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Yufei Zhao received his Ph.D. in mathematics from the Massachusetts
Institute of Technology (MIT) under the supervision of Jacob Fox. He
is currently Assistant Professor of Mathematics at MIT. He has held
postdoctoral and visiting positions at Stanford University, UC Berke-
ley and Oxford. Professor Yufei Zhao made significant contributions
in combinatorics. His major contribution is related to the celebrated
Green–Tao theorem. Zhao’s proof, co-authored with Jacob Fox and
David Conlon, simplifies a central part of the proof, allowing a more
direct approach to the Green–Tao theorem. Their work improves the
understanding of pseudorandom structures and has other applications

in mathematics and computer science. For his contributions, Professor Zhao has received several
awards including the Dénes König Prize (2018) and a Sloan Research Fellowship (2019).

Mansour: Professor Zhao, first of all, we
would like to thank you for accepting this in-
terview. Would you tell us broadly what com-
binatorics is?

Zhao: It is an honor to be interviewed by
ECA. Combinatorics concerns the study of dis-
crete structures such as graphs, set systems,
and geometric configurations. Many prob-
lems in combinatorics can be simply stated
requiring minimal background to understand,
but the solutions sometimes use powerful tech-
niques and/or ingenious insights. Modern
combinatorics often draws ideas from other
mathematical areas, for example, probabilistic,
algebraic, Fourier analytic, topological, and ge-
ometric methods.

Mansour: What do you think about the de-
velopment of the relations between combina-
torics and the rest of mathematics?

Zhao: I am drawn to combinatorics problems
that have rich connections to other areas of
mathematics. A great example is Szemerédi’s
theorem1. While Szemerédi initially proved
his result combinatorially, subsequently other

proofs were found using completely different
methods, most notably via (1) ergodic theory,
(2) higher order Fourier analysis, and (3) hy-
pergraph regularity. Each approach involves
sophisticated ideas and has led to its own ex-
citing direction of research. Together, they re-
veal deep structures in Szemerédi’s theorem,
showing that what we have is not merely some
isolated combinatorial curiosity, but rather it
is integrally tied to the rest of mathematics.
Terry Tao uses Szemerédi’s theorem as the core
example in this excellent essay What is good
mathematics? 2.

Mansour: What have been some of the main
goals of your research?

Zhao: I am interested in solving extremal
problems in combinatorics — what is the maxi-
mum or minimum size of a structure with given
properties?

Much of my Ph.D. work concerns building
graph theoretic techniques that connect to ad-
ditive combinatorics, thereby further bridging
the two subjects. I am continuing to work in
this direction.
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Lately I have been working on extremal
problems in discrete geometry, for example,
equiangular lines and the joints problem. One
good problem often leads to another. For ex-
ample, studying equiangular lines led us to a
new result in spectral graph theory: a con-
nected bounded degree graph has sublinear
second eigenvalue multiplicity3.
Mansour: We would like to ask you about
your formative years. What were your early
experiences with mathematics? Did that hap-
pen under the influence of your family or some
other people?
Zhao: I have always liked math and numbers
from as young as I can remember. I grew up
in China and then moved to Canada when I
was eleven. In China, the school environment
was encouraging for someone who was good at
math. When we moved to Canada, I initially
had a hard time adjusting due to language and
cultural barriers. It frustrated me that no one
at my school cared about mathematics. For-
tunately I brought a few math books with me,
and I spent a lot of time reading them. Math-
ematics was my sanctuary.

No one in my family is anywhere close to
being a mathematician, so it was a bit surpris-
ing to them that I ended up becoming one.
When I grew up in China, we lived with my
paternal grandfather, who was a middle school
Chinese teacher, and his educational philoso-
phy was that kids need to learn to sit still for
a long time and concentrate. That turned out
to be a good skill to have for doing mathemat-
ics!
Mansour: Were there specific problems that
made you first interested in combinatorics?
Zhao: As an undergraduate, I took a variety
of classes across many areas of mathematics.
Combinatorics is the subject that resonated
with me the most. I enjoyed the problem solv-
ing nature of combinatorics. There weren’t
any specific problems that got me interested
in combinatorics. As an undergraduate, I en-
joyed taking several classes from Prof. Richard
Stanley in enumerative and algebraic combina-
torics, though what I do now is quite different.

