S1,1(n + 1, k) = S1,1(n, k − 1) + kS1,1(n, k). Thus, the

normal ordering coefficients are precisely the Stirling numbers of the second kind S(n, k), A008277 in [127],

(which Scherk did not recognize) and one has a connection to set partitions. Presumably, (3) is the single most

well-known result concerning normal ordering and has been discovered in different contexts again and again.

As mentioned above, Scherk also discussed the analogous normal ordering coefficients Sp,1(n, k) – which are

nowadays considered as a particular example of generalized Stirling numbers (for example, S2,1(n, k) = L(n, k),

the unsigned Lah numbers, A105278 in [127]). In the same fashion, one may introduce the generalized Stirling

numbers Sp,q(n, k) by normal ordering (XpDq)n, and again, this has been done several times in literature

(e.g., by Carlitz, McCoy, Toscano – to mention just a few classical authors), see Mansour and Schork [98] for

a comprehensive survey. Early normal ordering results were derived (and used) in an implicit fashion when

special polynomials were considered with the methods of “operational calculus”.

Recall that the (first) Weyl algebra A1 can be defined by the two operators X and D satisfying (1). Thus,

from this perspective, Scherk considered normal ordering in the Weyl algebra. More abstractly, we define the

(first) Weyl algebra as the algebra generated by two symbols U and V satisfying the commutation relation

UV − V U = I, where I denotes the identity and we let U0 = V 0 = I. Thus, A1 = C〈U, V 〉/(UV − V U − I).

A basic object in physical models of quantum theory is the creation operator â† which, roughly speaking,

creates one quantum of a bosonic degree of freedom (in the single-mode case). One also has an analogous

annihilation operator â, and these two operators satisfy the bosonic commutation relation ââ† − â†â = I,

briefly [â, â†] = I. Thus, the algebra generated by â, â† is A1, and all algebraic relations carry over (in fact,

in the physical application one has in addition an involution mapping â to â†, and vice versa). In physical

applications it is useful to write a word in these operators in such a fashion that all operators â stand to the

right, i.e., in normal ordered form. Hence, the normal ordering problem was rediscovered in physics, and an

explicit combinatorial connection was drawn by Katriel [77] in 1974 when he obtained the Stirling numbers of

the second kind as normal ordering coefficients for (â†â)n, see (3). This motivated physicists to consider the

normal ordering problem for particular words in â, â† and to introduce generalized Stirling numbers as normal

ordering coefficients, thereby rediscovering many of the results mentioned above. When evaluating (â†â)n with

respect to coherent states, Katriel [78] observed in 2000 that the Bell numbers Bn (A000110 in [127]) and

the Dobiński-formula appear. Again, this result has been generalized in different directions in the physical

context, see [98]. The corresponding normal ordering problem for the creation and annihilation operators of

a fermionic degree of freedom is not interesting: The corresponding operators f̂† and f̂ satisfy the fermionic

anti-commutation relation f̂ f̂† + f̂†f̂ = I, briefly {f̂ , f̂†} = I, as well as f̂2 = 0 = (f̂†)2. However, Navon [113]

discovered in 1973 that the normal ordering coefficients for arbitrary words in the fermionic multi-mode case

can be expressed as rook numbers. Let us mention that in addition to normal ordering other orderings are

considered, e.g., anti-normal ordering (where all operators â stand to the left of all operators â†) and symmetric

ordering (Weyl ordering). Thus, the expression “reordering” can also be found in the literature to bring a word

in non-commutative symbols (operators) into a particular ordered form.

Above, we described the Weyl algebra A1 abstractly as being generated by symbols U and V satisfying the

commutation relation UV − V U = I. By considering other relations for U and V , one obtains other algebras

for which one may consider the normal ordering problem. Let us give some examples.

Example 1.1 (Commuting symbols). If we let U and V commute, i.e., UV = V U , then the resulting structure

is just C[U, V ], the ring of polynomials in U and V . The normal ordered form of a word ω containing r letters

V and s letters U is just ω = V rUs. More interesting is the binomial formula (U + V )n =
∑n
k=0

(
n
k

)
V n−kUk.

Example 1.2 (Quantum plane). Let q be a variable commuting with all powers of U and V . We will always

assume that q ∈ C and to simplify computations we will further assume that q is not a root of unity. If

we let U and V q-commute, i.e., UV = qV U , then the resulting structure is called quantum plane. If we

define for an arbitrary word ω = Ur1V s1 · · ·UrnV sn the quantities R = r1 + · · · + rn, S = s1 + · · · + sn,

and J (ω) =
∑n
k=1(rk

∑n
l=k sl), then the normal ordered form of ω is given by ω = qJ (ω)V SUR. Note that

J (ω) counts the number of inversions. A famous result due to Potter (1950) and Schützenberger (1953) is the
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q-binomial formula,

(U + V )n =

n∑
k=0

(
n

k

)
q

V n−kUk, (4)

where the q-deformed binomial coefficient (or Gaussian coefficient) is given by
(
n
k

)
q

=
[n]q !

[k]q ![n−k]q !
and where the

quantum numbers [n]q and their factorials are given by (see Cheung and Kac [38])

[n]q = 1 + q + q2 + · · ·+ qn−1, [n]q! = [n]q[n− 1]q[n− 2]q · · · [2]q[1]q. (5)

Recall that we assumed that q is not a root of unity. However, one may consider what happens when q approaches

a root of unity. Clearly, for q → 1, one returns to Example 1.1, while q → −1 yields anti-commuting variables.

Jackson [70] considered in 1910 the polynomials (a+ x)[n] = (a+ x)(a+ xq) · · · (a+ xqn−1) and showed

(a+ x)[n] =

n∑
k=0

(
n

k

)
q

q(
k
2)xkan−k (6)

for the commuting variables a and x. Johnson [71] showed – following an argument of Andrews – that (4) and

(6) are, in fact, equivalent.

Example 1.3 (q-deformed Weyl algebra). Similar as Example 1.2 provided a q-deformation of Example 1.1,

one can consider a q-deformation of the Weyl algebra A1 by letting the variables U and V satisfy a q-deformed

variant of UV − V U = I. Thus, the q-deformed Weyl algebra A1(q) is generated by U and V satisfying

UV − qV U = I. (7)

Recall that U 7→ D and V 7→ X gives a concrete representation of the undeformed Weyl algebra. In a similar

fashion, U 7→ Dq and V 7→ X gives a concrete representation of (7), where Dq denotes the Jackson derivative

(Dqf)(x) =
f(x)− f(qx)

(1− q)x
, (8)

see [38]. Maybe the first explicit discussion of (7) in the physical context was by Frisch and Bourret [58] in

1970 who also considered normal ordering aspects. The commutation relation of the creation and annihilation

operators of a q-deformed bosonic degree of freedom is given by âqâ
†
q − qâ†qâq = I, that is, exactly by (7).

Katriel and Kibler [80] considered in 1992 normal ordering (â†qâq)
n and discovered that the normal ordering

coefficients are given by the q-deformed Stirling numbers of the second kind Sq(n, k). From the mathematical

side, Cigler [40] began in 1979 a deep study of the consequences of (7) and showed that the normal ordering

coefficients of (V U)n are given by Sq(n, k), thereby extending (3) to the q-deformed situation. Normal ordering

other words in U, V satisfying (7) was considered extensively in the mathematical and physical literature, see [65]

and [98] for more results and references.

Example 1.4 (Other generalizations of the Weyl algebra). A generalization of the Weyl algebra was introduced

by Varvak [131] in 2005 by considering the commutation relation

UV − V U = hV s, (9)

where s ∈ N0 and h ∈ C. She interpreted the normal ordering coefficients in the Weyl algebra A1 as rook

numbers, and gave a similar interpretation for variables satisfying (9). The particular case s = 2, corresponding

to the Jordan plane or meromorphic Weyl algebra had been considered in detail before (by Benaoum, Berry, Diaz

and Pariguan, Shirikov and Viskov, see the extensive discussion in [98]). One particular result we would like to

mention is the following result due to Benaoum [14] and Viskov [132]: Let U and V satisfy UV − V U = hV 2,

then one has

(U + V )n =

n∑
k=0

(
n

k

)
(1| − h)k V

kUn−k, (10)

where (1| − h)k =
∏k−1
j=0 (1 + hj). Benaoum [15] also considered the q-deformed situation and showed a q-

analogue of (10). Returning to arbitrary s, the q-deformed variant UV − qV U = hV s of (9) was also studied

and generalized Stirling numbers Ss;h(n, k|q) were defined by Mansour et al. [100, 101] as normal ordering

coefficients of (V U)n. Generalizing further, the relation UV − qV U = hf(V ) was considered by Mansour and

Schork [97] as well as Benkart et al. [16, 17].
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Above, we introduced those algebras which have been examined in most detail with respect to normal

ordering (or to some other ordering scheme, like anti-normal ordering). Note that all structures considered above

have only one nontrivial commutation relation. In this situation, one obtains nice combinatorial structures for

the normal ordering coefficients. Clearly, one may similarly consider algebras having more generators as long

as only two generators have a nontrivial commutation relation and the remaining generators are central. When

considering algebras with three or more generators where none of the generators is central (hence, one has at

least three nontrivial commutation relations) one can clearly define normal ordering in an analogous fashion

but the considerations quickly become tedious. For example, motivated by the physical context discussed by

Lohe and Thilagam [89], one may consider normal ordering words in U, V,R satisfying

UV − V U = I + νR, UR = −RU, RV = −V R, R2 = I,

where ν is some real parameter. Other “mild extensions” of the commutation relation of the Weyl algebra

have been considered in the physics literature. Another route to normal ordering in algebras having more than

two generators is to consider the multi-mode case. Recall that although normal ordering in the single-mode

case of the fermionic anti-commutation relation is not interesting from the combinatorial point of view, the

multi-mode case involves rook numbers and is clearly interesting. In a similar fashion, one can consider the

bosonic multi-mode case of the Weyl algebra, i.e., the n-th Weyl algebra An (or a multi-mode generalization of

some other structure mentioned above).

Before turning to describe the structure of the present article, we would like to give some comments on

literature. A survey of the topics discussed here and a comprehensive bibliography up to the year 2015 can be

found in Mansour and Schork [98]. The aim of the survey at hand is to present a guide to the mathematical

literature for “recent” developments concerning normal ordering – which we interpret roughly as having appeared

in 2015 or later. Thus, with great regret, we have chosen to mention from those papers having appeared before

2015 only the basic ones and refer for [98] for more references. For the recent developments, we will give complete

references. The first survey concerning normal ordering from a combinatorial point of view is due to Blasiak

and Flajolet [22] and appeared in 2011 – and it is still highly recommended. A host of reordering formulas

(and a lot more) for the q-deformed Weyl algebra can be found in Hellström and Silvestrov [65]. In the context

of quantization one meets the same operator ordering ambiguities, leading to different quantization/ordering

schemes. A nice discussion can be found in Cohen [44] and de Gosson [62], where also reordering formulas

are given. Operator ordering questions are also treated in “non-commutative analysis”, see Maslov [102] or

Nazaikinskii et al. [114]. From a more physical side, ordering results (for the first or n-th Weyl algebra) are, of

course, given in many books or surveys; we only mention the classic book of Louisell [90] from 1964.

The structure of the paper is as follows. In Section 2, we present recent developments concerning normal

ordering in the Weyl algebra A1. In particular, combinatorial properties or interpretations for normal ordering

coefficients of particular words are discussed, leading to new interpretations for generalized Stirling numbers

of both kinds and the Whitney numbers. Furthermore, generalized geometric and Eulerian polynomials are

considered. The connection of Spivey’s identity (and a few generalizations) to normal ordering is discussed

and the normal ordered expansion of the powers of a Lie derivative revisited. In Section 3, normal ordering

in the n-th Weyl algebra is considered and a combinatorial interpretation for the normal ordering coefficients

in terms of digraphs is described. Furthermore, a few other recent developments in the multi-mode case are

mentioned. Section 4 presents several relatives of the quantum plane or the q-deformed Weyl algebra and some

of the research concerning normal ordering for them. The non-commutative binomial formula is revisited in

Section 5 where some general observations are made and a few particular instances are studied. In the final

Section 6, diverse research related to normal ordering is briefly collected.

ECA 1:2 (2021) Article #S2S2 4



Matthias Schork

2. Normal ordering coefficients in the Weyl algebra (and
slightly beyond)

In the Introduction it was mentioned that (generalized) Stirling numbers Sr,s(n, k) can be defined as normal

ordering coefficients of (V rUs)n, where U, V satisfy the commutation relation of the Weyl algebra A1, i.e.,

UV − V U = I. (11)

The analogue holds true in the q-deformed Weyl algebra A1(q) where one has the commutation relation (7).

Obviously, other words ω in U, V can be considered and the respective normal ordering coefficients be studied.

For a survey of results up to, roughly 2015, see [98]. In the following, some more recent developments are

presented.

Remark 2.1 (On notation). In the following, we mostly follow the authors notations (where possible, harmo-

nizing it a bit). Depending on the context, the generators of the Weyl algebra will sometimes be used in the

abstract version (i.e., U, V satisfying (11)), or in the concrete version (i.e., D,X satisfying (1)), or in the

physical version (i.e., â, â† satisfying ââ† − â†â = I). And at some places we will be a bit sloppy and follow

custom to write, e.g., instead of XmD also xmD or xm d
dx .

2.1 Generalized Stirling numbers revisited

The Stirling numbers and their generalizations have been studied by many authors, and many results were

discovered several times. For the generalized Stirling numbers Sr,s(n, k) mentioned in the Introduction, a lot of

properties are known, see, e.g., [22, 63,98]. In this section, we describe some recent work.

2.1.1 The Mellin derivative I

Let us start by considering powers of the Mellin derivative (or also Euler operator) XD, acting on functions of a

real variable by (XDf)(x) = x dfdx (x). Using (3), one finds for the exponential polynomials (or Bell polynomials)

Bn(x) = e−x(XD)nex =

n∑
k=0

S(n, k)xk, (12)

giving Bn(1) = Bn, the n-th Bell number. Let α, β and r real or complex numbers with (α, β, r) 6= (0, 0, 0).

The generalized Stirling numbers S(n, k;α, β, r) of Hsu and Shiue [69] have the explicit formula

S(n, k;α, β, r) =
1

βkk!

k∑
j=0

(−1)k−j
(
k

j

)
(βj + r|α)n, (13)

where (t|α)n denotes the generalized factorial (t|α)n = t(t − α) · · · (t − nα + α). A recent discussion of these

numbers can be found in Maltenfort [91]. Introducing the associated generalized exponential polynomials by

Sn(x) =
∑n
k=0 S(n, k;α, β, r)xk [69], Kargın and Corcino [76] showed the following analogue of (12).

Theorem 2.1. [76, Theorem 3] For n ∈ N0, one has

Sn(x) =
[
(xnα−re−x)

]1/β
(βx1−α/βD)n

[
(xrex)1/β

]
. (14)

The operator (βx1−α/βD)n – which is a generalization of the Mellin derivative – was considered in detail

in [76]. For example, the authors showed that [76, Eq. (2.5)]

(βx1−α/βD)n
[
xr/βf(x)

]
= x(r−nα)/β

n∑
k=0

S(n, k;α, β, r)βkxkDkf(x),

which can be considered as a result in normal ordering. Note that due to the fractional exponents this is not a

result in the Weyl algebra.
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Let us introduce the geometric polynomials by ωn(x) =
∑n
k=0 S(n, k)k!xk. The numbers ωn(1) are called

ordered Bell numbers (or also Fubini numbers) and are sequence A000670 in [127]. It is well-known that

(XD)n
{

1

1− x

}
= ωn

(
x

1− x

)
, (15)

and that ωn

(
x

1−x

)
= (1−x)−nAn(x), where An(x) denotes the n-th Eulerian polynomial. Kargın and Corcino

[76, Eq. (3.1)] introduced the generalized geometric polynomials wn(x;α, β, r) =
∑n
k=0 S(n, k;α, β, r)βkk!xk

and showed the following generalization of (15) in [76, Eq. (3.2)],

(βx1−α/βD)n
{
xr/β

1− x

}
=
x(r−nα)/β

1− x
wn

(
x

1− x
;α, β, r

)
.

Several further properties of wn(x;α, β, r) were studied in [76]. The same generalized Mellin derivative was used

by Kargın and Çekim [75] to introduce higher order geometric polynomials. Generalizing (15) by letting

(XrDs)n
{

1

1− x

}
=
Kr,s,nx

r−1Ar,s,Nr(n)(x)

(1− x)ns+1
, (16)

Agapito [4, Definition 3.4] defined polynomials Ar,s,Nr(n)(x) of degree Nr(n) = r(n − 1) + 1 which generalize

the classical Eulerian (r = 1, s = 1) and Narayana polynomials (r = 1, s = 2). Normal ordering (XrDs)n

was used to study several properties of these polynomials. In the same paper, the more general expansion

(XrDs)n
(
ax+b
cx+d

)
was also considered. A combinatorial interpretation for Ar,s,Nr(n)(x) in terms of a deformed

excedance statistic was given recently by Agapito et al. [5]. They generalized (16) further by considering the

action of an arbitrary word ΠDm−|r| = Dr1Xs1Dr2Xs2 · · ·DrnXsnDm−|r| on
{

1
1−x

}
, where |r| = r1 + · · ·+ rn

and m is any positive integer with m ≥ max(|r|, |s|) and showed [5, Theorem 5] that one has an expansion

ΠDm−|r|
{

1

1− x

}
=
Am,λ(m)(x)

(1− x)m+1
,

where the Am,λ(m) are certain generalized Eulerian polynomials defined in [5]. By considering in ΠDm−|r|

instead of D the Jackson derivative Dq, see (8), a q-deformation of the above expansion was derived [5, Eq. (24)].

