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Abstract: The Gini index is a function that attempts to measure the amount of inequality in the distribution
of a finite resource throughout a population. It is commonly used in economics as a measure of inequality of
income or wealth. We define a discrete Gini index on the set of integer partitions with at most n parts and
show how this function emerges in the representation theory of the complex general linear group.
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1. Introduction

The Gini index, originally defined in 1912 by the Italian statistician Corrado Gini [8], is a function that measures
statistical dispersion. Traditionally used in economics to measure how equitably a resource is distributed
throughout a population, the Gini index has found a wide range of modern applications in fields including
biology [2], the medical sciences [20], and climate science [21].

We will review the discretization of the Gini index to the set of partitions of a fixed positive integer n
(defined in [13]), and will extend this discretization to the set of partitions of a positive multiple of n with
n parts. In section 3, we review the representation theory of the complex general linear group, GLn(C), of
invertible n×n complex matrices – with an emphasis on representations of GLn(C)-harmonic polynomials. We
will then show how the discrete Gini index appears in this setting as the top homogeneous degree in which
an irreducible rational representation of the general linear group occurs as a factor in the GLn(C)-harmonic
polynomials (Theorem 3.1).

2. The discrete Gini index

2.1 The Gini index of an integer partition

The classical Gini index is usually defined in terms of Lorenz curves. The Lorenz curve of a distribution is the
graph of a function L for which L(x) is the percentage of total wealth possessed by the poorest x percent of
the population [17]. From this definition it follows that, regardless of the distribution, L will be an increasing,
convex function on the interval from 0 to 1, L(0) = 0, and L(1) = 1.

The data sets we use to measure inequality are necessarily discrete. To make the corresponding Lorenz curve
continuous, the curve is often constructed by approximating the discrete data set with a smooth curve [12], or
by linear interpolation [6]. Bypassing this process, a discrete version of the Gini index was defined in [13] as
follows. Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) be a partition of an integer n – that is, a finite tuple of n non-negative
decreasing integers whose sum is equal to n. Each such partition corresponds to a wealth distribution in which
there are n dollars distributed among n people such that the most wealthy person has λ1 dollars, and the least
wealthy has λn dollars. To measure the amount of inequality in the wealth distribution λ, the Gini index of λ
is then defined as

g(λ) :=

(
n+ 1

2

)
−

n∑
i=1

iλi. (1)
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This definition is best understood in terms of discrete Lorenz curves. The discrete Lorenz curve of an integer
partition λ of n is defined on the interval from 0 to n by

Lλ(x) :=


0 x = 0
j−1∑
i=0

λn−i x ∈ (j − 1, j]
(2)

for j = 1, . . . , n.

Example 2.1. Suppose there are 5 dollars distributed among a population of 5 people according to the partition
(3 ≥ 1 ≥ 1 ≥ 0 ≥ 0). The most equitable distribution would be the so-called flat partition (1 ≥ 1 ≥ 1 ≥ 1 ≥ 1) in
which each person has the same amount of money; the Lorenz curve of this distribution is sometimes called the
line of equity or the line of equality. The Lorenz curves of each of these distributions are pictured in Figure 1.

Figure 1: The line of equality (dashed) and the Lorenz curve of the partition (3 ≥ 1 ≥ 1 ≥ 0 ≥ 0) of 5 (solid).

The Gini index of a partition λ can easily be seen as the difference in the area between the line of equality
and the curve Lλ(x). Indeed, one computes that the area under the line of equality is

(
n+1
2

)
, and the area under

Lλ(x) is
∑n
i=1 iλi. In Example 2.1 we see that the Gini index of (3 ≥ 1 ≥ 1 ≥ 0 ≥ 0) is 7. The Lorenz curve of

λ will always coincide with the line of equality on the interval (n− 1, n], so the formula in Equation 1 simplifies
to:

g(λ) =

(
n

2

)
−

n∑
i=1

(i− 1)λi. (3)

The function
∑n
i=1(i − 1)λi appears frequently throughout algebraic combinatorics and is sometimes referred

to as the weighted total of the partition λ [18]; thus we will adopt the function notation

b(λ) :=

n∑
i=1

(i− 1)λi. (4)

2.2 A generalization of the discrete Gini index

The definition of the Gini index in Equation 3 is unnecessarily restrictive, and can easily be generalized to allow
for dollar amounts that are multiples of n. To that end, let n and k be positive integers, and consider a wealth
distribution in which nk dollars are distributed among n people. The possible distributions are in one-to-one
correspondence with the partitions of nk with at most n parts.