Between undergraduate studies and Ph.D.,
I spent a year at Cambridge University as a

Gates Scholar studying Part III of the Math-
ematical Tripos. I learned a lot from taking
combinatorics classes from Imre Leader, David
Conlon, and Ben Green. I became really in-
terested in extremal combinatorics, and I was
ready to start doing research when I got back
to MIT.
Mansour: What was the reason you chose
MIT for your Ph.D. and your advisor, Jacob
Fox?
Zhao: I had several nice options for graduate
programs in the US, but at the time, very few
had a strong combinatorics presence (the situ-
ation has improved a lot since then). When
I finished undergraduate, I talked to Jacob
Fox, who was very encouraging. He recom-
mended me to read the textbook The Prob-
abilistic Method by Alon and Spencer. I re-
ally liked the book and had a fun time work-
ing through the exercises. When I got back
to MIT from Cambridge to start my Ph.D.,
Fox suggested to me a long list of recent re-
search papers to read. We discussed these pa-
pers regularly and intensely, and my research
progressed very quickly from there.
Mansour: What was the problem you worked
on in your thesis?
Zhao: The main problem that I worked on for
my thesis is understanding extensions of Sze-
merédi’s regularity lemma to sparse pseudo-
random graphs. Szemerédi’s regularity lemma4

is a power tool in combinatorics. But the
original form of the method does not immedi-
ately say anything useful unless the graph has
quadratically many edges. There was a lot of
interest in extending the regularity method to
sparser settings.

Most interesting applications of the regular-
ity method have two separate components: (1)
obtaining a regular partition of the vertex set
and (2) proving a counting/embedding lemma
to find desired structures among the regular
parts. It was already known how to extend
the first step to sparser graphs, but the sec-
ond step posed significant difficulty. My first
paper5 in graduate school (coauthored with
David Conlon and Jacob Fox) developed a
counting lemma for regular partitions of sparse
pseudorandom graphs. This already had in-

3Z. Jiang, J. Tidor, Y. Yao, S. Zhang and Y. Zhao, Equiangular lines with a fixed angle, arXiv:1907.12466.
4E. Szemerédi, Regular partitions of graphs, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS Univ.

Orsay, Orsay, 1976), vol. 260, CNRS, 1978, pp. 399–401.
5D. Conlon, J. Fox and Y. Zhao, Extremal results in sparse pseudorandom graphs, Adv. Math. 256 (2014), 206–290.
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teresting applications. Then we took one step
further and extended the techniques for hyper-
graphs6. It turned out that our new method
gave a simplified proof of the Green–Tao theo-
rem on arithmetic progressions in the primes.

I spent a lot of time in my Ph.D. think-
ing about the connections between graph the-
ory and additive combinatorics. When I first
started teaching as faculty, I designed and
taught a course that combined these two ar-
eas together and highlighted their common
themes. My goal was to teach the back-
ground to my research so that interested stu-
dents could also start working in this direction
(and this worked!). I built a nice set of lecture
notes, produced with the help of my students,
and I am working on turning these notes into
a textbook. Also, all my lectures in Fall 2019
were videotaped and produced by MIT Open-
CourseWare, freely available online to anyone
who is interested7.
Mansour: What would guide you in your re-
search? A general theoretical question or a
specific problem?
Zhao: When I’m starting in a new direction, I
like to have a few concrete problems in mind.
Recently I have been thinking a lot about ex-
tremal problems in discrete geometry, and usu-
ally there is some bound that we are trying to
improve. For example, for equiangular lines,
the natural problem is to determine the max-
imum number of lines in Rd pairwise forming
the same angle.

Once I have thought enough about an area,
I would develop a sense of what general direc-
tions should be further investigated. Sparse
regularity is a good example—the problems
here are often less well specified. I look for the
right questions to ask and think about what is
missing in our understanding of the subject.
Mansour: When you are working on a prob-
lem, do you feel that something is true even
before you have the proof?
Zhao: Usually, but sometimes there are sur-
prises. I find it useful to make “micro-

conjectures” while working on a problem, espe-
cially when working with collaborators. These
micro-conjectures are concrete and falsifiable
statements that act as guide posts. While
micro-conjectures are usually not significant
enough to merit publication on their own, re-
solving them nevertheless provides me with a
sense of progress and accomplishment.
Mansour: What three results do you consider
the most influential in combinatorics during
the last thirty years?
Zhao: Here are my three (slightly biased by
my own interests, of course), listed in no par-
ticular order. I chose these developments not
just because of the longstanding problems that
each solved, but also because the ideas intro-
duced by the solutions led to paradigm shifts
in the field. Each work is followed by a lot
of other nice works, and the tools introduced
have become central in the field—it would be
foolish to not at least try the new tools when
working on a related problem.