Xiong and Fang [135] considered closely related expansions. They studied the operators (DeXD)n, (eXD2)n

and (D2eX)n and their action on the functions 1
1−ex and ex

1−ex . If N(n, k) = 1
n

(
n
k+1

)(
n
k

)
denote the Narayana

numbers (A001263 in [127]), then the Narayana polynomials are given by Nn(x) =
∑n−1
k=0 N(n, k)xk. Then one

has, for example,

(DeXD)n
{

1

1− ex

}
=
n!(n+ 1)!e(n+1)xNn(ex)

(1− ex)2n+1
, (17)

see [135, Eq. (1)]. Changing the variable Y = eX and letting D = d
dy , one obtains from (17) due to D = YD

the identity (YDY 2D)n
{

1
1−y

}
= n!(n+1)!yn+1Nn(y)

(1−y)2n+1 [135, Corollary 1]. Several similar formulas can be found

in [135].

In fractional calculus, the generalized Mellin derivative xρD (with ρ ∈ R) and its powers also plays a role,

see [81] and the references given therein. Katugampola [81] considered the operators (xrDs)n for r, s ∈ N, hence

the generalized Stirling numbers Sr,s(n, k). Letting s = 1, but allowing r ∈ { 1
2 ,

1
3 ,

1
4 , . . .}, he introduced new

sequences of generalized Stirling numbers as normal ordering coefficients of powers of the generalized Mellin

derivative xrD.

Definition 2.1. [81, Definition 5.1] The generalized Stirling numbers of order 1
2 , S

1
2 (n, k), are defined as

normal ordering coefficients of 2
n−1
2 (
√
xD)n, when n is odd, and of 2

n
2 (
√
xD)n, when n is even.

As mentioned in [81, Table 8], we have the first few expansions

2(
√
xD)2 = D + 2xD2, 2(

√
xD)3 = 3

√
xD2 + 2

√
x

3
D3, 22(

√
xD)4 = 3D2 + 12xD3 + 4x2D4,

giving, e.g., S
1
2 (4, 1) = 0, S

1
2 (4, 2) = 3, S

1
2 (4, 3) = 12, S

1
2 (4, 1) = 4, and a table with more values for S

1
2 (n, k)

was given in [81, Table 7]. The sequence is A223168 in [127], and it was discussed in [81] that there exists a
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close connection to generalized Laguerre poynomials. Considering the corresponding Bell numbers B
1
2
n of order

1
2 , the sequence starts with 1, 3, 5, 19, 39, 173, 407, 2025, . . . and can be found as A242818 in [127], where we also

find the relation B
1
2
n = 2b

n
2 cn![xn]ex+(x/2)2 , where [xn]f(x) denotes the n-th coefficient in the series expansion

of f . Thus, there is a close relation to the involution numbers (A000085 in [127]), whose exponential generating

function is given by ex+x2/2, see Mező [106]. In a similar fashion, the generalized Stirling numbers of order 1
r ,

for r = 2, 3, 4, . . ., were defined [81, Definition 5.2] as normal ordering coefficients of r
n−1
2 (x

1
rD)n, when n is

odd, and of r
n
2 (x1− 1

rD)n, when n is even. Tables of the first few values were given for r = 3, 4, 5, 6 in [81],

and the corresponding sequences can be found as A223168 - A223172 in [127]. Turning to the associated Bell

numbers, B
1
r
n , one obtains from the tables in [81] that the sequence of Bell numbers of order 1

3 starts with

1, 4, 7, 37, 79, 496, . . .. This sequence (and neither the ones for r = 4, 5, 6) is not contained in [127].

Problem 2.1. Give a combinatorial interpretation for the Stirling and Bell numbers of order 1
r , with r =

2, 3, 4, . . . (see also Problem 4.1). In [81, Remark 7] this was posed as a problem and a relation to counting on

Ferrer’s boards was suggested. It was furthermore suggested to extend these considerations to arbitrary r ∈ Q,

see [81, Remark 8].

2.1.2 The Mellin derivative II

Recently, Kargın and Can [74] considered different generalizations of the Mellin derivative. Recall that the

r-Stirling numbers of the second kind, S[r](n, k), can be defined by

(x+ r)n =

n∑
k=0

S[r](n, k)xk, (18)

where xk = x(x − 1) · · · (x − k + 1) denotes the falling factorial, see the references given in [74] or [106]. For

r = 0, one recovers the conventional Stirling numbers. Replacing x by (xD), and using Boole’s formula from

1844 (see [98]), (xD)k = xD(xD − 1) · · · (xD − k + 1) = xkDk, one obtains the r-shifted version of (3),

(xD + r)n =

n∑
k=0

S[r](n, k)xkDk.

Denoting by xk = x(x+1) · · · (x+k−1) the rising factorial, one has for the r-Lah numbers L[r](n, k) a definition

similar to (18), (x + 2r)n =
∑n
k=0 L

[r](n, k)xk, see [74, Eq. (4)] and the references given there. Clearly, for

r = 0 it reduces to the conventional relation for the Lah numbers. Using the same argument as before, one

obtains the following normal ordering result [74, Eq. (8)],

(xD + 2r)n =

n∑
k=0

L[r](n, k)xkDk. (19)

For r = 0, this gives another interpretation for the Lah numbers as normal ordering coefficients (recall from the

Introduction that they also appear upon normal ordering (x2D)n). Applying (19) to the function ex, one finds

(xD+ 2r)nex = exL
[r]
n (x), where the exponential r-Lah polynomials are defined by L

[r]
n (x) =

∑n
k=0 L

[r](n, k)xk.

Using these exponential r-Lah polynomials, many identities of the r-Lah numbers were rediscovered in [74].

There, geometric r-Lah polynomials L
[r]
n (x) were introduced by L

[r]
n (x) =

∑n
k=0 L

[r](n, k)k!xk (compare with

the definition of the geometric polynomials ωn(x) in Section 2.1.1), and one has in analogy to (15)

(xD + 2r)n
{

1

1− x

}
=

1

1− x
L[r]
n

(
x

1− x

)
,

see [74, Section 7]. Using these polynomials, identities relating r-Lah numbers, r-Stirling numbers, Bernoulli

numbers and (hyper-)harmonic numbers were derived in [74].

2.1.3 Generalized Stirling numbers of the first kind

Scherk [120] considered in 1823 also the expressions (exD)n, and he found (in our terminology) that

(exD)n = enx
n∑
k=0

|s(n, k)|Dk, (20)
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i.e., the signless Stirling numbers of the first kind (s(n, k) is A132393 in [127]) appear as normal ordering

coefficients. This has been generalized in different directions, see [98]. Clearly, an immediate step is to consider

the expansion of (erxDs)n, where r ∈ R and s ∈ N. El-Desouky [53] considered a sequence r = (r1, . . . , rn)

of real numbers and a sequence s = (s1, . . . , sn) of natural numbers and defined generalized Stirling numbers

sr,s(k) as normal ordering coefficients,

ernxDsn · · · er2xDs2er1xDs1 = e|r|x
|s|∑
k=s1

sr,s(k)Dk, (21)

where |r| = r1 + r2 + · · · + rn (and similarly for |s|), and where sr,s(k) = 0 for s1 > k and k > |s|. Choosing

r = (1, . . . , 1) and s = (1, . . . , 1) and comparing with (20), one finds that s(1,...,1),(1,...,1)(k) = |s(n, k)|. Several

properties of the numbers sr,s(k) were studied in [53]. More recently, El-Desouky et al. [54] defined certain

β-numbers as follows. Let again r = (r1, . . . , rn) be a sequence of real numbers and s = (s1, . . . , sn) be a

sequence of natural numbers. Then the β-numbers βr,s(n, k) are defined as normal ordering coefficients,

(DsnernxDsn) · · · (Ds2er2xDs2)(Ds1er1xDs1) = e|r|x
2|s|∑
k=s1

βr,s(n, k)Dk, (22)

where βr,s(n, 0) = 1 and βr,s(n, k) = 0 for s1 > k > 2|s|. In [54], the recurrence relation and explicit expression

for βr,s(n, k) were derived and many special cases were discussed.

2.1.4 Interpretations for generalized Stirling numbers of the second kind

The generalized Stirling and Bell numbers have been interpreted in new combinatorial ways recently. First,

we present an interpretation for the generalized Stirling and Bell numbers Sm,m(n, k) and Bm,m(n) according

to Codara et al. [43]. Recall from the introduction that Sm,m(n, k) is given as normal ordering coefficient of

(XmDm)n. We follow closely the presentation given in [43]. A k-colouring of a graph G is a partitioning of the

vertex set of G into k non-empty stable sets, i.e., sets not containing adjacent vertices. Each such stable set is

called a colour class of the partition. Let us denote by Km the complete graph on m vertices, and by nKm the

disjoint union of n copies of Km, see Figure 1 for 2K4 with a particular 5-colouring.

Figure 1: The graph 2K4 with a particular 5-colouring.

Now, we can state the following result.

Theorem 2.2. [43, Proposition 2.2] The number of k-colourings of nKm is given by Sm,m(n, k).

The proof consists in checking that the number of k-colourings of nKm satisfies the same recurrence relation

as Sm,m(n, k). As an example, S2,2(n, k) is A078739 in [127]. To present the interpretation of Bm,m(n) according

to [43], we consider digraphs (directed graphs) that allow loops and multiple edges in the same direction. A

digraph G is Eulerian if at every vertex the in-degree equals the out-degree. The edge set of an Eulerian

digraph G can be partitioned into directed cycles. An Eulerian digraph is called (n,m)-labelled if its edge set is

partitioned into n directed m-cycles, each with a distinguished first edge. See Figure 2 for an example.

Figure 2: A (2, 4)-labelled Eulerian digraph.
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Theorem 2.3. [43, Theorem 3.1] The number of (n,m)-labelled Eulerian digraphs is given by Bm,m(n).

The proof consists in showing a bijection between the set of (n,m)-labelled Eulerian digraphs and the number

of colourings of nKm, and using Theorem 2.2. As an example, B2,2(n) is A020556 in [127].

The interpretation given in Theorem 2.2 was generalized by Engbers et al. [55] as follows. Let ω be a word

in X and D having m X ′s and n D′s (m ≥ n). Then one has the unique expansion

ω = Xm−n
∑
k≥0

Sω(k)XkDk, (23)

where Sω(k) are called Stirling numbers associated to ω. A word ω in the alphabet {X,D} is a Dyck word, if it

has the same number of X ′s and D′s, and if, reading the word from left to right, every initial segment has at

least as many X ′s as D′s. For a Dyck word of length at least four, we say that it is irreducible if, on deletion

of a leading X and a trailing D, the resulting word is a Dyck word, and say that it is reducible otherwise. Note

that an irreducible Dyck word is of the form Xω′D, where ω′ is a Dyck word. For a Dyck word ω, a graph Gω

is associated inductively as follows [55]:

(1) For ω = XD, Gω = K1 (the isolated vertex).

(2) If ω = Xω′D is irreducible, then Gω = Gω′ +K1 (the graph obtained from Gω′ by adding a dominating

vertex).

(3) If ω = ω1 · · ·ω` is reducible, then Gω = Gω1
∪ · · · ∪Gω` (the disjoint union of the Gωj ).

Example 2.1. If ω = (XD)n, then G(XD)n is the empty graph Gn on n vertices. Much more interesting is

ω = (XrDr)n, where G(XrDr)n = nKr, the disjoint union of n copies of Kr.

Following Engbers et al. [55] (see also Duncan and Peele [49]), we introduce the following objects.

Definition 2.2. Given a graph G and k ∈ N, we denote by S(G, k) the graphical Stirling number, that is,

the number of ways of partitioning the vertex set of G into k nonempty classes, none of which contains both

endvertices of an edge of G. The graphical Bell number BG is defined by BG =
∑|V (G)|
k=0 S(G, k).

Note that this definition is equivalent to the number of ways of colouring the vertices of G using k colours,

where each colour is used for at least one vertex.

Example 2.2. If Gn is the graph on n vertices having no edges, then S(Gn, k) = S(n, k). Combining this with

Example 2.1, we find that S(n, k) = S(Gn, k) = G(XD)n = S1,1(n, k).

Combining Theorem 2.2 with Example 2.2, one obtains Sr,r(n, k) = S(G(XrDr)n , k), that is, the generalized

Stirling numbers Sr,r(n, k) can be interpreted as graphical Stirling numbers of the graph G(XrDr)n = nKr

associated to the word ω = (XrDr)n. This can be generalized to arbitrary Dyck words.

Theorem 2.4. [55, Theorem 2.3] Let ω be a Dyck word in the alphabet {X,D}. For all k ∈ N one has

Sω(k) = S(Gω, k).

To extend this result to arbitrary words ω, we follow again [55] and let a = a(ω) be the least nonnegative

integer such that all initial segments of Xaω have at least as many X ′s as D′s, and let b = b(ω) be the unique

nonnegative integer such that XaωDb is a Dyck word. It is called Dyck word associated with ω. Writing ω as

in (23), one finds

XaωDb = Xa+m−n
∑
k≥0

Sω(k)XkDk+b =
∑
k≥0

Sω(k)Xk+bDk+b,

where a + m = b + n was used. Comparing this with XaωDb =
∑
k≥0 SXaωDb(k)XkDk, one finds Sω(k) =

SXaωDb(k+ b). Since XaωDb is a Dyck word, we can use Theorem 2.4 to obtain Sω(k) = S(GXaωDb , k+ b) [55,

Corollary 2.5]. Let us point out that in [55] another interpretation for Sω(k) in terms of graphs was given,

as well as a combinatorial interpretation for the corresponding q-deformed generalized Stirling numbers Sqω(k)

(appearing in the analogue of (23) but where D is replaced by the Jackson derivative Dq). Thus, for a general
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Dyck word ω one has an interpretation for Sω(k) in terms of the graphical Stirling numbers, while for the

particular Dyck words ω = (XmDm)n one has the additional interpretation in terms of (n,m)-labelled Eulerian

digraphs. As a first step to extend the latter interpretation to arbitrary Dyck words, Codara and D’Antona [42,

Theorem 3.1] constructed a bijection between the set of all Dyck words and a particular class of labelled Eulerian

digraphs, the Dyck-Eulerian digraphs. For a vector s = (s1, . . . , sn) of positive integers an Eulerian digraph is

called s-labelled if its edge set is partitioned into n directed cycles of length s1, . . . , sn, each with distinguished

first edge. In this terminology, the graph from Figure 2 is a (4, 4)-labelled Eulerian digraph, and what we called

above (n,m)-labelled Eulerian digraph is in this terminology an (m, . . . ,m)-labelled Eulerian digraph (n times

m). An s-labelled Eulerian digraphs is a Dyck-Eulerian digraph if it satisfies some conditions on its cycles,

see [42, Definition 2.1].

Problem 2.2. a) Given a Dyck word ω in X and D, the generalized Stirling numbers Sω(k) from (23) should

have a combinatorial interpretation in terms of the Dyck-Eulerian digraph Eω associated to ω (according to [42,

Theorem 3.1]). This problem was also mentioned by Codara and D’Antona [42]. b) Recall that the number

of Dyck paths (hence, Dyck words) of length 2n is given by the Catalan number Cn = 1
n+1

(
2n
n

)
, see A000108

in [127]. One may refine the consideration by considering Dyck paths with ` “peaks”. A peak corresponds in

our representation in a Dyck word to a letter D which has as a left neighbour a letter X. For example, the

Dyck word (and path) of Figure 3 has 3 peaks. The number of Dyck paths of length 2n with exactly ` peaks

is given by the Narayana number N(n, `), see A001263 in [127]. Clearly, Cn =
∑n
`=0N(n, `). Can one say

more in the above interpretations for Sω(k) if ω has exactly ` peaks? c) In the opposite direction: As mentioned

after Theorem 2.4, the interpretation for Sω(k) as graphical Stirling number can be extended from Dyck words

to arbitrary words. What about the interpretation in terms of some kind of Eulerian digraphs (extension of a)

above)?

Galvin [59] gave another interpretation for Sω(k) in terms of matchings in bipartite graphs. Associated to

a Dyck word ω in X and D we associate a Dyck path in Z2. Recall that a Dyck path is a staircase path (a path

that proceeds by taking unit steps, either in the positive x direction or the positive y direction) that starts in

(0, 0), ends on the line x = y, and never goes below this line. By mapping X (resp., D) to a step in the positive

y direction (resp., x direction) we obtain a natural bijection between Dyck words and Dyck paths, see Figure 3

(recall that we read ω from left to right).

Figure 3: Dyck path and associated Ferrers board Bω for ω = XDXXDXDD with a placement of two non-
attacking rooks (left). Associated bipartite graph Γω with matching of size 4− 2 = 2 in red (right).

The cells lying above the Dyck path (in the board [0, n]× [0, n], when there are n letters X and D and we

write [0, n] = {0, 1, . . . , n}), is the Ferrers board Bω associated to ω in the convention of Varvak [131]. (Note

that we obtain the same board when instead mapping X (resp., D) to a step in the positive x direction (resp.,

y direction) step and let the board be formed by the cells below the path.) If we denote by rk(Bω) the k-th rook

number of Bω, i.e., the number of ways of placing k non-attacking rooks on Bω, then we have [59, Theorem

4] Sω(k) = rn−k(Bω) which is Varvak’s result [131, Theorem 3.1]. Based on this interpretation, Galvin [59]

associated to Bω a bipartite graph Γω as follows (see Figure 3): Introduce two partition classes X = {x1, . . . , xn}
and Y = {y1, . . . , yn} and put an edge from xi to yj if and only if the cell with upper right corner (xi, yj) belongs

to Bω. A placement of k non-attacking rooks on Bω corresponds bijectively to a selection of k independent

edges (edges sharing no endvertices) in Γω, i.e., to a matching of size k in Γω. Let us denote by mk(Γω) for the

number of matchings of size k in Γω. Then the above observations show the following result.

Theorem 2.5. [59, Theorem 6] For every Dyck word ω and k ∈ N one has Sω(k) = mn−k(Γω).
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Galvin [59, Theorem 5] gave another interpretation for Sω(k) in terms of partitions of a particular indifference

graph constructed from the cells below the Dyck path and those completely above it.

Before leaving this section, we would like to point out that the generalized Stirling numbers Sr,r(n, k) – the

normal ordering coefficients of (XrDr)n – appear in the context of juggling card sequences, see Butler et al. [29],

thereby receiving another combinatorial interpretation. Pita-Ruiz [116] introduced generalized Stirling numbers

and mentioned that they can be interpreted as normal ordering coefficients of (α0 + α1XD + · · ·+ αrX
rDr)n

(for suitably chosen coefficients αj), see [116, Eq. (73)], and announced a closer study in future research.

2.1.5 Interpretations for generalized Stirling numbers of the first kind and Lah numbers

In the preceding section, we considered generalized Stirling numbers Sω(k) by normal ordering words in X,D.

In that fashion, they are generalizations of the conventional Stirling numbers of the second kind, S(n, k).

Concerning the Stirling numbers of the first kind, one has the identity

XnDn =

n∑
k=0

s(n, k)(XD)k, (24)

which one can verify by inserting (3) and using the orthogonality relation of the Stirling numbers. It is not a

formula for normal ordering, but an example for bringing some word ω into a particular order. Eu et al. [56, Eq.

(4)] introduced for a Dyck word ω the generalized Stirling numbers of the first kind, s(ω, k), by the expansion

ω =

n∑
k=0

s(ω, k)(XD)k. (25)

(Note that in [56] the unsigned quantities are defined as generalized Stirling numbers of the first kind.) In

analogy to (24), one has

XnDn =

n∑
k=0

(−1)n−kL(n, k)XDXk−1, (26)

where L(n, k) denote again the (unsigned) Lah numbers. Eu et al. [56, Eq. (6)] defined for any word ω with

equal number of X ′s and D′s and starting with an X, the generalized Lah numbers to the word ω by

ω =

n∑
k=0

(−1)n−kL(ω, k)XDXk−1.

Clearly, one can define the analogous q-deformed numbers sq(ω, k) and Lq(ω, k), and this was also done in [56]

(the q-deformed Lah numbers Lq(n, k) resulting from the analogue of (26) seem to be a new variant not con-

sidered before). For the undeformed and deformed generalized Stirling and Lah numbers several combinatorial

interpretations were given. It was shown that |s(ω, k)| and L(ω, k) can be interpreted in terms of graph decom-

positions into certain decreasing forests ( [56, Theorem 2.2] and [56, Theorem 2.6]). Introducing suitable weights

in the forests, an interpretation for sq(ω, k) and Lq(ω, k) can also be found ( [56, Theorem 3.1] and [56, Theorem

3.8]).

Varvak [131, Theorem 6.1] gave an interpretation for Sqω(k) in terms of rook numbers on Ferrers boards,

see the preceding section for the undeformed case. As analogy to this, Eu et al. [56] gave an interpretation

for sq(ω, k) and Lq(ω, k) in terms of rook numbers, too. We follow closely [56] and present their models. For

a positive integer n, consider the square [0, n] × [0, n] in Z × Z having lower-left corner (0, 0) and upper-right

corner (n, n). A Dyck word with n letters X and n letters Dq in the q-deformed Weyl algebra forms a lattice

path from (0, 0) to (n, n), where X (resp., Dq) corresponds to a step up (resp., to the right). The Ferrers board

Bω associated to ω is the region (within the square [0, n]× [0, n]) below the path, see Figure 4. (Note that the

board Bω is formed by the cells below the path while in the preceding section the cells above the path formed

the board! In general, there exists a relation between the rook numbers of a board and the rook number of its

complementary board, see Alayont and Krzywonos [6].) The rows (resp., columns) of the board are indexed

from bottom to top (resp., from left to right), and the (i, j) cell is the intersection of the i-th row with the j-th

column. As above, a k-rook placement of Bω is a way to place k non-attacking rooks on the board Bω (i.e., no

two rooks are in the same row or in the same column).
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Figure 4: A 4-rook placement σ ∈ R(ω, 3) for ω = XDqXXDqXDqDq with inv(σ) = 2.

If the Dyck word ω has n letters X and n letters Dq, then the board Bω can always accommodate n non-

attacking rooks. Given such an n-rook placement on Bω, a rook in cell (i, j) is white if there is no rook placed

in all cells (a, b) with a < i and b > j, otherwise it is black. Thus, there is no rook placed south-east of a white

rook; see left of Figure 4 for an example. Let R(ω, k) be the set of all n-rook placements on Bω with k white

rooks. For σ ∈ R(ω, k) we define the statistic inv(σ) to be the number of cells in Bω that either do not have a

rook above them in the same column or to the left of them in the same row, or have a black rook on them; see

the right of Figure 4 for an example. Let rq(ω, k) be defined as

rq(ω, k) =
∑

σ∈R(ω,k)

q−inv(σ).

Theorem 2.6. [56, Theorem 4.1] Let ω be a Dyck word of length 2n in the alphabet {X,Dq} where X,Dq

satisfy the commutation relation DqX − qXDq = I of the q-deformed Weyl algebra. Then |sq(ω, k)| = rq(ω, k),

i.e.,

ω =

n∑
k=0

(−1)n−krq(ω, k)(XDq)
k.

Note that setting q = 1, one finds |s(ω, k)| = |R(ω, k)|. Let us turn to the generalized Lah numbers. For

any word ω with n letters X and n letters Dq which starts with X, the bottom row of Bω has n cells. Let B∗ω
be the board obtained from Bω by deleting the bottom row. Let U(ω, k) be the collection of k-rook placements

on B∗ω, see Figure 5. For σ ∈ U(ω, k) we define the statistic inv′(σ) to be the number of cells in B∗ω that either

have a rook on them, or do not have a rook above them in the same column or to the left of them in the same

row, see Figure 5.

Figure 5: A rook placement σ ∈ U(ω, 2) for ω = XDqXXDqXDqDq with inv′(σ) = 3.

Let uq(ω, k) be defined as

uq(ω, k) =
∑

σ∈U(ω,k)

q−inv
′(σ).

Theorem 2.7. [56, Theorem 4.4] Let ω be a Dyck word of length 2n in the alphabet {X,Dq} starting with

an X where X,Dq satisfy the commutation relation DqX − qXDq = I of the q-deformed Weyl algebra. Then

Lq(ω, k) = uq(ω, n− k), i.e.,

ω =

n∑
k=0

(−1)n−kuq(ω, n− k)XDk
qX

k−1.

(Note that there seems to be a typo in the statement of Theorem 4.4 in [56] where Lq(ω, k) = uq(ω, k) is

stated while the proof gives Lq(ω, k) = uq(ω, n− k).) Setting q = 1, one obtains L(ω, k) = |U(ω, n− k)|.
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2.2 The (q, r)-Whitney numbers as normal ordering coefficients

Recall that Mező [105] introduced the r-Whitney numbers wm,r(n, k) and Wm,r(n, k) of the first and second

kind as the coefficients in the expressions

mnxn =

n∑
k=0

wm,r(n, k)(mx+ r)k, (mx+ r)n =

n∑
k=0

mkWm,r(n, k)xk, (27)

where xm = x(x − 1) · · · (x − m + 1) denotes the falling factorial. See Mező [106] for more literature on

these numbers and the different disguises in which they appeared before [105]. They constitute a particular

subfamily of the generalized Stirling numbers S(n, k;α, β, r) of Hsu and Shiue [65] given in (13), wm,r(n, k) =

S(n, k;m, 0,−r) and Wm,r(n, k) = S(n, k; 0,m, r), as was discussed recently by Maltenfort [91]. For m = 1 and

r = 0, they reduce to the conventional Stirling numbers of the first and second kind, i.e., w1,0(n, k) = s(n, k) and

W1,0(n, k) = S(n, k). For other choices of m and r one recovers the r-Stirling numbers and Whitney numbers,

see the discussion in Mangontarum and Katriel [95].

Mangontarum and Katriel [95] defined (q, r)-Whitney numbers – as a q-deformed generalization of the r-

Whitney numbers – explicitly as normal ordering coefficients. They first showed that one can rewrite (27)

in terms of the bosonic annihilation and creation operators â and â† mentioned above (and satisfying the

commutation relation ââ† − â†â = I) as

mn(â†)nân =

n∑
k=0

wm,r(n, k)(mâ†â+ r)k, (mâ†â+ r)n =

n∑
k=0

mkWm,r(n, k)(â†)kâk. (28)

Note that, for m = 1 and r = 0, one finds for the right-hand side (â†â)n =
∑n
k=0 S(n, k)(â†)kâk, the basic result

of Katriel [77] mentioned in the Introduction (where we used W1,0(n, k) = S(n, k)). To turn to the q-deformed

generalization, the idea of [95] is to substitute in (28) the operators â and â† by their q-deformed version âq, â
†
q

(encountered in Example 1.3) satisfying the commutation relation (7) of the q-deformed Weyl algebra, i.e.,

âqâ
†
q − qâ†qâq = I. Thus, the (q, r)-Whitney numbers of the first and second kind, wm,r,q(n, k) and Wm,r,q(n, k),

were defined (see [95, Definition 2]) as coefficients in the expressions

mn(â†q)
nânq =

n∑
k=0

wm,r,q(n, k)(mâ†qâq + r)k, (mâ†qâq + r)n =

n∑
k=0

mkWm,r,q(n, k)(â†q)
kâkq (29)

with appropriate initial conditions. Thus, the numbers Wm,r,q(n, k) were defined explicitly as normal ordering

coefficients. Using the commutation relation and the well-known relations

(â†q)
nânq =

n∑
k=0

(−1)n−ksq(n, k)(â†qâ)kq , (â†qâq)
n =

n∑
k=0

Sq(n, k)(â†q)
kâkq ,

where sq(n, k) and Sq(n, k) denote the q-deformed Stirling numbers of the first and second kind, one can show

the following results by induction.

Theorem 2.8. [95, Theorem 3] The (q, r)-Whitney numbers satisfy the following identities:

wm,r,q(n, k) = (−1)n−k
n∑
i=k

(
i

k

)
ri−kmn−isq(n, i), Wm,r,q(n, k) =

n∑
i=k

(
n

i

)
rn−imi−kSq(i, k).

Theorem 2.9. [95, Theorem 6] The (q, r)-Whitney numbers satisfy the following recurrence relations:

wm,r,q(n+ 1, k) = q−n (wm,r,q(n, k − 1)− (m[n]q + r)wm,r,q(n, k)) ,

Wm,r,q(n+ 1, k) = qk−1Wm,r,q(n, k − 1) + (m[k]q + r)Wm,r,q(n, k).

Many properties of these numbers can be found in [95] (e.g., orthogonality relations, other recurrence re-

lations, the specialization to other well-known numbers). One final point to mention is that an analogue of

the Bell polynomials B(x) =
∑n
k=0 S(n, k)xk (note that B(1) = Bn, the n-th Bell number) was considered

in [95]. The (q, r)-Dowling polynomials were defined [95, Definition 14] by Dm,r,q(n, x) =
∑n
k=0Wm,r,q(n, k)xk

(with Dm,r,q(n, 1) the (q, r)-Dowling numbers) and many properties were shown, in particular the connection to

coherent states and a Dobiński-like formula. The (q, r)-Whitney numbers were further studied by Bent-Usman

et al. [18] and Mangontarum [92]. A different q-deformation of the r-Whitney numbers of the second kind was

introduced by Corcino et al. [47].
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2.3 The Spivey identity revisited

In 2008, Spivey [128, Eq. (3)] found the following new identity for the conventional Bell numbers,

Bn+m =

n∑
k=0

m∑
j=0

jn−k
(
n

k

)
S(m, j)Bk. (30)

Since then, this identity has been generalized in several directions (e.g., extension to different generalized Bell

numbers - including q-deformed variants, dual identities), see, e.g., [98, 106]. From this huge amount of papers

we would like to point out some which have a relation to normal ordering. Immediately after [128] had appeared,

Katriel [79] derived a q-deformed variant of (30) by considering the operators X and Dq (the Jackson derivative)

satisfying the commutation relation DqX − qXDq = I of the q-deformed Weyl algebra. In fact,

(XDq)
n+m = (XDq)

n
m∑
j=0

Sq(n, j)X
jDj

q =

m∑
j=0

Sq(m, j)X
j([j]q + qj(XDq))

nDj
q,

where in the first equality the q-analogue of (3) was used and in the second (XDq)X
n = Xn([n]q + qn(XDq)).

Expanding the binomial, one has

(XDq)
n+m =

m∑
j=0

n∑
k=0

Sq(m, j)[j]
n−k
q

(
n

k

)
qjkXj(XDq)

kDj
q.

Applying this to eq(x) =
∑∞
l=0

xl

[l]q !
and using 1

eq(x) (XDq)
neq(x) = Bn(q;x), one obtains upon setting x = 1

Bn+m(q) =

n∑
k=0

m∑
j=0

[j]n−kq

(
n

k

)
Sq(m, j)q

jkBk(q), (31)

the q-deformed Spivey identity due to Katriel [79]. Clearly, letting q = 1, one recovers (30). In the undeformed

case, the same proof can be used for X and D satisfying (1). This line of reasoning was pursued further by

Mangontarum and Dibagulun [94] who derived as a further generalization of (31) an analogous identity for the

r-Dowling polynomials (hence, r-Dowling numbers). Crucial for their approach using normal ordering was the

identity (see [94, Theorem 1])

(mXD + r)n =

n∑
k=0

mkWm,r(n, k)XkDk (32)

which is equivalent to the second equation of (28). Mangontarum [93] derived shortly later an identity for the

(q, r)-Dowling polynomials Dm,r,q(n, x), see Section 2.2, from which the results of [94] follow by letting q = 1.

Thus, we will directly mention this result. Denoting the falling q-factorial by [x]q,j = [x]q[x−1]q · · · [x−k+ 1]q,

we can state the following result [93, Eq. (24)],

Dm,r,q(n+ `, x) =

n∑
k=0

∑̀
j=0

mj

(
n

k

)
Wm,r,q(`, j)(m[j]q + r)n−kqjkDm,0,q(k, x)[x]q,j . (33)

Setting x = 1,m = 1 and r = 0, one recovers due to W1,0,q(`, j) = Sq(`, j) identity (31). The proof of (33)

follows roughly the argument presented above for (31). For (33), the crucial ingredient is the second equation

of (29), and the result follows by comparing the result of two different ways of expanding (mâ†qâq + r)n+` and

using ordering results in the q-deformed Weyl algebra.

Very recently, Oussi [115] obtained a nice (p, q)-deformed version of the Spivey identity. To achieve this, it

was – apart from using the (p, q)-derivative Dp,q – necessary to consider in addition the Fibonacci operator Np

and its nontrivial commutation relation with X and Dp,q. (Cigler [40] had used this operator – with symbol ε –

in his study of X,Dq satisfying DqX − qXDq = I where one has DqX −XDq = Nq.). Thus, let us follow [115]

and introduce for two deformation parameters p, q the following operators by their action on functions,

(Dp,qf)(x) =
f(px)− f(qx)

x(p− q)
, (Npf)(x) = f(px).
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Clearly, for p = 1, one recovers the Jackson derivative, D1,q = Dq, see (8), and N1 = I is the identity. These

operators satisfy the commutation relations [115, Eq. (7) - (9)]

Dp,qX − qXDp,q = Np, NpX = pXNp, Dp,qNp = pNpDp,q. (34)

Denoting the (p, q)-deformed numbers by [n]p,q = pn−qn
p−q , one shows Dp,qX

n = qnXnDp,q + [n]p,qX
n−1Np by

induction [115, Proposition 1]. This is the main ingredient for the following (p, q)-generalization of (3).