(1) Gowers’ new proof of Szemerédi’s theo-
rem introduced higher order Fourier analysis8.
This is a deep extension of the Fourier ana-
lytic proof of Roth’s theorem. Gowers’ ideas
led to a significant portion of subsequent re-
search in additive combinatorics, for example,
the Green–Tao theorem9, and the Green–Tao–
Ziegler inverse theorem for the Gowers unifor-
mity norm10.

(2) Dvir’s stunningly short proof of the fi-
nite field Kakeya conjecture brought new light
to the powerful polynomial method in com-
binatorics11. Guth and Katz further devel-
oped Dvir’s ideas in incidence geometry by
applying the polynomial method to solve the
joints problem12 and the Erdős distinct dis-
tances problem13. Guth also made advances
on the restriction problems in harmonic analy-
sis using these ideas14,15, which also led to im-
provements on the Kakeya problem. The poly-
nomial method, and in particular, the polyno-
mial partitioning technique, is now an indis-
pensable tool for such problems. I recommend

6D. Conlon, J. Fox and Y. Zhao, A relative Szemerédi theorem, Geom. Funct. Anal. 25 (2015), 733–762.
7Y. Zhao, Graph theory and additive combinatorics, MIT OpenCourseWare, 2019, https://ocw.mit.edu/18-217F19.
8W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), 465–588.
9B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167 (2008), 481–547.

10B. Green, T. Tao and T. Ziegler, An inverse theorem for the Gowers Us+1[N ]-norm, Ann. of Math. 176 (2012), 1231–1372.
11Z. Dvir, On the size of Kakeya sets in finite fields, J. Amer. Math. Soc. 22 (2009), 1093–1097.
12L. Guth and N. H. Katz, Algebraic methods in discrete analogs of the Kakeya problem, Adv. Math. 225 (2010), 2828–2839.
13L. Guth and N. H. Katz, On the Erdős distinct distances problem in the plane, Ann. of Math. (2) 181 (2015), 155–190.
14L. Guth, A restriction estimate using polynomial partitioning, J. Amer. Math. Soc. 29 (2016), 371–413.
15L. Guth, Restriction estimates using polynomial partitioning II, Acta Math. 221 (2018), 81–142.
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Guth’s excellent textbook Polynomial methods
in combinatorics for an introduction.

(3) The hypergraph container theorem,
proved by Balogh, Morris, and Samotij16, and
independently Saxton and Thomason17, gives
us powerful tools to count independent sets in
hypergraphs. The container method has lots of
powerful applications in combinatorics, since
many problems can be recast in terms of in-
dependent sets. These developments built on
earlier graph container ideas of Kleitman and
Winston18 and Sapozhenko19.
Mansour: What are the top three open ques-
tions in your list?
Zhao: This is a hard one since I keep on get-
ting interested in new problems as I learn more.

(1) Maximum sphere packing density in
high dimensions

(2) Sidorenko’s conjecture on graph homo-
morphism densities

(3) Shannon capacity of odd cycles
Mansour: What kind of mathematics would
you like to see in the next ten-to-twenty years
as the continuation of your work?
Zhao: I would like to see more analytic and
algebraic methods applied to solve extremal
combinatorics problems. And more broadly, I
would like to see methods and ideas from other
areas of mathematics applied to solve combi-
natorics problems.

My analytic perspective towards combina-
torics was influenced by papers of Gowers,
Lovász, Tao, and others that I read during my
Ph.D. They favored viewing discrete structures
such as graphs and hypergraphs analytically in
terms of functions. I have personally found this
perspective both instructive and useful in my
own work. Perhaps a unified perspective might
be distilled into some sort of “analytic graph
theory” similar to analytic number theory.