Theorem 2.10. [115, Proposition 3] Let n ∈ N. Then one has

(XDp,q)
n =

n∑
k=0

Sp,q(n, k)XkNn−k
p Dk

p,q, (35)

where Sp,q(n, k) denotes the (p, q)-deformed Stirling numbers of the second kind with Sp,q(0, 0) = 1 and satisfying

the recurrence relation Sp,q(n, k) = pn−kqk−1Sp,q(n− 1, k − 1) + [k]p,qS
p,q(n− 1, k).

In [98, Section 2.4], one can find a discussion of closely related (p, q)-deformed Stirling numbers and also

many references. The (p, q)-deformed Bell numbers are defined by Bn(p, q) =
∑n
k=0 S

p,q(n, k). To derive a

(p, q)-analogue of (31) in a similar operational fashion, one introduces the (p, q)-exponential function ep,q(x) by

ep,q(x) =

∞∑
n=0

p(
n
2) xn

[n]p,q!
,

where [n]p,q! = [n]p,q[n − 1]p,q · · · [1]p,q! with [0]p,q! = 1, and uses that Dn
p,qep,q(x) = p(

n
2)ep,q(p

nx). Applying

both sides of (35) to ep,q(x) and dividing by ep,q(p
nx), we obtain the identity (a (p, q)-generalization of the one

mentioned immediately before (31))

1

ep,q(pnx)
(XDp,q)

nep,q(x) =

n∑
k=0

S̃p,q(n, k)xk = B̃n(p, q;x),

where S̃p,q(n, k) = p(
n
2)Sp,q(n, k) is a new variant of the (p, q)-deformed Stirling numbers, with B̃n(p, q;x) being

the associated (p, q)-deformed Bell polynomials. Adapting Katriel’s proof given above (i.e., by expanding here

(XDp,q)
n+m in two different ways), Oussi [115, Theorem 6] derived the following (p, q)-deformation of Spivey’s

identity,

B̃n+m(p, q; 1) =

m∑
k=0

n∑
j=0

(
n

j

)
[k]n−jp,q S̃

p,q(m, k)qjkB̃j(p, q; p
n+m−j).

Problem 2.3. The (q, r)-deformed Whitney numbers of the second kind Wm,r,q(n, k) were defined by (29), which

can equivalently be written as (mXDq + r)n =
∑n
k=0m

kWm,r,q(n, k)XkDk
q (and, similarly, for those of the first

kind wm,r,q(n, k)). For both kinds of r-Whitney numbers a (p, q)-deformed version has been introduced [96,118].

In view of (35) and the just mentioned definition of Wm,r,q(n, k), it is tempting to introduce by

(mXDp,q + r)n =

n∑
k=0

mkWm,r,p,q(n, k)XkNn−k
p Dk

p,q

in an operational fashion (p, q, r)-deformed Whitney numbers of the second kind Wm,r,p,q(n, k). What is their

relation to those discussed in the literature mentioned? Similarly for those of the first kind wm,r,p,q(n, k)? What

about the associated (p, q, r)-Dowling polynomials and (p, q, r)-Dowling numbers?

2.4 The coefficients of powers of an arbitrary Lie derivative

Let c(x) be a sufficiently smooth function (e.g., a polynomial) and consider the operator c(x) d
dx = c(x)D. Let us

use the convention ck = Dkc. Then we can introduce the normal ordering coefficientsAn,k = An,k(c, c1, . . . , cn−k)

by

(c(x)D)n =

n∑
k=1

An,kD
k. (36)
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The first few expansions are given by

(cD)2 = (cc1)D + (c2)D2, (cD)3 = (cc21 + c2c2)D + (3c2c1)D2 + (c3)D3. (37)

By induction, one can show that An+1,1 = cDAn,1, An,n = cn and for 2 ≤ k ≤ n

An+1,k = cAn,k−1 + cDAn,k. (38)

The numbers appearing in An,k can be found as sequence A139605 in [127]. The struggle to describe the

coefficients An,k explicitly or in a handsome combinatorial fashion began with Scherk in 1823 [120], see in

particular the discussion in [22, Appendix A]. For c(x) = xp, p ≥ 1, and c(x) = ex Scherk found a solution

for the coefficients An,k (namely, what we nowadays identify as generalized Stirling numbers Sp,1(n, k) and

the unsigned Stirling numbers of the first kind |s(n, k)|, see the Introduction and (20)). Two modern classic

papers are Comtet [45] from 1973 who gave an explicit formula for the An,k for arbitrary c(x), and Bergeron

and Reutenauer [19] from 1987 who described the coefficients An,k in terms of certain increasing trees. This

connection to increasing trees was rediscovered several times, in particular for c(x) = xp (see [22] for a thorough

discussion and also [98] for references). More recently, new interpretations were given for the coefficients An,k

in the case of arbitrary c(x).

Let us start with the description given by Benkart et al. [16]. Recall that a partition λ = (λ1, λ2, . . . , λ`) is

a weakly decreasing sequence of nonnegative integers. Each λk is called a part of λ. The sum of the parts of a

partition λ is denoted by |λ|. If |λ| = n, then we say that λ is a partition of n, denoted by λ ` n. The length of

λ, denoted by `(λ) is the maximum index j such that λj > 0. We also let cλ = cλ1cλ2 · · · cλ` . The structure of

the An,k can then be described as follows.

Theorem 2.11. [16, Lemma 8.1] Let An,k be defined by (36). There exist positive integers a(n, λ) such that

An,k =
∑

λ`n−k

a(n, λ)cn−`(λ)cλ. (39)

For example, for A3,1 there are two partitions λ = (2) (with `(λ) = 1) and ν = (1, 1) (with `(ν) = 2) of

2, giving A3,1 = a(3, λ)c2c2 + a(3, ν)c1c1c1, in accordance with (37). From (39), one can also read off that

An,n = a(n, ∅)cn (and, in fact, a(n, ∅) = 1 as mentioned above). Note that closely related expressions were

given by Mohammad-Noori [108]. Recalling that in the case c(x) = xp the normal ordering coefficients are the

generalized Stirling numbers Sp,1(n, k), one finds by comparison (see Briand et al. [26, Eq. (4.6)])

Sp,1(n, k) =
∑

λ`n−k

a(n, λ)

`(λ)∏
i=1

pλi , (40)

where the falling factorial pλi = p(p− 1) · · · (p− λi + 1) is used. The above discussion was recently generalized

by Briand et al. [26] to the powers of (c(x)Dd), with d ∈ N. Writing

(c(x)Dd)n =

nd∑
k=1

Bn,kD
k, (41)

the structure of the coefficients Bn,k can then be described as follows.

Theorem 2.12. [26, Proposition 6.8] Let Bn,k be defined by (41). There exist positive integers b(n, λ), where

λ runs through the set of partitions of size 0 ≤ |λ| ≤ (n− 1)d with at most n− 1 parts, such that

Bn,k =
∑

λ`nd−k
`(λ)≤n−1

b(n, λ)cn−`(λ)cλ. (42)

In [26], one can find also an explicit formula for the coefficients b(n, λ) which generalizes Comtet’s formula

(for the case d = 1). Similar to d = 1 considered above, the coefficients in the case c(x) = xp are the generalized

Stirling numbers Sp,d(n, k). For p ≥ d, one has the following analogue of (40) [26, Proposition 6.18],

Sp,d(n, k) =
∑

λ`nd−k
`(λ)≤n−1

b(n, λ)

`(λ)∏
i=1

pλi . (43)

ECA 1:2 (2021) Article #S2S2 16



Matthias Schork

Let us turn to another recent interpretation for the normal ordering coefficients given recently by Han and

Ma [64]. An integer sequence e = (e1, e2, . . . , en) is called an inversion sequence of length n, if 0 ≤ ei < i for all

1 ≤ i ≤ n. Let In be the set of all inversion sequences of length n. For e ∈ In, let |e|j = #{i|ei = j, 1 ≤ i ≤ n},
for 0 ≤ j ≤ n− 1. Define on In the map

ψ(e) = c · c|e|1c|e|2 · · · c|e|n−1
D|e|0 ,

(note that in [64] a map φ(e) is defined which includes the action on f , i.e., φ(e) = ψ(e)f).

Theorem 2.13. [64, Theorem 5] For n ∈ N, one has

(cD)n =
∑
e∈In

ψ(e) =
∑
e∈In

c · c|e|1c|e|2 · · · c|e|n−1
D|e|0 . (44)

As an example, let us consider n = 3 (see [64, Example 6]). Here we have the set of inversion se-

quences I3 = {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2)}. The set of corresponding ψ(e) is given by

{cccD3, cc1cD
2, ccc1D

2, cc1cD
2, cc2cD, cc1c1D}. Summing these terms gives (cc21 +c2c2)D+(3c2c1)D2 +(c3)D3,

in accordance with (37).

Note that already in the example with n = 3 one groups those terms which produce the same product. In

general, let us follow [64] and say that the type of n is a pair (k, µ), denoted by (k, µ) ` n, where k ∈ {0, 1, . . . , n}
and µ = (µ1, . . . , µn−1) is a partition of n−k. Let (|e|0, µ(e)) be the type of e ∈ In, where µ(e) is the decreasing

order of |e|1, . . . , |e|n−1. For each type (k, µ) of n, let pk,µ be the number of inversion sequences of type (k, µ).

We can then write (44) equivalently as a sum over all types (k, µ) of n [64, Eq. (12)],

(cD)n =
∑

(k,µ)`n

pk,µccµD
k =

∑
(k,µ)`n

pk,µccµ1
cµ2
· · · cµn−1

Dk. (45)

Han and Ma [64] introduced for each type (k, µ) of n a k-Young tableau of shape (k, µ) and introduced a g-index

GZ for such Young tableaus Z. The pk,µ can then be expressed as pk,µ =
∑
Z GZ , where the sum is over all

k-Young tableau of shape (k, µ), see [64, Theorem 12] and the discussion there for more details. Applications

to Eulerian (and other) polynomials were given in [64].

In another direction, Schreiber [124] developed a unifying framework for dealing with Bell polynomials and

related extensions and discussed the expansion (cD)n from the perspective of this framework [124, Section 5.6].

Problem 2.4. Recall the rather straightforward generalization from Theorem 2.11 (for (cD)n) to Theorem 2.12

(for (cDd)n) when describing the normal ordering coefficients in terms of partitions. What is the analogue of

Theorem 2.13 when describing (cDd)n, i.e., what kind of generalization of inversion sequences is needed? When

collecting the terms in an analogous fashion to (45), what is the appropriate interpretation for the coefficients

(p
(d)
k,µ, say)? What can one say in both cases when one considers the q-deformation, i.e., the Jackson derivative

Dq instead of D?

2.5 A connection to combinatorial Hopf algebras

In this section, we point out an interesting connection to combinatorial Hopf algebras. We will be brief since to

go into this in detail would take us too far afield. Blasiak et al. [21] introduced in 2010 a combinatorial algebra

G of acyclic directed graphs with a surjective morphism to the Weyl algebra A1 (generated by â and â†). Very

roughly, the combinatorial objects in G are acyclic directed graphs with incoming and outgoing edges (denoted

by Γ− and Γ+). The partial product of two such graphs Γ1 and Γ2 is the composition given by matching some

or all of the outgoing edges of Γ1 with some or all of the incoming edges of Γ2. Note that if one matches exactly

i lines, there are
(|Γ−2 |

i

)(|Γ+
1 |
i

)
i! possibilities. The product Γ1 ∗ Γ2 is the sum over all possible partial products.

There is a corresponding coproduct and Hopf algebra structure on G. The map ψ from G to A1 is as follows:

Such a graph with |Γ+| outgoing edges and |Γ−| incoming edges maps to (â†)|Γ
+|â|Γ

−| in A1. If we take as

basis the normal ordered products {(â†)kâl}k,l∈N0 , the product of two basis elements (â†)pâq and (â†)kâl is

determined by normal ordering âq(â†)k, i.e.,

(â†)pâq(â†)kâl =

min(q,k)∑
i=0

(
q

i

)(
k

i

)
i!(â†)p+k−iâq+l−i. (46)
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Note that the basic input for (46) is the normal ordering formula

âq(â†)k =

min(q,k)∑
i=0

ri(Bq,k)(â†)k−iâq−i, (47)

where ri(Bq,k) =
(
q
i

)(
k
i

)
i! is the i-th rook number of the rectangular board Bq,k with q rows and k columns (or

vice versa), see Sections 2.1.4 and 2.1.5.

Thus, if one has in G the graph Γ1 (resp., Γ2) with |Γ−1 | (resp., |Γ−2 |) incoming and |Γ+
1 | (resp., |Γ+

2 |) outgoing

edges, then ψ(Γ1) = (â†)|Γ
+
1 |â|Γ

−
1 | (resp., ψ(Γ2) = (â†)|Γ

+
2 |â|Γ

−
2 |). The product ψ(Γ2)ψ(Γ1) is given by

ψ(Γ2)ψ(Γ1) =

min(|Γ+
1 |,|Γ

−
2 |∑

i=0

(
|Γ−2 |
i

)(
|Γ+

1 |
i

)
i!(â†)|Γ

+
1 |+|Γ

+
2 |−iâ|Γ

−
1 |+|Γ

−
2 |−i.

On the other hand, building the partial product of Γ1 and Γ2 where exactly i edges are matched, the resulting

graph will have |Γ+
1 | + |Γ

+
2 | − i outgoing and |Γ−1 | + |Γ

−
2 | − i ingoing edges, and will be mapped by ψ to

(â†)|Γ
+
1 |+|Γ

+
2 |−iâ|Γ

−
1 |+|Γ

−
2 |−i. Since in Γ1 ∗ Γ2 we have to sum over all i, and for each i there are

(|Γ−2 |
i

)(|Γ+
1 |
i

)
i!

possibilities, we see that the right-hand side of the formula equals ψ(Γ1 ∗ Γ2), see [21] for more details. More

recently, Bousbaa et al. [23] introduced another Hopf algebra B of combinatorial objects (“B-diagrams”) in a

slightly different fashion. The B-diagrams have the same number of inputs and outputs, but the vertices are

labelled. One has an analogue of the map ψ above and the structure constants
(
q
i

)(
k
i

)
i! have also a combinatorial

interpretation as the number of possible compositions of certain B-diagrams. It was shown in [23] that one

can recognize two well-known combinatorial Hopf subalgebras of B: WSym – the algebra of word symmetric

functions indexed by set partitions – and BWSym – the algebra of biword symmetric functions indexed by set

partitions into lists. These two Hopf algebras were discussed recently also in [1, 27].

Let us remark that the considerations of Blasiak et al. [21] were extended by Behr et al. [11] to the case of so-

called rule diagram algebras that present graph rewriting rules and their composites. Behr and Sobociński [13]

applied this formalism to certain adhesive categories, and Behr et al. [10] applied it to stochastic rewriting

systems for graphs.

3. Normal ordering in the n-th Weyl algebra (the multi-
mode case)

In this section, we describe some recent results concerning normal ordering in the multi-mode Weyl algebra

An. In Section 3.1, a combinatorial interpretation for the associated normal ordering coefficients is given. In

Section 3.2, we mention some other recent work related to normal ordering in An. Since this has mainly an

algebraic or analytic (but not combinatoric) flavour we will be brief.

3.1 Digraphs and normal ordering in the n-th Weyl algebra

In this section, we describe a combinatorial interpretation for normal ordering in the n-th Weyl algebra An

given by Dzhumadil’daev and Yeliussizov [50,51]. First, we recall some definitions and notations from [50]. The

n-th Weyl algebra (over the field K ∈ {R,C}) is generated by {Xi, Di}1≤i≤n satisfying for 1 ≤ i, j ≤ n the

commutation relations

DiXj = XjDi + δi,j , XiXj = XjXi, DiDj = DjDi, (48)

where δi,j is the Kronecker symbol. Using multi-index notation, the elements XαDβ = Xα1
1 · · ·Xαn

n Dβ1

1 · · ·Dβn
n

with α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn0 are called monomials. Define the length `(XαDβ) and weight

ω(XαDβ) by

`(XαDβ) =

n∑
i=1

(αi − βi), ω(XαDβ) = (α1 − β1, . . . , αn − βn).

We will also write monomials in the form Xi1 · · ·XirDj1 · · ·Djs with ir, js ∈ [n]. The monomials form a vector

space basis of An. When an element w ∈ An is expressed as linear combination

w =
∑
α,β

cw(α, β)XαDβ , (49)
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we say it is in normal ordered form with normal ordering coefficients cw(α, β). The order of w is defined by

ord(w) = maxcw(α,β)6=0 |β|, where |β| = β1 + · · · + βn. Note that ord(w1w2) = ord(w1) + ord(w2). We define

the following subspaces of An,

A(0)
n =

⊕
i≥1

A(i,i)
n , A(p,q)

n = 〈XαDβ | |α| = p, |β| = q〉,

The subspace A
(0)
n formed by elements of length 0 is in fact a subalgebra. Note that, in principle, normal ordering

in An can be reduced to normal ordering in A1 since the elements with different index commute, see (48). In

other words, the normal ordering coefficients cw(α, β) in (49) can be determined from those in A1. In [51, Remark

6.1] where this was mentioned, the example X1X2D1D3X2X3D1D3X1D2 = (X1D
2
1X1)(X2

2D2)(D3X3D3) was

given for illustration.

Example 3.1. Let n = 3 and consider the monomials w1 = X1D1, w2 = X2D3, w3 = X2D1, w4 = X3D3, w5 =

X1D2 (this is [50, Example 2] with typo in w4 corrected). Then one has

w1w2w3w4w5 = 2X1X
2
2D1D2D3 + 2X1X

2
2X3D1D2D

2
3 +X2

1X
2
2D

2
1D2D3 +X2

1X
2
2X3D

2
1D2D

2
3.

Now, we want to describe the combinatorial description for the normal ordering coefficients following [50].

Let G = (V,E) be a digraph (with possible multiple edges and cycles). Let us suppose the edges of G are

labelled by m indices, E = {e1, . . . , em}. We consider k-decompositions of G with edge-disjoint increasing paths.

This means we partition the edge set E with k paths, E = P1 ∪ · · · ∪Pk such that the edge labels increase along

every path Pi = ei1 · · · eis , i.e., i1 < · · · < is. Such a k-decomposition is also called principal. In the following

we suppose that the vertex set of G is given by [n].

Example 3.2. Let n = 3 and consider the graph G = (V = {1, 2, 3}, E = {e1 = (1, 1), e2 = (2, 3), e3 =

(2, 1), e4 = (3, 3), e5 = (1, 2)}), see Figure 6. It has no k-decomposition for k = 1, 2. For k = 5, it has the trivial

5-decomposition e1 ∪ e2 ∪ e3 ∪ e4 ∪ e5. It has two 3-decompositions (e1e5 ∪ e2e4 ∪ e3, e1 ∪ e2e4 ∪ e3e5) and three

2-decompositions (e1 ∪ e2 ∪ e3e5 ∪ e4, e1e5 ∪ e2 ∪ e3 ∪ e4, e1 ∪ e2e4 ∪ e3 ∪ e5).

1

2

3
e1

e2
e3

e4

e5

Figure 6: The digraph of Example 3.2.

Example 3.3. Let Gm consist of one vertex (V = {1}) and m labelled loops (1, 1). Then a principal decompo-

sition corresponds to a set partition of [m]. The number of k-decompositions of Gm is given by S(m, k).

For a given digraph G, let in(i), out(i) (i ∈ V ) denote the numbers of incoming and outgoing edges, respec-

tively. We then introduce the multisets

Vout(G) = {1out(1), . . . , nout(n)}, Vin(G) = {1in(1), . . . , nin(n)}, Mout(G) = {I | I ⊆ Vout(G)}.

The difference A −X of multisets means that we eliminate from A as many copies of elements as X has. For

example, {13, 22, 3, 43} − {12, 2, 4} = {1, 2, 3, 42}. A ]X is a merge of multisets, e.g., {12, 2, 42} ] {1, 22, 3} =

{13, 23, 3, 42}. If we have for a given k-decomposition δ the sources I, then the corresponding sinks are given

by J(I) ≡ J(δ, I) = Vin(G) ] I − Vout(G).

Example 3.4. Consider the graph G from Example 3.2 and the 3-decomposition e1e5∪e2e4∪e3. The edge e1e5

(resp., e2e4, e3) has source 1 (resp., 2, 2) and sink 2 (resp., 3,1). Thus, I = {1, 2, 2} and J(I) = {1, 2, 3}. On

the other hand, using Vin(G) = {12, 2, 32}, Vout(G) = {12, 22, 3}, we calculate {12, 2, 32}]{1, 2, 2}−{12, 22, 3} =

{1, 2, 3}, as it should be.

Definition 3.1. [50] The G-Stirling function SG : Mout(G)→ N0 is defined by letting SG(I) be the number of

principal decompositions of G with sources I.
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For example, if Gm is the digraph from Example 3.3, then SGm(I) = S(m, k) if |I| = k. Several useful

properties of SG were derived in [50], and it was also remarked that SG(I) is different from the graphical

Stirling numbers introduced in Definition 2.2. Before returning to the n-th Weyl algebra An, we need one

further notion. A block (or p-block, if p is specified) of a digraph G is a distinguished set of edges {e1, . . . , ep}. If

a digraph is built from several (disjoint) blocks, then we require that the edges of each block must lie in distinct

paths.

To any monomial w = Xi1 · · ·XipDj1 · · ·Djp ∈ A
(0)
n we associate a p-block of a graph in the following way:

block(w) = {(i1, j1), . . . , (ip, jp)}. Now, we can state the following result.

Theorem 3.1. [50, Theorem 3.1] Let w1, . . . , wm ∈ A(0)
n . Then one has

w1 · · ·wm =
∑

I⊆Vout(G)

SG(I)
∏
i∈I

Xi

∏
j∈J(I)

Dj ,

where the digraph G with n vertices is built from the m blocks block(w1), . . . ,block(wm) so that the indices of

edges increase with respect to the order of blocks, and J(I) = Vin(G) ] I − Vout(G).

Example 3.5. Let us return to Example 3.1. To the monomials w1, . . . , w5 we associate the 1-blocks block(w1) =

{(1, 1)},block(w2) = {(2, 3)},block(w3) = {(2, 1)},block(w4) = {(3, 3)},block(w5) = {(1, 2)}, and we recognize

the resulting digraph G as the one from Example 3.2, see Figure 6. In Table 1, all principal decompositions are

given. According to Theorem 3.1, the first line of Table 1 gives a summand 2X1X
2
2D1D2D3, the second line

2X1X
2
2X3D1D2D

2
3, and so on. In total, we obtain from Theorem 3.1 for w1 · · ·w5 the expression

2X1X
2
2D1D2D3 + 2X1X

2
2X3D1D2D

2
3 +X2

1X
2
2D

2
1D2D3 +X2

1X
2
2X3D

2
1D2D

2
3,

which is exactly the result obtained in Example 3.1 by hand.

I J(I) Principal decompositions SG(I)

{1, 2, 2} {1, 2, 3} e1e5 ∪ e2e4 ∪ e3, e1 ∪ e2e4 ∪ e3e5 2
{1, 2, 2, 3} {1, 2, 3, 3} e1 ∪ e2 ∪ e3e5 ∪ e4, e1e5 ∪ e2 ∪ e3 ∪ e4 2
{1, 1, 2, 2} {1, 1, 2, 3} e1 ∪ e2e4 ∪ e3 ∪ e5 1
{1, 1, 2, 2, 3} {1, 1, 2, 3, 3} e1 ∪ e2 ∪ e3 ∪ e4 ∪ e5 1

Table 1: All principal decompositions of the digraph from Figure 6.

For n = 1, one has w = XD, so to wm = (XD)m corresponds the digraph Gm from Example 3.3 according

to Theorem 3.1, and one recovers the expression (XD)m =
∑m
k=1 S(m, k)XkDk [50, Corollary 3.4].

Problem 3.1. The G-Stirling function is a generalization of the Stirling numbers of the second kind to graphs.

As mentioned above, it is different from the graphical Stirling number S(G, k) introduced in Definition 2.2

(which is also a generalization of the Stirling numbers of the second kind). For S(G, k), a q-analogue has

been introduced by Kereskényiné Balogh and Schlosser [82]. Furthermore, Barghi [7] has extended the Stirling

numbers of the first kind to graphs (see also Eu et al. [56], for a brief description see Section 2.1.5, and Galvin

and Pacurar [60]). Thus, one should find in a similar fashion a q-analogue of the G-Stirling function and an

analogue extending the Stirling numbers of the first kind.

Remark 3.1. As discussed by Dzhumadil’daev and Yeliussizov [51, Section 6.1], the assumption wi ∈ A(0)
n in

Theorem 3.1 is not too restrictive since we can always add new variables to satisfy it. For n = 1, the element

XrDs is not an element in A
(0)
1 if r 6= s. If r > s (resp., s > r), we add r − s (resp., s− r) new variables D2

(resp., X2) and the resulting monomial belongs to A
(0)
2 . For example, X3D7 is transformed to X4

2X
3
1D

7
1. The

new variables commute with all other variables, so can be freely moved in the normal ordering expansion. The

same argument can be used in the case of arbitrary n.

Dzhumadil’daev and Yeliussizov [51, Section 6] introduced for n = 1 certain λ-Stirling numbers by considering

an analogue of the graph Gm considered in Example 3.3. For this, consider the graph with n = 1 vertex and
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suppose it is built from blocks of loops (1, 1) of λ1, λ2, . . . edges. The principal decompositions for this model

require that the edges within one block cannot lie on the same walk. Thus, this setting corresponds to a partition

of the set [m] (m is the total number of edges) where the first λ1 elements are in distinct subsets, the next λ2

elements are also in distinct subsets, and so on. The coefficients SG(I) – also called λ-Stirling numbers Sλ(m, k)

in [51] – are a generalization of S(n, k) taking into account the restrictions on the partitions. As the authors

mentioned, these λ-Stirling numbers are exactly the (r1, . . . , rp)-Stirling numbers of the second kind introduced

by Mihoubi and Maamra [107].

3.2 Some other developments concerning the multi-mode case

In this section, some other developments concerning normal ordering in the multi-mode case are mentioned,

mostly as a guide to the literature.

1. Accardi and Boukas [3] considered the multi-mode (or, multidimensional) Schrödinger algebra and their

aim was to split the exponential of an arbitrary sum of the generators into a product of normal ordered

exponentials. A very simple and well-known example is the following: Let U and V satisfy the relation

UV = V U + I of the Weyl algebra A1. Then one has the disentanglement formula (or splitting formula)

eλV+µU = eλµ/2eλV eµU (see, e.g., the discussion in [98]). Using the more physical notation U 7→ â, V 7→ â†,

one has ââ† − â†â = 1, and the splitting formula reads

eλâ
†+µâ = eλµ/2eλâ

†
eµâ. (50)

To follow the notation of [3], the 1-mode Heisenberg algebra heis(1) is the 3-dimensionsal ∗-Lie algebra

with generators {1, â, â†}, where 1 is a central element and the only nonvanishing commutator is given

by ââ† − â†â = 1, together with (â†)∗ = â and 1∗ = 1. The universal enveloping algebra of heis(1) is

denoted by P(â†, â) and can be defined with the polynomial algebra in â†, â. One can choose as generators

Bnk = (â†)nâk + δn,k
1
2 , satisfying (Bnk )∗ = Bkn. The 1-mode Schrödinger algebra Schrod(1) is the ∗-Lie

sub-algebra of P(â†, â) generated by {1, â, â2, â†, (â†)2, â†â + 1
2}, or, using the just introduced notation,

{B0
0 , B

0
1 , B

0
2 , B

1
0 , B

2
0 , B

1
1}. One has the commutation relation

BnkB
N
K −BNKBnk = (kN − nK)Bn+N−1

k+K−1 , (51)

where n, k,N,K ∈ {0, 1, 2} with n + k ≤ 2 and N + K ≤ 2. (Unfortunately, there is a small typo in

the corresponding [3, Eq. (2.2)] which is repeated at several places. Thus, one should consult the former

paper by Accardi and Boukas [2] for this.) A linear combination of the nontrivial generators of Schrod(1)

can then be written as B = c2,0B
2
0 + c1,0B

1
0 + c1,1B

1
1 + c0,1B

0
1 + c0,2B

0
2 where cn,k ∈ C. The aim now is

to split the group element eB – in analogy to (50) – as a product of normal ordered exponentials, i.e., in

a form like ec2,0B
2
0+c1,0B

1
0ec1,1B

1
1ec0,1B

0
1+c0,2B

0
2 . In this 1-dimensional case, it was derived by Accardi and

Boukas [2, Lemma 3.3] (see also [3, Corollary 3.7]). In the recent paper [3], these considerations were

extended to the multi-mode case Schrod(d). Here we have d pairs of elements â†i , âi, i = 1, . . . , d, together

with the central element 1, satisfying

âiâ
†
j − â

†
j âi = δi,j1, â†i â

†
j = â†j â

†
i , âiâj = âj âi, (52)

compare (48). The d-mode Schrödinger algebra Schrod(d) is the ∗-Lie algebra generated by the elements

{1, âh, âiâj , â†k, â
†
i â
†
j , â
†
hâk + 1

2 |h, i, j, k = 1, . . . , d, i ≤ j}. One has a commutation relation similar to (51),

and the disentanglement problem faces up in a fashion similar to the case d = 1, see [3, Theorem 4.3] for

a solution of this hard problem. Let us note that Chebotarev et al. [36, 37] also considered this problem.

Closely related problems were treated by Teretenkov in a series of papers, see his review [130] where also

some useful commutator formulas and many references can be found.

2. Let us consider the n-mode boson where we have n pairs of generators â†i , âi, i = 1, . . . , n, satisfying the

canonical commutation relations (52). Following the notation of Chebotarev et al. [36, 37], we can write

a Hamiltonian H which is at most quadratic in the generators as

H =
i

2

(
â†, Aâ†

)
− i

2

(
â, Aâ

)
+
(
â†, Bâ

)
+ i
(
â†, h

)
− i
(
â, h
)
,
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where A = At ∈ Cn,n is a symmetric matrix, B = B∗ = B
t ∈ Cn,n is a Hermitian matrix, h ∈ Cn, and,

by a slight abuse of notation, â† = (â†1, . . . , â
†
n) and â = (â1, . . . , ân). Note that for n = 1, H = B from

the last point. Of interest in all references mentioned there is an explicit expression – or a normal ordered

form – for the unitary group Ut = eiHt. Brádler [24] suggested recently another method to calculate

the unitary evolution operator. He assumed that the Hamiltonian is a Hermitian operator which can be

written as H = νA† + νA where ν ∈ C and the operator A is a function of one or more boson creation

and annihilation operators, â†i and âi satisfying (52). Letting ν = s + ir, he restricted to V = er(A
†−A),

and, by arguing that in many cases one makes a Taylor expansion around r = 0, focussed on the powers

(A†±A)k. The main idea of [24] is to consider the expansion in a weak sense, i.e., when acting on a “state

of interest” ψ, (A† ± A)kψ (and to avoid calculating (A† ± A)k itself). For the following, it is assumed

that Aψ = 0. To avoid sign complications, we consider (A† +A)k and write [24, Eq. (9)]

(A† +A)k =

k∑
m=0

(km)∑
|S|=1

(A)m1(A†)m2 · · · (A)m2J−1(A†)m2J , (53)

where S = {m1, . . . ,m2J ;mj ≥ 0,
∑2J
j=1mk = k ,

∑J
j=1m2J = m}, compare with (62). This sum contains

2k summands, but at least half of all the products vanish upon acting on ψ because there are more operators

A than A† in it. But more is true: From the way a word ω = (A)m1(A†)m2 · · · (A)m2J−1(A†)m2J acts on

ψ, we see that it vanishes if m2J−1 > m2J , m2J−3 > m2J−2 + m2J −m2J−1, and so on. Following [24],

we can represent such a word as a path in Z2 by associating to the operators the steps

A ←→ D = (1,−1), A† ←→ U = (1, 1).

A word ω is read from right to left, i.e., ω ←→ Γω = Um2JDm2J−1 · · ·Um2Dm1 (but the steps of the path

are read as usual from left to right, i.e., starting with Um2J ). Now, the above condition that the action

of ω on ψ does not vanish translates into the condition that the associated path Γω never goes below the

x-axis. Following [24, Section 2], we let D(k, δ1, δ2) be the set of generalized Dyck paths starting at (0, δ1),

ending at (k, δ2), having steps U = (1, 1) and D = (1,−1) and always staying in the positive quadrant

including the x-axis. Note that D(k, 0, 0) (with k even) is the set of conventional Dyck paths. Thus, the

summands in (53) which do not vanish upon acting on ψ correspond to generalized Dyck paths D(k, 0, δ2).

This association was discussed from several points of view by Brádler [24]. Before concluding this point,

let us recall that we already used a similar correspondence at other places (see, e.g., Section 2.1.4 where

we used an equivalent description for Dyck paths).

3. Finkelshtein et al. [57] considered recently an “infinite dimensional” generalization of the Stirling numbers

in terms of Stirling operators in spatial combinatorics. Unfortunately, it would lead too far away to

introduce the precise setting, but let us mention that the basis for all considerations is a locally compact

Polish space X, and that when X consists of one point, the conventional objects (e.g., Stirling numbers

and Bell numbers) and formulas (e.g., (3) or the Dobiński formula) are recovered. Furthermore, certain

normal ordering problems in the context of spatial combinatorics were considered in [57].

4. Normal ordering in new algebras

In this section, recent research on normal ordering symbols U and V satisfying some new commutation relation

is described. Many of these commutation relations are modifications of the commutation relation UV = qV U

of the quantum plane (Example 1.2) or of UV − qV U = I, the commutation relation of the q-deformed Weyl

algebra (Example 1.3). The two examples presented in Sections 4.7 and 4.8 have three or more generators.

4.1 Algebras defined by a linearly twisted commutation relation

Cantuba [31] considered normal ordering in an algebra defined by a linearly twisted commutation relation. Let

K〈U, V 〉 be the unital associative algebra over a field K generated by two elements U, V . The multiplicative
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product is given by concatenation, and we also use U0 = V 0 = I. Given a function σ : K〈U, V 〉 → K〈U, V 〉,
denote by Iσ the two sided ideal of K〈U, V 〉 generated by UV − σ(V U). The defining relation UV = σ(V U) of

the quotient algebra K〈U, V 〉/Iσ is called σ-twisted commutation relation. If there exist m, b ∈ K with q 6= 0 such

that σ(X) = qX + bI, then the commutation relation UV = σ(V U) is called linearly twisted. The associated

algebra K〈U, V 〉/Iσ is then a variant of the q-deformed Weyl algebra over K, see Example 1.3. To study its

properties, Cantuba [31] switched to an isomorphic algebra in three generators by adding the commutator.