Algebraic methods are magical. Once in
a while, some longstanding conjecture gets
cracked in an ingenious one-page algebraic
“book proof.” Some notable recent examples
include the finite field Kakeya problem11, the
cap set problem20,21, and the sensitivity con-

jecture22. Why do algebraic methods process
such stunning magic? And where will we find
the next gem?

Mansour: Do you think that there are core or
mainstream areas in mathematics? Are some
topics more important than others?

Zhao: One should be careful when compar-
ing different areas of mathematics. Every self-
respecting mathematician will tell you why the
problems they are working on are interest-
ing and important. They probably have some
good reasons, but it is really hard to tell in the
moment which directions will become most im-
portant in the future.

A great example is the Erdős distinct dis-
tances problem, which asks to determine the
smallest number of pairwise distances deter-
mined by N points on a plane. This problem
may seem like a curious puzzle, but its eventual
solution by Guth and Katz13 led to the power-
ful method of polynomial partitioning, which
is now a central tool not only in combinatorial
geometry but also for the restriction problem
in harmonic analysis. As such, the distinct dis-
tances problem is a great problem, but had we
not seen the solution, it would have been hard
to say exactly why it is so great.

Mansour: What do you think about the dis-
tinction between pure and applied mathemat-
ics that some people focus on? Is it mean-
ingful at all in your case? How do you see the
relationship between so-called “pure” and “ap-
plied” mathematics?

Zhao: I do not think it is too productive to
focus on this distinction. To me the main dif-
ference comes from the source and motivation
of the investigation—does it mostly come from
within mathematics or from outside mathe-
matics?

Some of my work, for example, on property
testing, overlaps with theoretical computer sci-
ence. One can tell a nice story about how this
mathematics could be applied to check prop-
erties of large objects. Though, when actually
working on the problem, we are primarily fo-
cused on trying to prove a nice theorem.

16J. Balogh, R. Morris and W. Samotij, Independent sets in hypergraphs, J. Amer. Math. Soc. 28 (2015), 669–709.
17D. Saxton and A. Thomason, Hypergraph containers, Invent. Math. 201 (2015), 925–992.
18D. J. Kleitman and K. J. Winston, On the number of graphs without 4-cycles, Discrete Math. 41 (1982), 167–172.
19A. A. Sapozhenko, On the number of independent sets in extenders, Diskret. Mat. 13 (2001), 56–62.
20E. Croot, V. F. Lev and P. P. Pach, Progression-free sets in Zn

4 are exponentially small, Ann. of Math. (2) 185 (2017), 331–337.
21J. S. Ellenberg and D. Gijswijt, On large subsets of Fn

q with no three-term arithmetic progression, Ann. of Math. (2) 185
(2017), 339–343.

22H. Huang, Induced subgraphs of hypercubes and a proof of the sensitivity conjecture, Ann. of Math. (2) 190 (2019), 949–955.
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Mansour: You have extensive experience with
major mathematics competitions such as In-
ternational Mathematics Olympiads and Put-
nam. How much do you think that mathemat-
ics competitions inspire young students for a
research career?

Zhao: I credit a lot of my own early de-
velopment in mathematics to math competi-
tions. I found them really fun. The competi-
tions motivated me to learn more mathemat-
ics. They were also a great way to test my
understanding—you can’t just talk the talk. In
competition training, there is a rapid feedback
loop, which is an effective way to learn skills
such as proof-writing.

I also really enjoyed meeting other kids in
math camps and competitions. It provided
me with a community that encouraged me to
keep working hard to improve my mathemat-
ics. Some people I met through math compe-
titions remain my closest friends.

In terms of transitioning from math compe-
titions to math research, I like the analogy of
comparing sprints to marathons. They are not
the same sport. Being good at one is neither
necessary nor sufficient for being good at the
other. But they are not completely uncorre-
lated either. If you are a good sprinter, you are
likely in good physical shape, and that helps
with running long distance, though there are
of course also many other important factors.

I find that students with extensive math
competition training tend to have strong foun-
dations and technical skills. They also gen-
erally like tackling challenging problems. To
transition into a successful research career,
they need to pick up many other skills, for
example, choosing good problems to work on,
and persistence. A mentor once emphasized to
me the utmost importance of developing good
mathematical taste. A little guidance and en-
couragement here can go a long way.

Mansour: What advice would you give to
young people thinking about pursuing a re-
search career in mathematics?