More precisely, consider K〈U, V,C〉 to be the associative unital algebra over a field K generated by the elements

U, V,C and denote by Jσ the ideal generated by UV −σ(V U) and C−UV +V U . Then there exists an algebra

isomorphism K〈U, V 〉/Iσ → K〈U, V,C〉/Jσ such that U 7→ U, V 7→ V,UV − V U 7→ C. In these two algebras

several reordering formulas were derived [31].

4.2 A slight generalization of the q-deformed Weyl algebra

Cantuba and Merciales [32] continued the study of Section 4.1 in the following way. The q-deformed Weyl

algebra A1(q) over a field K with a fixed q ∈ K is the unital associative algebra over K with generators U, V and

a relation which asserts that UV − qV U is the multiplicative identity in A1(q), see Example 1.3. In [32], A1(q)

is extended into an algebra R(q) defined by generators U, V and a relation which asserts that UV − qV U is

central in R(q). Thus, U(UV − qV U) = (UV − qV U)U as well as V (UV − qV U) = (UV − qV U)V . Introducing

for the central q-commutator a new letter, γ = UV − qV U , one can show [32, Lemma 3.1] that R(q) has a

presentation by generators U, V, γ with relations

γ = UV − qV U, Uγ = γU, V γ = γV.

Furthermore, the elements γhV mUn (h,m, n ∈ N0) form a basis for R(q) [32, Theorem 3.2]. We say an element

in R(q) is in normal ordered form if it is a (finite) sum of such basis elements (with coefficients in K). Many

reordering formulas were derived in [32], resembling those of the q-deformed Weyl algebra A1(q) (the main

difference is that here one has to keep track of the powers of the central element γ).

4.3 A two-parameter family of generalized q-deformed Weyl algebras

In Example 1.4, the commutation relation UV − V U = V s was briefly mentioned, see (9). Varvak [131] gave

a combinatorial interpretation for the normal ordering coefficients of a word ω in U, V in terms of the s-rook

numbers introduced by Goldman and Haglund [61]. At the same time, Burde [28] considered matrices obeying

the same commutation relation and derived reordering results. Mansour and Schork [97] considered the algebra

As;h|q generated by U and V satisfying UV − qV U = hV s, where h ∈ C \ {0} and s ∈ N0. For example, one

has the basic normal ordering result [97, Corollary 4.11]

UmV n =

m∑
j=0

(
q(m−j)nhj

(
m

j

)
qs−1

j−1∏
i=0

[n+ (s− 1)i]q

)
V n+j(s−1)Um−j . (54)

For q = 1, an equivalent result was shown by Burde [28, Proposition 5.2]. Generalized Stirling numbers

Ss;h(n, k|q) were introduced by Mansour et al. [100, 101] as normal ordering coefficients of (V U)n. For q = 1,

they are a particular subfamily of the generalized Stirling numbers S(n, k;α, β, r) of Hsu and Shiue [65], see

(13). More precisely, one has Ss;h(n, k) = S(n, k;−hs, h(1 − s), 0) [101, Theorem 2]. From their definition

as normal ordering coefficients one obtains a recurrence relation for the Ss;h(n, k|q) which allows to consider

s ∈ R. Many properties of these generalized Stirling numbers – as well as those of the associated generalized

Bell numbers Bs;h(n|q) – are collected in [98]. More recently, Celeste et al. [35] introduced a q-analogue of

the s-rook numbers and interpreted the normal ordering coefficients of a word ω in variables U, V satisfying

UV − qV U = hV s in terms of these q-deformed s-rook numbers (here s ∈ N0). They also gave a new proof of

(54) using this combinatorial interpretation [35, Theorem 1]. Furthermore, another combinatorial interpretation

was given in [35] in terms of generalized symmetric functions. In a subsequent paper [46], the same authors

provided a modification of the rook model of Goldman and Haglund [61] by introducing certain pre-weights for

the cells of a board which allows to consider arbitrary s ∈ R. They also showed an extension of the Spivey
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identity (30) to the generalized Bell numbers Bs;h(n|q) [46, Corollary 6] (which recovers for q = 1 a result of

Mansour et al. [100, Theorem 5.3]).

Let us consider the two operators V = Xα (with α ∈ R) and U = D = d
dx acting on smooth functions f .

One has (UV − V U)f = (DXα −XαD)f = αXα−1f = αV
α−1
α f , or,

UV − V U = αV
α−1
α .

Let us specialize to α = 1
` , with ` ∈ N. Here we find UV−V U = (1/`)V 1−`. Thus, normal ordering (V U)n should

be closely related to the generalized Stirling numbers S1−`;1/`(n, k). Recall that in Section 2.1.1 we considered

Stirling numbers of fractional order S
1
r (n, k), r ∈ N, introduced by Katugampola [77], see Definition 2.1 and

the following. Comparing with above, we see that they should be closely related to the generalized Stirling

numbers considered here, i.e., S
1
r (n, k) ∼ S1−r;1/r(n, k), and using S1−r;1/r(n, k) = S(n, k; (r − 1)/r, 1, 0), one

expects S
1
r (n, k) ∼ S(n, k; (r − 1)/r, 1, 0).

Problem 4.1. Make these suggested connections between S
1
r (n, k) and S1−r;1/r(n, k) (or between S

1
r (n, k)

and S(n, k; (r − 1)/r, 1, 0)) precise. Use the modified s-rook model with pre-weights [46] to give a combinatorial

interpretation for S
1
r (n, k).

4.4 A new q-deformed generalized Heisenberg algebra

Chung [39] introduced a q-deformation of a particular family of generalized Heisenberg algebras. We follow

the notation of [39] and denote by â† and â the creation and annihilation operator. The involution of taking

adjoints is denoted by †, such that (â)† = â† and (â†)† = â. Furthermore, we assume a self-adjoint Hamiltonian

Ĥ is given as well as an analytic function f , the characteristic function. The q-deformed generalized Heisenberg

algebra is then defined by the relations

ââ† − qâ†â = f(Ĥ)− qĤ, Ĥâ† = â†f(Ĥ).

Taking the adjoint of the second relation yields âĤ = f(Ĥ)â. For example, if f(Ĥ) = 1 + qĤ, the first relation

reduces to the commutation relation of the q-deformed Weyl algebra A1(q). Several normal ordering results

were derived in [39] for the q-deformed generalized Heisenberg algebra (and also for special choices of f). In

particular, the f -Stirling operator of the second kind Sf (n, k, Ĥ) was introduced as normal ordering coefficient

for (â†â)n, i.e., (â†â)n =
∑n
k=0 â

†Sf (n, k, Ĥ)â and several of its properties were derived.

4.5 The excedance algebra revisited

Ehrenborg et al. [52, Definition 2.1] introduced the Box polynomials for m,n ∈ N by

Bm,n(x) =
∑

λ⊆m×n

m∏
i=1

(x+ λi),

where the sum is over all partitions λ = (n ≥ λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0), i.e., all partitions with m nonnegative

parts, each at most n. (In other words, the sum is over all partitions λ that fit in the m × n box, hence

the name. Later, this set will also be denoted by Pm,n) If we denote by ∆ the forward difference operator

(∆f)(x) = f(x+1)−f(x), one has Bm,n(x) = ∆n(xm+n)/n! [52, Theorem 2.6]. Writing the difference operator

as ∆ = E−Id, where (Ef)(x) = f(x+1) is the shift operator, and expanding the binomial ∆n = (E−Id)n when

acting on xm+n, one finds the alternative expression Bm,n(x) =
∑m
j=0

(
m+n
j

)
S(m+ n− j, n)xj [52, Proposition

2.8]. Another interpretation can be given in terms of the excedance algebra defined by Clark and Ehrenborg [41,

Definition 1.1]. It is the algebra generated by U and V satisfying the commutation relation

UV − V U = U + V. (55)

(A q-deformed version where UV −qV U = U+V was considered in a combinatorial fashion by Corteel et al. [48]

and Josuat-Vergès [72] with the Matrix Ansatz. These works were motivated by physical PASEP models where

evaluating (U+V )n plays a major role). If ω is a word in U, V satisfying (55) with m copies of V and n copies of
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U , we can write ω =
∑
i,j ci,j(ω)V iU j with the normal ordering coefficients ci,j(ω), for 0 ≤ i ≤ m and 0 ≤ j ≤ n.

An interpretation for ci,j(ω) in terms of placements of arrows in Ferrers diagrams was given in [41, Theorem 2.1].

Recall that one has in the Weyl algebra (V U)n =
∑
k S(n, k)V kUk. Writing (V U)n = V (UV )n−1U , normal

ordering (V U)n is equivalent to normal ordering (UV )n−1. If U, V satisfy (55), then the normal ordering

coefficients of (UV )m are related to Ghandi polynomials and Genocchi numbers [41]. More generally, let us

follow [52] and denote by E(m,n) the sum of all words in U, V with exactly m copies V and n copies U . It

can be written as E(m,n) =
∑
i,j c

m,n
i,j V iU j with uniquely determined normal ordering coefficients cm,ni,j . The

box polynomial is then given by Bm,n(x) =
∑m
j=0 c

m,n
j,n x

j [52, Proposition 8.4]. Comparing this to the above

expression, one finds cm,nj,n =
(
m+n
j

)
S(m + n − j, n) [52, Corollary 8.9]. More surprising is the following result:

If we let the excedance matrix M(m,n) be the (m+ 1)× (n+ 1) matrix whose (i, j) entry is cm,ni,j , then the sum

over all entries of M(m,n) is the Eulerian number A(m+ n+ 1, n+ 1), A008292 in [127], [52, Proposition 8.5].

Let us conclude this section by mentioning that at the end of [52] many open problems were collected.

4.6 A monomial generalization of the quantum plane

Recall from Example 1.2 that the quantum plane is characterized by two variables U, V satisfying UV = qV U .

In the undeformed case, the relations UV = V sU with s ∈ N had also been considered, see, e.g., [114]. Mansour

and Schork [99] considered the common generalization where UV = qV sU and determined several normal

ordering results. For example, for m,n ∈ N0, one has the following normal ordering result [99, Proposition 2.1],

UmV n = qn(1+s+···+sm−1)V ns
m

Um,

which one can write compactly as UmV n = qn[m]sV ns
m

Um, using basic numbers [m]s = 1 + s + · · · + sm−1.

This result can be extended to arbitrary words in U and V as follows [99, Theorem 2.4]. Let k ≥ 1. Then one

has, for all rk, tk, . . . , r1, t1 ∈ N0, the normal ordering result,

UrkV tk · · ·Ur1V t1 = q
∑k
i=1

∑k
j=i ti(1+s+···+srj−1)sri+···+rj−1

V
∑k
i=1 tis

ri+···+rk
Ur1+···+rk .

Problem 4.2. Recall from Example 1.2 that in the case s = 1 of the quantum plane the exponent of q counts

the number of inversions. It would be interesting to find a similar interpretation for the exponent of q in the

case of arbitrary s given above. See also Problem 5.1 for a related problem.

4.7 A polynomial multivariate generalization of the quantum plane

In the preceding section, a generalized quantum plane was considered. It was defined by the unital associative

algebra (over C) generated by U and V satisfying UV = qV sU . A first step to generalize this situation is

to consider instead of a monomial qV s a polynomial σ(V ) in V , i.e., to consider UV = σ(V )U . Musonda et

al. [110] (see also Musonda et al. [111] for more details and proofs) generalized this situation by considering the

unital associative algebra Aσj generated by U1, . . . , Un, V (n ∈ N) satisfying, for j = 1, . . . , n, the commutation

relation

UjV = σj(V )Uj , (56)

where σj are polynomials (and UiUj = UjUi). Clearly, for n = 1 and σ(V ) = qV s, one recovers the situation

considered in Section 4.6. Choosing instead a polynomial, σ(V ) = a0+a1V +· · ·+a`V `, one obtains a polynomial

generalization of the quantum plane where UV = (
∑`
j=0 ajV

j)U . For arbitrary n, Musonda et al. [110]

determined a host of reordering formulas. For example, if F denotes a polynomial, then one has [110, Theorem

2.1] Ukj F (V ) = F (σ◦kj (V ))Ukj , where σ◦k denotes the k-fold composition of the function σ with itself. Let us

turn to the case n = 2. Here we have three generators U1, U2, V satisfying U1V = σ(V )U1 and U2V = τ(V )U2

with polynomials σ, τ . It is straightforward to show, for example, the following relations [110, Example 2.4]:

U1V
l = (σ(V ))lU1 and U2V

l = (τ(V ))lU2, U1F (V ) = (F ◦ σ)(V )U1 and U2F (V ) = (F ◦ τ)(V )U2. Let us

specialize even further and consider σ(V ) = q1V
s1 and τ(V ) = q2V

s2 , i.e.,

U1V = q1V
s1U1, U2V = q2V

s2U2, U1U2 = U2U1.
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Applying twice the identity UmV n = qn[m]sV ns
m

Um from Section 4.6 (commuting U2 with V and commuting

U1 with V ), one obtains [110, Corollary 4.4]

Um1
1 Um2

2 V n = q
n[m1]s1s

m2
2

1 q
n[m2]s2
2 V ns

m1
1 s

m2
2 Um1

1 Um2
2 .

Note that most examples considered up to now were essentially “one dimensional”, i.e., have only one

nontrivial commutation relation. The algebra Aσj has n nontrivial commutation relations, but they are, in a

certain sense, independent from another. Thus, one should find a graphical representation which shows this

fact. To give an idea, we introduce as a first step a commutation graph associated to a set of generators and

commutation relations as follows: To each generator we associate a vertex of the graph, and two vertices of the

graph are connected by an edge if and only if the two generators do not commute.

Example 4.1. Let us use the notations introduced in Section 2.1.4: Km denotes the complete graph with

m vertices (K1 being an isolated vertex), and nKm denotes the disjoint union of n graphs Km. Then the

commutation graph is given for (see Figure 7):

1. The ring of polynomials in two (resp., n) commuting variables by 2K1 (resp., nK1).

2. The quantum plane (or its generalization in Section 4.6) by K2.

3. The first Weyl algebra A1 (or its q-deformation A1(q), or the excedance algebra in Section 4.5) by K2.

4. The n-th Weyl algebra An by nK2.

5. The algebra Aσj by the star graph Sn (the internal node corresponds to V , the n leaves to U1, . . . , Un).

2K1 K2 2K2 S4

Figure 7: Commutation graphs of Example 4.1.

Problem 4.3. Although it captures some aspects of the complexity, the commutation graph can only be a first

step: An edge is drawn whenever the associated generators do not commute (implying that all algebras with

two non-commuting generators have commutation graph K2). There is no indication “how far” from being

commutative the generators are – and no discrimination whether other generators are involved. Thus, one

should refine the construction (e.g., to hypergraphs?) and find good discriminators (e.g., Betti numbers?) for

the “commutation complexity”. See also Remarks 4.1 and 6.1 for further examples of commutation graphs.

4.8 An algebra with 3 generators

In the preceding section, we considered algebras Aσj with generators U1, . . . , Un, V and commutation relations

(56). Musonda et al. [109, Eq. (21.1)] considered a unital associative algebra AR,J,Q (over C) generated by

three elements R, J and Q satisfying

QR−RQ = J, QJ − JQ = −R, RJ − JR = 0. (57)

A concrete representation mentioned in [109] is

R(f)(x) =
f(x+ i) + f(x− i)

2
, J(f)(x) =

f(x+ i)− f(x− i)
2i

, Q(f)(x) = xf(x),

acting on complex functions f (see also Musonda et al. [112] for further aspects of representing R, J and

Q). By using the commutation relations, any word in R, J,Q can be brought in normal ordered form, ω =∑
j,k,lAj,k,l(ω)RjJkQl for some normal ordering coefficients Aj,k,l(ω). Since R and J commute, this can be

written as ω =
∑
k≥0 pk(R, J)Qk where the coefficients pk(R, J) are polynomials in R, J . In [109] several
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interesting reordering formulas were derived. The first equation of (57) can be written as [Q,R] = J , and

a small induction shows [Q,Rm] = mRm−1J , m ∈ N [109, Lemma 21.1]. In a similar fashion, one finds

[Q, Jn] = −nRJn−1, n ∈ N [109, Lemma 21.2]. These two results can be combined to show that for any

polynomial p(R, J) in R and J one has [109, Proposition 21.1]

[Q, p(R, J)] = J
∂p(R, J)

∂R
−R∂p(R, J)

∂J
.

The commutator expressions [Qn, J ] and [Qn, R] are more cumbersome to determine. Let S = R + iJ and

T = R − iJ . Then one has the following observation [109, Proposition 21.8]: The elements S, T and Q satisfy

the commutation relations

[Q,S] = −iS, [Q,T ] = iT, [S, T ] = 0,

if and only if R, J and Q satisfy (57). Thus, by this linear transformation of generators one has, in a sense,

decoupled the three-dimensional problem {R, J,Q} into the two-dimensional problems {S,Q} and {T,Q}. By

induction, one infers from the above commutation relations easily [Q,SmTn] = (n−m)iSmTn [109, Proposition

21.9]. This equals QSmTn = SmTn(Q + (n − m)i). By a further induction, one can show for k ∈ N that

QkSmTn = SmTn(Q+ (n−m)i)k [109, Proposition 21.10].

Remark 4.1. According to Section 4.7, we can associate to AR,J,Q its commutation graph, the path graph P3

on 3 vertices: There are two edges connecting Q with R and J , but no edge connecting R and J , see (57).

5. The non-commutative binomial formula

The binomial formula for non-commuting objects has been considered many times. We mentioned above the

q-binomial formula (4) for variables U, V satisfying V U = qUV as well as the binomial formula (10) for variables

U, V satisfying the commutation relation of the Jordan plane, i.e., V U − UV = hV 2. For the q-deformation of

the Jordan plane as well as for the q-deformation of the Weyl algebra (and, of course, the Weyl algebra itself)

as well as several relatives, like, e.g., the one in [119], analogous binomial formulas are known, see [98]. As was

mentioned briefly in Sections 3.2 and 4.5, such binomial formulas often appear in applications. Recently, the

study of the binomial formula was considered again and one may, roughly speaking, distinguish two lines of

research: A more abstract approach considers rather general situations and discusses possible properties, the

other approach considers objects satisfying a particular commutation relation.

5.1 Some general observations

Let us start with some general observations. Wyss [133] considered in 1980 the situation where B is a ∗-algebra

with unit 1. For elements A,B,X ∈ B one lets

A(X) = AX, dB(X) = [B,X] = BX −XB,

i.e., A acts by left multiplication and dB is a derivation. Both are elements in L(B), the set of linear trans-

formations from B to B. Any power (A + dB)n, n ∈ N, is also an element in L(B) and one has the following

binomial formula (which can be shown by induction).

Theorem 5.1. [133, Corollary 1] For n ∈ N, one has

(A+B)n =

n∑
k=0

(
n

k

){
[A+ dB ]k1

}
Bn−k. (58)

Dividing by n! and summing over n, one obtains eA+B = {eA+dB1}eB [133, Corollary 2]. Recently, Wyss

[134] returned to the subject and derived some further expansions. Following [134], we write [A + dB ]n1 =

An +Dn(B,A). For a commutative algebra all Dn(B,A) are identically zero, so the Dn(B,A) were called the

essential non-commutative part. It satisfies the recurrence relation Dn+1(B,A) = dBA
n + (A + dB)Dn(B,A)
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with D0(B,A) = 0, see [134, Eq. (11)]. If Mn(A,B) =
∑n
k=0

(
n
k

)
AkBn−k, then we can write (58) equivalently

as [134, Corollary 1]

(A+B)n = Mn(A,B) +

n∑
k=0

(
n

k

)
Dk(B,A)Bn−k. (59)

As an example, [134] considered the case where dB(A) = hA2 (note that this means explicitly BA−AB = hA2,

i.e., the commutation relation of the Jordan plane, see Example 1.4). By introducing γk(h) =
∏k−1
j=0 (1+jh) (note

γk(h) = (1| − h)k from Example 1.4), Wyss observed dBA
k = khAk+1 and Dk(B,A) = {γk(h) − 1}Ak. Using

this in (59) yields (A+B)n =
∑n
k=0

(
n
k

)
γk(h)AkBn−k [134, Eq. (20)], thereby recovering Benaoum’s result (10).

In the same paper, one can also find an expansion (A + B)n = Mn(A,B) +
∑n−2
k=0(A + B)kdBMn−1−k(A,B)

[134, Theorem 2], which we will not discuss further. These considerations were continued by Hosseini and

Mohammadzadeh Karizaki [68]. Recall that the inner derivation dB acts by dB(A) = BA − AB. Given

two elements B1 and B2, a generalized inner derivation δB1,B2 may be introduced by its action δB1,B2(A) =

B1A − AB2. By induction, one finds δnB1,B2
(A) =

∑n
k=0(−1)k

(
n
k

)
Bn−k1 ABk2 [68, Lemma 1]. This is the main

ingredient for the following result.

Theorem 5.2. [68, Theorem 1] For n ∈ N, one has

An =

n∑
k=0

(
n

k

)
δn−kA,B (1)Bk. (60)

Switching B to C and A to A + B, one obtains the binomial formula (A + B)n =
∑n
k=0

(
n
k

)
δn−kA+B,C(1)Ck

for any A,B,C ∈ B [68, Corollary 1]. The authors also derived a binomial formula for non-unital algebras (by

embedding it into a unital algebra) considered also the case of negative powers.

Before turning to some concrete new results, we describe a nice variant of the binomial formula due to

Sills [125]. Recall from Section 2.4 the notations for partitions λ = (λ1, λ2, . . . , λk). For a partition λ, the

Young diagram Yλ of shape λ is a left-justified diagram of |λ| boxes with λi black boxes in the i-th row. We

denote the set of all Young diagrams that are contained in a k × (n − k) box by Tk,n−k, for 1 ≤ k ≤ n, with

T0,n = {n0}. Equivalently, Tk,n−k can be considered as the set Pk,n−k of partitions λ having at most k parts

with length at most n− k. Note that Pk,n−k contains
(
n
k

)
elements. If we let Pn = ∪nk=0Pk,n−k, then we have

the following result.

Theorem 5.3. [99, Theorem 3.2] There exists a bijection between the set Pk,n−k and the binary words over

the alphabet {U, V } of length n with k occurrences of V and n− k occurrences of U .

The main idea is the following. Let π be any word over the alphabet {U, V } of length n with k occurrences

of the letter V in π (hence, the letter U occurs n − k times in π). Define the numbers λj , for 1 ≤ j ≤ k, by

(note that in [99] the indices of the partitions are given by (λk, λk−1, . . . , λ1)!)

π = Un−k−λ1V Uλ1−λ2 · · ·V Uλk−1−λkV Uλk . (61)

Then λ = (λ1, . . . , λk) ∈ Pk,n−k. On the other hand, for λ ∈ Pk,n−k we define a word πλ by (61). Thus, πλ is

a binary word over the alphabet {U, V } of length n with exactly k letters of V and exactly n− k letters of U .

Thus, as mentioned in [99], we can write

(U + V )n =

n∑
k=0

∑
λ∈Pk,n−k

Un−k−λ1V Uλ1−λ2 · · ·V Uλk−1−λkV Uλk . (62)

Each Un−k−λ1V Uλ1−λ2 · · ·V Uλk−1−λkV Uλk has k letters of V and n− k letters of U . The idea of Sills [125] is

to define for each λ ∈ Pk,n−k an operator Qλ such that Qλ(Un−kV k) = Un−k−λ1V Uλ1−λ2 · · ·V Uλk−1−λkV Uλk .

Theorem 5.4. [125, Theorem 1] For n ∈ N, one has the non-commutative binomial theorem

(U + V )n =

n∑
k=0

∑
λ∈Pk,n−k

Qλ(Un−kV k).
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For λ = (λ1, . . . , λk) ∈ Pk,n−k the operator Qλ is defined as a product of transpositions

Qλ = (n, n− λk) · · · (n− k + j, n− k + j − λj) · · · (n− k + 1, n− k + 1− λ1).

The transposition (i, j) applied to Un−kV k means that the i-th and j-th factor in Un−kV k are swapped. The

order of factors is not commutative, and the notation above means that (n − k + 1, n − k + 1 − λ1) is applied

first, then (n − k + 2, n − k + 2 − λ2), and so on. As an example, we choose the one considered in [125]. Let

n = 8 and k = 3, so we consider U5V 3. For λ = (3, 1, 0) we should get Qλ(U5V 3) = U2V U2V UV , according to

above. The definition of Qλ gives

Q(3,1,0)(U5V 3) =(8, 8)(7, 6)(6, 3)(UUUUUV V V ) = (8, 8)(7, 6)(UUV UUUV V ) = (8, 8)(UUV UUV UV )

=UUV UUV UV = U2V U2V UV,

as it should be. If U and V commute, then Qλ(Un−kV k) = Un−kV k and since |Pk,n−k| =
(
n
k

)
, one recov-

ers the conventional binomial theorem. For UV = qV U , one has Un−k−λ1V Uλ1−λ2 · · ·V Uλk−1−λkV Uλk =

qk(n−k)−|λ|V kUn−k, so (62) gives immediately

(U + V )n =

n∑
k=0

 ∑
λ∈Pk,n−k

qk(n−k)−|λ|

V kUn−k.

Using that
∑
λ∈Pk,n−k q

k(n−k)−|λ| =
∑
λ∈Pk,n−k q

|λ| and the well-known relation
∑
λ∈Pk,n−k q

|λ| =
(
n
k

)
q
, one

recovers (4), the q-binomial theorem.

5.2 A few recent concrete cases

In the preceding section, we discussed the binomial theorem in several variants for non-commuting variables

where no commutation relation was assumed. So, to obtain more concrete results, we have to assume some

commutation relation for the variables U and V to be able to simplify the right-hand side further. In this

section, we point out a few recent developments in this direction.

5.2.1 The quantum plane revisited

We start by recalling (4), where the variables U and V are assumed to q-commute. A new interpretation for

the q-binomial coefficients
(
n
k

)
q

was given recently by Przytycki [117] who considered the tree Tb,a of two long

branches of length b and a, respectively, originating from a common root. The conventional binomial coefficient(
a+b
a

)
then counts the number of how many different ways there are to “pluck” the tree Tb,a one leaf at a time.

Introducing a weight qa when plucking a leaf from the “a-branch”, one gets instead the plucking polynomial

Q(Tb,a), which is given by
(
a+b
a,b

)
q

=
[a+b]q !

[a]q ![b]q !
. In a similar fashion, q-multinomial coefficients for k variables were

interpreted as plucking polynomials for a tree with k long branches. Finally, this was generalized by introducing

for plane rooted trees a plucking polynomial [117, Definition 2.1] in a recursive fashion. Several properties of

the plucking polynomial were shown in [117], and it as been studied further in subsequent papers.

5.2.2 The monomial generalization of the quantum plane

Recall that variables U and V satisfying the commutation relation UV = qV sU were considered in Section 4.6. A

binomial formula for these variables was discussed in [99]. To state this result, we introduce another convenient

notation for partitions in the following way. We write each partition λ ∈ Pk,n−k equivalently as ν(λ) =

ν`dd ν
`d−1

d−1 · · · ν
`1
1 , ν0 = 0 and νd+1 = n − k, where νd+1 = n − k ≥ νd > νd−1 > · · · > ν1 ≥ ν0 = 0 and

`1, . . . , `d ≥ 1. Thus, the νj describe the lengths of the rows of the associated Young diagram (starting from

the top), and `j denotes how often the row of this length occurs. For example, if λ = 44222111 ∈ P8,4, then

ν(λ) = 4230231300 = 422313. We also introduce the notation Rk,n−k = {ν(λ) | λ ∈ Pk,n−k}. For instance,

R0,4 = {40}, R1,3 = {0, 1, 2, 3}, R2,2 = {02, 10, 20, 12, 21, 22}, R3,1 = {03, 102, 120, 13} and R4,0 = {04}.
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Theorem 5.5. [99, Theorem 3.4] Let U and V satisfy UV = qV sU with s ∈ N. Then one has, for all n ∈ N,

the following binomial formula,

(U + V )n =

n∑
k=0

 ∑
ν∈Rk,n−k

q
∑d
i=1

∑d
j=i `i[νj+1−νj ]ssνj−νiV

∑d
i=1 `is

n−k−νi

Un−k. (63)

Problem 5.1. It would be interesting to find a combinatorial interpretation for the coefficients appearing in

(63). See also Problem 4.2 for a related problem.

5.2.3 Weight-dependent commutation relations

In Section 5.2.1, we mentioned an interpretation for the q-binomial coefficients (appearing in the binomial

formula for the variables U and V satisfying UV = qV U) as plucking polynomial for simple rooted trees. It is

also possible to interpret it in terms of weighted lattice paths, see Schlosser and Yoo [122, 123]. The algebraic

expression “V U” would refer to a path going one step east, then one step north, while “UV ” would refer to a

path going one step north, then one step east (in this section, the steps of a path will be read from left to right).

Keeping track of the area under the paths and assigning the weight of a path P to be qa when the area under

P is a, we see that the weight of the path UV is q, while that of V U is 1. Thus, the commutation relation

UV = qV U describes the change of weights when the two steps are interchanged.

Schlosser [121] has generalized this as follows. For a doubly-indexed sequence of indeterminates (w(s, t))s,t∈N

let Cw[U, V ] be the associative unital algebra over C generated by U, V and the w(s, t), with s, t ∈ N satisfying

the following relations,

UV = w(1, 1)V U, V w(s, t) = w(s+ 1, t)V, Uw(s, t) = w(s, t+ 1)U. (64)

The w(s, t) (and products of them) are referred to as weights. If w(s, t) = q for all s, t ∈ N, then one recovers the

quantum plane, see Example 1.2. Let us introduce W (s, t) = w(s, 1)w(s, 2) · · ·w(s, t). The weight-dependent

binomial coefficients are defined by
[
0
0

]
w

= 1 and
[
n
k

]
w

= 0, for n ∈ N0 and k > n, as well as the recurrence[
n+ 1

k

]
w

=

[
n

k

]
w

+

[
n

k − 1

]
w

W (k, n+ 1− k), (65)

for n, k ∈ N0. By an induction, the following weight-dependent binomial theorem is shown.

Theorem 5.6. [121, Theorem 1] For n ∈ N, one has the following identity in Cw[U, V ],

(V + U)n =

n∑
k=0

[
n

k

]
w

V kUn−k. (66)

The first relation of (64) can be generalized by induction to UkV l =
(∏l

i=1W (i, k)
)
V lUk [121, Lemma 1].

Let us turn to the interpretation in terms of weighted lattice paths. For this, assign to each horizontal step

(s− 1, t)→ (s, t) the weight W (s, t), and to each vertical step (s, t− 1)→ (s, t) the weight 1. The weight of a

path P , ω(P ), is defined to be the product of the weights of all steps. For example, in Figure 8 a path P0 from

(0, 0) to (7, 4) is shown. It has weight

ω(P0) = 1 · 1 · 1 ·W (2, 2) ·W (3, 2) ·W (4, 2) · 1 ·W (5, 3) · 1 ·W (6, 4) ·W (7, 4), (67)

where we used W (1, 0) = 1.

Figure 8: The lattice path P0 from (0, 0) to (7, 4).
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Given A,Ω ∈ N2
0, let P(A → Ω) be the set of all paths from A to Ω. Further, let ω(P(A → Ω)) =∑

P∈P(A→Ω) ω(P ). Then one has [121, Eq. (2.5)][
n

k

]
w

= ω(P((0, 0)→ (k, n− k))). (68)

As discussed in [121], the identification of words in Cw[U, V ] and lattice paths in Z2 works locally (step by step)

as follows: U (resp., V ) corresponds to a vertical (resp., horizontal) step. Under this correspondence, “V U”

means that a horizontal step is followed by a vertical step, while “UV ” means that a vertical step is followed by a

horizontal step. The commutation relation (64) take into account the changes of the weights when consecutive

horizontal and vertical steps are exchanged. For example, the path P0 considered above corresponds to the

algebraic expression (here the relations (64) have to be used repeatedly)

V UUV V V UV UV V = W (2, 2)W (3, 2)W (4, 2)W (5, 3)W (6, 4)W (7, 4)V 7U4 = ω(P0)V 7U4.

Remark 5.1. We can make contact with (62) since there exists a bijection between the words of length n

with exactly k appearances of V and a lattice path of length n with k horizontal steps. If we assume that the

commutation relations (64) hold true, then we can write

Un−k−λ1V Uλ1−λ2 · · ·V Uλk−1−λkV Uλk =

 k∏
j=1

W (j, n− k − λj)

V kUn−k, (69)

where we have commuted successively the powers of U to the right, using UmV = W (1,m)V Um as well as

V rW (s, t) = W (s+r, t)V r following from (64). For example, the expression V UUV V V UV UV V corresponding

to the path P0 from Figure 8 is associated to the partition λ = (4, 2, 2, 2, 1, 0, 0, 0), and the factor in front of the

normal ordered term in (69) is precisely the weight ω(P0) of the path P0 given in (67).

Schlosser [121] considered several specializations of (64), in particular elliptic commuting variables, and

derived the corresponding binomial theorems for these cases. This line of study was continued by Schlosser

and Yoo [122,123], where an elliptic analogue of rook numbers was defined, and with their help elliptic Stirling

numbers (recall that the Stirling numbers of the second kind have a nice interpretation in terms of rook numbers

of the staircase board Jn, S(n, k) = rn−k(Jn)).

Schlosser [121, Appendix A] generalized the above considerations by introducing also a weight for vertical

steps. To be precise, the step from (s, t− 1)→ (s, t) has weight v(s, t) (instead of the constant value 1 above).