Zhao: It takes a lot of work, and sometimes
a little bit of luck. You have to be focused
and dedicated. Find a problem that you can-
not stop thinking about. Obsession is the key.
Enjoy the process. Talk to people. Learn from
them. Work with them. Always keep on learn-
ing something new.

Mansour: Would you tell us about your in-
terests besides mathematics?
Zhao: I like exploring new technology and
playing with new software and tech gadgets.
Sometimes they improve my productivity, but
sometimes it is just for fun, and making sure
that I am not falling behind the times.

I love to swim for fun (never competitively).
Before the COVID-19 epidemic, I would swim
in the university pool almost every day. When
I swim, sometimes I think about a math prob-
lem, but mostly I just use it to clear my mind.
It is like a moving meditation.
Mansour: Before we close this interview with
one of the young promising leaders in combina-
torics, we would like to ask some more specific
mathematical questions. One of your main
contributions is closely related to the Green–
Tao theorem. Would you tell us about the
Green–Tao theorem and your related work?
Zhao: The Green–Tao theorem9 says that the
primes contain arbitrarily long arithmetic pro-
gressions. I actually remember first hearing
about this result in high school. I was stunned
by the elegance of this statement, even though
at the time the proof was too advanced for my
understanding.

In my Ph.D., my work on the sparse regular-
ity method naturally led me to the Green–Tao
theorem once again.

Szemerédi’s theorem1 says that every subset
of integers with positive density contains arbi-
trarily long arithmetic progressions. This is a
deep theorem, and as I mentioned earlier, while
we now know several proofs of Szemerédi’s the-
orem, none of them can be considered easy.

On the other hand, the asymptotic density
of the primes is zero, and Szemerédi’s theorem
does not directly apply to the primes. Nev-
ertheless, Green and Tao devised a powerful
“transference principle” to adapt Szemerédi’s
theorem as a black box from the dense setting
to the sparse setting.

They set up some sparse set of integers,
called the “almost primes” (integers without
small prime divisors), and showed that the
primes sit inside as a relatively dense subset.
These almost primes furthermore have some
nice pseudorandomness properties.

Green and Tao then proved a relative Sze-
merédi theorem, showing that every set of inte-
gers satisfying certain pseudorandomness hy-
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potheses must also satisfy a relativized Sze-
merédi’s theorem, namely that every relatively
dense subset contains long arithmetic progres-
sions.

With Conlon and Fox6, we proved a new
and much simpler relative Szemerédi theorem
that require much weaker pseudorandomness
hypotheses compared to the original Green–
Tao work. The new pseudorandomness hy-
potheses are quite natural. They can be viewed
as a graphical analog of having small second
moments.

We wrote an exposition of the Green–
Tao theorem23, which includes a self-contained
proof (other than Szemerédi’s theorem, which
is applied as a black box). Our exposition in-
corporates all the simplifications to the proof
to date, and emphasizes a graph theoretic per-
spective.

Mansour: In a very recent paper, you and
your co-authors, have introduced and devel-
oped a theory of limits for sequences of sparse
graphs based on Lp graphons. These results
generalize both the existing L∞ theory of dense
graph limits and its extension by Bollobás and
Riordan to sparse graphs without dense spots.
Would you tell us about this work and possible
future research?

Zhao: Lovász developed an influential theory
of graph limits24. The classical graph limit the-
ory is applicable to graphs with constant edge
density. It remains an interesting challenge,
from both theory and applications, to further
develop a sparse theory of graph limits. I was
naturally drawn to this problem of extending
graph limit theory to sparse settings, since it
is related to sparse regularity.

I spent time at Microsoft Research during
my Ph.D. and worked with Christian Borgs,
Jennifer Chayes, and Henry Cohn, and we de-
veloped a notion of graph convergence and lim-
its for certain families of sparse graphs25,26.
One of our motivations was to devise a frame-

work for studying graphs with power law de-
gree distributions, which are very popular in
network theory due to their observed preva-
lence in nature and reality. These networks
have heavy tail degree distributions, and they
do not fall in the existing frameworks of sparse
graph limit theories. Our Lp theory of graph
convergence and graph limits turned out to be
a mathematically elegant framework that also
includes power law degree distributions.