For example, the path P0 from Figure 8 has now weight

ω̃(P0) = v(1, 1) · v(1, 2) ·W (2, 2) ·W (3, 2) ·W (4, 2) · v(3, 4) ·W (5, 3) · v(5, 4) ·W (6, 4) ·W (7, 4), (70)

instead of (67). In analogy to Cw[U, V ], one can introduce for the two doubly-indexed sequences (v(s, t))s,t∈N

and (w(s, t))s,t∈N the associative unital algebra Cv,w[U, V ] generated by the U, V and the v(s, t) and w(s, t),

s, t ∈ N, satisfying (64) and in addition Uv(s, t) = v(s, t+ 1)U and V v(s, t) = v(s+ 1, t)V . The corresponding

double weight-dependent binomial coefficients are defined in analogy to above and satisfy the recurrence relation[
n+ 1

k

]
v,w

=

[
n

k

]
v,w

v(k, n+ 1− k) +

[
n

k − 1

]
v,w

W (k, n+ 1− k). (71)

They again have a combinatorial meaning in terms of weighted lattice paths,
[
n
k

]
v,w

= ω̃(P((0, 0)→ (k, n−k))),

generalizing (68). Generalizing Theorem 5.6, one has the following double weight-dependent binomial theorem.

Theorem 5.7. [121, Theorem 3] For n ∈ N, one has the following identity in Cv,w[U, V ],

(V + v(0, 1)U)n =

n∑
k=0

[
n

k

]
v,w

V kUn−k. (72)

As mentioned in [121], by choosing w(s, t) = 1, for s, t ∈ N, and v(s, t) = [s]q, for s, t ∈ N, (71) shows that

in that case
[
n
k

]
v,w

= Sq(n, k), the q-deformed Stirling numbers of the second kind.
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Recall that (64) constitutes a generalization of the commutation relation UV = qV U of the quantum plane.

Schlosser and Yoo [123] considered the slighty modified system

UV = w(1, 1)V U + 1, V w(s, t) = w(s+ 1, t)V, Uw(s, t) = w(s, t+ 1)U, (73)

which constitutes a generalizaton of the q-deformed Weyl algebra where UV = qV U +1, see Example 1.3. They

showed [123, Theorem 4.1] that one can write a word α consisting of n letters U and m letters V in the normal

ordered form α =
∑
k rk(w,Bα)V m−kUn−k where the normal ordering coefficients rk(w,Bα) can be interpreted

in terms of weighted rook numbers of the board Bα associated to α. In a similar fashion, they considered

the system where the first relation in (73) is modified to UV = w(1, 1)V U + U and showed [123, Theorem

4.4] the analogous normal ordering result α =
∑
k fk(w,Bα)V m−kUn where the normal ordering coefficients

fk(w,Bα) can be interpreted in terms of weighted file numbers of the board Bα associated to α. (Recall that a

file placement of k rooks on a board B is a placement of k rooks on B such that no two rooks lie in the same

column. The k-th file number fk(B) of a board B is the number of possible file placements of k rooks.)

Problem 5.2. a) Recall from Section 4.3 that the normal ordering coefficients for a word in letters U and V

satisfying UV = qV U + V s, s ∈ N, can be interpreted in terms of s-rook numbers. The above described cases

correspond to s = 0 and s = 1. Consider the system

UV = w(1, 1)V U + Us, V w(s, t) = w(s+ 1, t)V, Uw(s, t) = w(s, t+ 1)U,

Give a combinatorial interpretation for the normal ordering coefficients of words in U and V . The case s = 2

constitutes a generalization of the Jordan plane (see Example 1.4) which has many nice properties. What about

the generalization of the binomial formula? At least in the cases s = 0, 1, 2 one should have an interesting

interpretation for the corresponding coefficients. Finally, consider in these cases the double weighted situation

by introducing an additional weight sequence v(s, t) (similar to above). b) Consider the system where the first

relation in (73) is modified to UV = w(1, 1)V U + U + V . Note that this would constitute a generalization of

the q-deformed excedance algebra, see Section 4.5.

5.2.4 Curious binomial-type identities

Roughly 30 years ago, Kuchment and Lvin [84, 85] worked on the theory of medical imaging and found a

remarkable identity. In [86], this identity was discussed in more detail and more context was given. We follow

the presentation in [86] and let A be a unital commutative algebra (over a field K) with cancellation property

and derivation D (i.e., D(vw) = D(v)w + v(D(w)).

Theorem 5.8. [84, Lemma] Any solution u of the first-order equation Du = λu, λ ∈ K, satisfies for any

n ∈ N the following identity:

n∑
k=0

(
n

k

)
(D − u) ◦ (D − u+ λ) ◦ . . . ◦ (D − u+ (k − 1)λ)un−k = 0. (74)

Any solution u of the second-order equation D2u = λ2u, λ ∈ K, satisfies for any odd n ∈ N identity (74).

In the above identity, the expressions like (D− u− jλ) are considered as operators on the algebra A, acting

to the elements on the right. The symbol ◦ means composition of the operators from right to left. The term for

k = 0 is just un. For example, using u0 = 1, (74) reduces for n = 1 to the trivial identity u+ (D− u)1 = 0. For

n = 2, one obtains for the left-hand side u2 + 2(D − u)u+ (D − u) ◦ (D − u+ λ)1 which reduces to Du− λu.

This vanishes by the assumption on u.

For the proof of Theorem 5.8 we refer to [86]. There one can also find discussions on pitfalls and similarities

to the commutative situation. Note that for A = C∞(R) over K = C with λ = i (with i2 = −1) the derivation

D is just the usual derivative, and u(x) = sin(x) satisfies D2u = −u. Thus, (74) gives an identity for sin(x) (for

n odd) and was the one used in [84,85]. Choosing λ = 1 and u = ex, (74) gives the identity

n∑
k=0

(
n

k

)(
d

dx
− ex

)
◦
(
d

dx
− ex + 1

)
◦ . . . ◦

(
d

dx
− ex + (k − 1)

)
e(n−k)x = 0
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observed in [86]. Let us mention the following observation [86]: If we let Pn(D,X) =
∑n
k=0

(
n
k

)
DkXn−k, then

one has the recurrence relation Pn+2(D,X) = Pn+1(D,X)(D+X) + (n+ 1)Pn(D,X) (X denotes the operator

of multiplication with x).

More recently, Kuchment and Lviv [87] returned to identity (74) and generalized it in the following situation.

Let D and u be elements of an associative algebra A over a field K with unit I. The left-hand side of (74) will be

denoted by B(n, λ, u,D) (where λ ∈ K and jλ means jλI). Depending on the assumption on the commutator

[D,u] = Du− uD, analogous results to Theorem 5.8 were shown in [87]. For example, if [D,u] = λu (the shift

algebra), then B(n, λ, u,D) does not depend on u, B(n, λ, u,D) = B(n, λ, 0, D) = D(D + λ) · · · (D + (n− 1)λ).

As a concrete example, one can consider A to be the algebra of differential operators on C∞(R) with D = d
dx

and u = eλx (as multiplication operator). One has [D, eλx] = λeλx and since e−jλx belongs to the kernel of

(D + jλ) one has B(n, λ, eλx, D)e−jλx = 0 (for all n > 0 and 0 ≤ j ≤ n − 1) as analogue of (74). In a similar

fashion, the second-order equation from Theorem 5.8 gets replaced in the present situation by a condition on

the second-order commutators. For example, one has [87, Theorem 1.5]: If [D, [D,u]] = λ2u and [u, [D,u]] = 0,

then B(n, λ, u,D)|A0 = 0 for all odd n ∈ N (where A0 = {V ∈ A|DV = 0}). Several further results can be

found in [87].

Problem 5.3. It would be interesting to find a combinatorial proof of Theorem 5.8. Also, as Kuchment and Lvin

mentioned themselves [86], it would be natural to consider what happens to solutions of higher-order differential

equations, Dmu = λmu. Can one find analogous identities? As it seems, a natural analogue of Theorem 5.8

does not exist, see the remarks in [86, 87].

6. Miscellaneous research related to normal ordering

In this section, we point out some recent research where the ordering of non-commuting obects plays a role for

the investigation of the main objective.

• Briand et al. [25] studied the commutation relations and normal ordering for certain families of operators

on symmetric functions. These operators can be naturally defined by the operations of multiplication,

Kronecker product, and their adjoints. In total, four families of operators Uλ, Dλ,Kλ and Kλ associated

to a partition λ were studied and the commutation relations were derived [25, Theorem 1.1]. Also, the

question “Given a word involving these operators, how can we put it in a normal form?” was discussed.

• Méndez and Ramı́rez [104] considered the r-Whitney numbers of the first and second kind (see Section 2.2)

and gave new combinatorial interpretations for many properties by using combinatorial differential opera-

tors in the form discussed by Méndez [103] (see also Labelle and Lamathe [88]). Among the many relations

shown – or recovered – by their new approach they derived [104, Theorem 5] the Spivey-like relation (33)

(for q = 1).

• Škoda [126] considered symmetric ordering in the n-th Weyl algebra An. (Recall that symmetric ordering

a monomial in the generators means to sum over all possible arrangements in the generators, see [98] and

the references therein).

• Cantuba [30] began the study of the Lie polynomials of the q-deformed Weyl algebra when q is not a root

of unity, see Example 1.3. If we let U, V be the generators satisfying UV − qV U = I, then the set of Lie

polynomials is the Lie algebra L(q) generated by U and V . For q 6= 1, the relation UV − qV U = I cannot

be expressed in terms of Lie algebra operations, yet it has consequences for L(q). Ordering results were

needed in the study of L(q), and the limit q = 0 was also considered in [30]. Cantuba and Silvestrov [33]

continued this study by considering the Weyl algebra when q is a root of unity. Cantuba [31] considered

the same problem for the algebra defined by a linearly twisted commutation relation, UV = σ(V U) (see

Section 4.1), and, together with Merciales [32] for the extension R(q) of the q-deformed Weyl algebra

described in Section 4.2. A survey of these results was given by Cantuba and Silvestrov [34].

• Josuat-Vergès [73] considered the derivative polynomials of tangens and secans introduced by Knuth and

Buckholtz [83] by dn

dxn tan(x) = Pn(tan(x)) and dn

dxn sec(x) = Qn(tan(x)) sec(x). By letting dn

dxn seca(x) =
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Q
(a)
n (tan(x)) seca(x) for a ∈ N, one generalizes Qn ≡ Q

(1)
n . Let Rn ≡ Q

(2)
n . It follows that Pn+1(t) =

(1 + t2)Rn(t). For these two familes of polynomials Qn, Rn certain q-generalizations were introduced by

letting [73, Definition 2.2] (here 1 = t0)

Qn(t, q) = (Dq + UDqU)n1, Rn(t, q) = (Dq +DqUU)n1,

where Dqt
n = [n]qt

n−1 is the Jackson derivative (8) and Utn = tn+1 is the multiplication operator

satisfying DqU = qUDq + 1, the commutation relation of the q-deformed Weyl algebra, see Example 1.3.

One has Qn(t, 1) = Qn(t) and Rn(t, 1) = Rn(t) [73, Proposition 2.4]. As observed in [73], using the

normal ordered form (Dq + UDqU)n =
∑
i,j≥0 ci,jU

iDj
q (where the normal ordering coefficients ci,j have

to be determined), one finds Qn(t, q) =
∑
i,j≥0 ci,jU

iDj
q1 =

∑
i≥0 ci,0t

i (since Dj
q1 = 0 for j ≥ 1). Several

combinatorial interpretations for Qn(t, q) and Rn(t, q) (and, in particular, for q = 1) were discussed

in [73]. One of these follows by using a general result on normal ordering [22, Theorem 1], see [73, Section

4.2]. Let us mention that the tangent numbers (A000182 in [127]) and secant numbers (or also Euler

numbers, A000364 in [127]) are the coefficients in the formal power series for tan and sec and that [83]

aimed at an efficient method for computing them. They can be determined by evaluating the polynomials

Pn(t), Qn(t), Rn(t) at t = 1, see [73]. A completely different approach for computing these numbers using

3 non-commuting operators R,L, S was given by Hodges and Sukumar [67, 129]. These operators satisfy

the commutation relations

RL− LR = S, RS − SR = 2R, SL− LS = 2L, (75)

and can be considered as generators of the Lie algebra su(1, 1). The tangent and secant numbers can

then determined from the powers (R+L)m, see the discussion in [67,129]. See also Hetyei [66] for further

ramifications, in particular the connection to Viennot’s combinatorial theory of orthogonal polynomials.

Remark 6.1. According to Section 4.7, we can associate to the algebra with generators R,L, S satisfying

(75) its commutation graph K3, the triangle graph. Note that from all commutation graphs mentioned in

this paper, this is the only one containing a nontrivial cycle.

• Behr et al. [12] studied single-species chemical reactions by either combinatorial normal ordering tech-

niques, or, for binary reactions, by means of Sobolev-Jacobi orthogonal polynomials. Note that the single-

species case corresponds to the Weyl algebra A1, while the multi-species case – also considered in [12] –

corresponds to the n-th Weyl algebra An (see Section 3.1) where the generators {âi, â†i}1≤i≤n satisfy (52).

Using the following convenient multi-index notation,

m! =
∏
i

mi!,

(
m

k

)
=
∏
i

(
mi

ki

)
, xy =

∏
i

(xyii ) ,

one has in An the following normal ordering result [12, Eq. (46)],

(â†)p âq (â†)k âl =
∑
i≥0

(
q

i

)(
k

i

)
i!(â†)p+k−i âq+l−i, (76)

extending the case n = 1 from (46). Furthermore, for real vectors α, β ∈ Rn and for all Taylor expandable

functions f one has the reordering result [12, Proposition 1]

eα·âf(â†, â)eβ·â
†

= eα·βeβ·â
†
f(â† + α, â+ β)eα·â.

Problem 6.1. Similar to the case n = 1 – where (47) is the main input for (46) – the main input for

(76) in the case n = 2 can be written explicitly

âm1
1 âm2

2 (â†1)m3(â†2)m4 =
∑
i1≥0

∑
i2≥0

(
m1

i1

)(
m3

i1

)(
m2

i2

)(
m4

i2

)
i1!i2!(â†1)m3−i1(â†2)m4−i2 âm1−i1

1 âm2−i2
2 , (77)

where we used indices adapted to a result we want to quote. For n = 1, the coefficient
(
m1

i

)(
m3

i

)
i! is the

i-th rook number of the full [m1]× [m3] board Bm1,m3 , i.e., ri(Bm1,m3) =
(
m1

i

)(
m3

i

)
i! Thus,

âm1
1 âm2

2 (â†1)m3(â†2)m4 =
∑
i1≥0

∑
i2≥0

ri1(Bm1,m3)ri2(Bm2,m4)(â†1)m3−i1(â†2)m4−i2 âm1−i1
1 âm2−i2

2 ,
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and it is clear that an analogous factorization holds for arbitrary n ≥ 2. On the other hand, one may

ask for an interpretation in terms of rook numbers of higher dimensional boards, as discussed by Alayont

and Krzywonos [6]. For example, if one considers the full [m1] × [m2] × · · · × [m2n] “board” Bm1,...,m2n

in 2n dimensions, its i-th rook number is given by
(
m1

i

)(
m2

i

)
· · ·
(
m2n

i

)
(i!)2n−1, see [6]. (If a rook is placed

in cell (j1, . . . , j2n), then another rook may not be placed in any other cell sharing a coordinate with this

cell.) If we compare this with (77), we see that the diagonal coefficients with i2 = i1 can be described

as 1
i1!ri1(Bm1,...,m4

), but other summands contribute as well. Therefore, it would be interesting to give

an interpretation for the normal ordering coefficients of arbitrary words in An by rook numbers or other

combinatorial constructions on 2n-dimensional boards, giving an alternative interpretation to the one of

digraphs considered in Section 3.1.

• The Sobolev-Jacobi polynomials mentioned in the previous point were studied by Behr et al. [8] using

operational – and, in particular, normal ordering – methods. Let us mention the following nice observation

[8, Lemma 2]: For any entire function f in the Euler operator E = XD (see Section 2.1.1) and any p, q ∈ N
one has

f(E)XpDq = XpDqf(E + p− q), XpDqf(E) = f(E − p+ q)XpDq.

• Blasiak et al. [20] gave a combinatorial derivation of the Glaisher-Crofton identity,

exp

(
α
d2

dx2

)
exp(−x2) =

1√
1 + 4α

exp

(
− x2

1 + 4α

)
.

Although not directly related to normal ordering, the authors of [20] mentioned that the combinatorial

approach to derivatives can provide insights into different operator identities, e.g., those connected to the

normal ordering problem.

• Behr et al. [9] considered so-called pseudo-evolutionary differential equations which are defined as equations

of Cauchy type, DtF (x, t) = αOxF (x, t), F (x, 0) = f(x). Here, Dt is an operator playing the role of the

derivative with respect to t, α is a constant, Ox is an operator of differential or pseudo-differential nature.

In the concrete examples considered, Ox is a sum of two non-commuting operators (e.g., Ox = −(αx−β∂x)

or Ox = −(αx + β∂2
x)), and the exponential of Ox is found using operational and operator ordering

techniques (like, e.g., the Zassenhaus formula, or the Crofton-identity eλ∂
m
x f(x) = f(x+mλ∂m−1

x )eλ∂
m
x ).

If one considers for Ox a differential operator of at most first order, Ox = q(x)∂x + v(x), the integration

of the associated one-parameter group (Uλf)(x) = (eλ(q(x)∂x+v(x))f)(x) has been considered many times

in the literature, see the survey of Goodenough and Lavault [63] (where also the connection to Riordan

arrays is discussed).
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