I am still quite interested in mathematical
problems on this topic. Bollobás and Rior-
dan, in their seminal paper on sparse graph
limits27, formulated a long list of conjectures,
which would all be desirable properties of a
nice general sparse graph limit theory. Re-
cently, together with my students Ashwin Sah,
Mehtaab Sawhney, and Jonathan Tidor28, we
found a single counterexample that refutes ev-
ery conjecture in Bollobás and Riordan’s pa-
per. This example shows that sparse graphs
can behave much more wildly than previously
expected, so it actually opens doors to a lot
more exciting possibilities!

Mansour: In your paper “The number of in-
dependent sets in a regular graph” published
in 2010, you used a short and elegant counting
argument to reduce the general case to a par-
ticular case, the bipartite case. Would you tell
us about this result and the important ideas
behind the main result? In general, how do
enumerative techniques play a role in your re-
search?

Zhao: I worked on this problem as an under-
graduate during a summer research program
at Duluth run by Joe Gallian. I was initially
working on an additive combinatorics prob-
lem suggested to me by Gallian, and in do-
ing so I needed to show that certain 4-regular
graphs must not have too many independent
sets. I looked up the literature on this topic,
and found a paper by Jeff Kahn that proved
a tight bound for bipartite graphs29. I actu-

23D. Conlon, J. Fox and Y. Zhao, The Green-Tao theorem: an exposition, EMS Surv. Math. Sci. 1 (2014), 249–282.
24L. Lovász, Large networks and graph limits, American Mathematical Society Colloquium Publications, vol. 60, American

Mathematical Society, Providence, RI, 2012.
25C. Borgs, J. T. Chayes, H. Cohn and Y. Zhao, An Lp theory of sparse graph convergence I: Limits, sparse random graph

models, and power law distributions, Trans. Amer. Math. Soc. 372 (2019), 3019–3062.
26C. Borgs, J. T. Chayes, H. Cohn and Y. Zhao, An Lp theory of sparse graph convergence II: LD convergence, quotients and

right convergence, Ann. Probab. 46 (2018), 337–396.
27B. Bollobás and O. Riordan, Metrics for sparse graphs, Surveys in combinatorics, vol. 365, Cambridge Univ. Press, Cambridge,

2009, pp. 211–287.
28A. Sah, M. Sawhney, J. Tidor and Y. Zhao, A counterexample to the Bollobás-Riordan conjectures on sparse graph limits,

Combin. Probab. Comput., to appear.
29J. Kahn, An entropy approach to the hard-core model on bipartite graphs, Combin. Probab. Comput. 10 (2001), 219–237.
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ally needed the bound for non-bipartite graphs,
which Kahn left open as a conjecture in his pa-
per, and this is what I solved30.

The independent set in regular graphs prob-
lem asks to determine the maximum possible
number of independent sets in a d-regular n-
vertex graph. A better way to state the prob-
lem is to allow n to vary: maximize i(G)1/v(G)

among d-regular graphs G for a given d. The
problem turned out to be much more inter-
esting than the original additive combinatorics
problem that I started with.

This independent set problem was first
raised by Granville in the 1980’s in connec-
tion with the Cameron–Erdős conjecture on
the number of sum-free sets. Alon31 proved the
first non-trivial bound, and conjectured that
the maximizing G should be a disjoint union
of Kd,d’s. Kahn independently came to the
problem from studying the hard-core model in
statistical physics, and using a clever entropy
argument, he proved the conjecture in the case
of bipartite graph G, and also conjectured that
the bipartite hypothesis can be removed.

I was immediately drawn to this beautiful
problem. At the time I knew few tools in ex-
tremal combinatorics and graph theory, so I
was mostly playing with the problem with my
bare hands. Learning from Richard Stanley’s
classes and textbooks got me to be quite com-
fortable with bijection arguments, which came
in handy. I played with a lot of small examples
and eventually found a way to injectively map
independent sets of GtG (two copies of some
arbitrary graph G) into those of G × K2 (the
bipartite double cover of G). This was exactly
what was needed to extend Kahn’s result from
bipartite graphs to general graphs.

It took me a while to internalize Kahn’s
beautiful entropy argument for the bipartite
case. When I first read it, I could follow Kahn’s
proof line by line but did not really under-
stood why the argument worked. Later I found
(in a joint paper with Eyal Lubetzky)32 a new
proof of Kahn’s result using Hölder’s inequal-

ity, without using any entropy—also cleanly re-
proving a generalization by Galvin and Tetali33

to graph homomorphisms. We were actu-
ally working on a seemingly unrelated prob-
lem about large deviations in random graphs,
but it turned out that the same Hölder’s in-
equality trick worked in both. Finally, it was
only when I taught a class on the probabilistic
method, covering the entropy method, that I
revisited Kahn’s proof and finally understood
it.

More recently, with Ashwin Sah, Mehtaab
Sawhney, and David Stoner (all undergradu-
ates at the time), we proved two long sought-
after extensions of the independent set result,
namely to irregular graphs34 and to colorings35.
Our technique is heavily analytic (for exam-
ple, lots of applications of Hölder’s inequality)
rather than entropic. I would be interested to
see simpler proofs, perhaps using the entropy
method again.
Mansour: Would you tell us about your
thought process for the proof of one of your
favourite results? How did you become inter-
ested in that problem? How long did it take
you to figure out a proof? Did you have a “eu-
reka moment”?
Zhao: For the independent set in regular
graphs result I discussed above, I fondly re-
member thinking about the problem for sev-
eral weeks while sitting in an empty reading
room in a Duluth library. It was a distraction-
free bliss. I was elated when I finally discov-
ered the proof. This was my first real “eureka
moment,” and it remains one of my happiest
mathematical memories.
Mansour: Is there a specific problem you
have been working on for many years? What
progress have you made?
Zhao: I really like the sphere packing prob-
lem in high dimensions: what is the maximum
density of a packing of unit balls in Rn, asymp-
totically for large n? Henry Cohn is a leading
expert on sphere packing, and he infected me
with his interest on the subject when I was a

30Y. Zhao, The number of independent sets in a regular graph, Combin. Probab. Comput. 19 (2010), 315–320.
31N. Alon, Independent sets in regular graphs and sum-free subsets of finite groups, Israel J. Math. 73 (1991), 247–256.
32E. Lubetzky and Y. Zhao, On replica symmetry of large deviations in random graphs, Random Structures Algorithms 47

(2015), 109–146.
33D. Galvin and P. Tetali, On weighted graph homomorphisms, Graphs, morphisms and statistical physics, DIMACS Ser. Discrete

Math. Theoret. Comput. Sci., vol. 63, Amer. Math. Soc., Providence, RI, 2004, pp. 97–104.
34A. Sah, M. Sawhney, D. Stoner and Y. Zhao, The number of independent sets in an irregular graph, J. Combin. Theory Ser.

B 138 (2019), 172–195.
35A. Sah, M. Sawhney, D. Stoner and Y. Zhao, A reverse Sidorenko inequality, Invent. Math. 221 (2020), 665–711.
36G. A. Kabatiansky and V. I. Levenshtein, Bounds for packings on the sphere and in space, Problemy Peredači Informacii 14
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student.
In the 70’s, Kabatiansky and Levenshtein36

proved an upper bound of 2−(0.599···+o(1))n, and
this is essentially the best known in high di-
mensions. Cohn and I37 managed to im-
prove this bound by an embarrassingly tiny
amount—a constant factor in front of the ex-
pression (not in the exponent).

As for the lower bound, an easy greedy ar-
gument shows that one can pack with density
at least 2−n. This bound was subsequently im-
proved to cn2−n. Recently, Venkatesh38 proved
a lower bound of the form cn(log log n)2−n for a

sparse infinite sequence of n’s. This is the best
of our knowledge, but it is almost certainly not
the end of the story.

Every expert I talk to believes that lattice
packings cannot be significantly denser than
2−n (maybe even < n22−n). But, well, I sus-
pect that there are exponentially denser lat-
tices, but I have nothing concrete at the mo-
ment, so maybe I will just leave it at that.
Mansour: Professor Yufei Zhao, I would like
to thank you for this very interesting interview
on behalf of the journal Enumerative Combi-
natorics and Applications.

(1978), 3–25.
37H. Cohn and Y. Zhao, Sphere packing bounds via spherical codes, Duke Math. J. 163 (2014), 1965–2002.
38A. Venkatesh, A note on sphere packings in high dimension, Int. Math. Res. Not. IMRN (2013), 1628–1642.
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