The discrete Gini index can be generalized to this setting by extending the notion of the discrete Lorenz
curve and defining the Gini index of a distribution to be the area between the line of equality and the discrete
Lorenz curve of the distribution. The Gini index in this setting is best understood via the following example.

Example 2.2. Suppose 15 dollars are distributed among 5 people according to the partition λ = (6 ≥ 4 ≥ 3 ≥
1 ≥ 1). The line of equality is the discrete Lorenz curve of the most equitable distribution, which in this setting
is the flat partition (3 ≥ 3 ≥ 3 ≥ 3 ≥ 3), or (35) in simplified form. The discrete Lorenz curves for these
distributions are pictured in Figure 2.
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Figure 2: The line of equality (dashed) and the discrete Lorenz curve (solid) of the partition (6 ≥ 4 ≥ 3 ≥ 1 ≥ 1)
of 15 with 5 parts.

We define the Gini index g15,5(λ) of this distribution to be the area between the line of equality and the
discrete Lorenz curve of λ = (6 ≥ 4 ≥ 3 ≥ 1 ≥ 1):

b
(
(35)

)
− b (λ) = 13.

In general, if n and k are positive integers and λ is a partition of nk with at most n parts, then the Gini
index of λ is the area between the line of equality (the discrete Lorenz curve of the flat partition (kn)) and the
discrete Lorenz curve of λ:

gnk,n(λ) := b ((kn))− b(λ). (5)

Notice that in the case k = 1, the function in Equation 5 specializes to the Gini index defined in Equation 3.

3. Representation theory

This section provides a brief overview of the basic representation theory of the complex general linear group and
the structures relevant to our main result. Even so, some familiarity with the representation theory of classical
groups is assumed.

3.1 Representation theory of GLn(C)
The complex general linear group, GLn(C), is the set of all n × n complex invertible matrices, equipped with
the operation of matrix multiplication. A finite dimensional∗ representation of GLn(C) is a homomorphism
ρ : GLn(C) −→ GL(V ), where GL(V ) is the group of invertible linear transformations of a finite-dimensional
complex vector space V . The representation is rational if, after choosing a basis for V , ρ(g) is a matrix whose
entries are fixed rational functions in the matrix entries of g, where g ∈ GLn(C). When the action of ρ is
understood, the vector space V itself is often referred to as the representation.

An irreducible representation (irrep) is a nonzero representation with no proper nontrivial subrepresenta-
tions. In other words, V is irreducible if there are no non-trivial subspaces W ⊂ V that are closed under
the action of GLn(C) restricted to W . The general linear group is reductive, which implies that all rational
representations can be written as a direct sum of irreducible rational representations. Irreps of GLn(C) are
classified by the Theorem of the Highest Weight, which we now review.

Let H denote the subgroup of GLn(C) consisting of diagonal matrices. Let V be a rational representation of
GLn(C). A vector v in V has weight α = (α1, . . . , αn) in Zn if ρ(x)(v) = xα1

1 · · ·xαn
n v for all x = diag(x1, . . . , xn)

in H.
Let B denote the Borel subgroup of upper triangular matrices in GLn(C). The weight α of a vector v in

V is called a highest weight of V if ρ(B)(v) = ρ(C∗)(v), where C∗ is the set of all non-zero complex numbers.
Two irreducible rational representations are isomorphic if and only if they have the same highest weight. These
concepts are summarized in the Theorem of the Highest Weight.

∗Unless otherwise stated, all representations in this paper are finite-dimensional.
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Theorem 3.1 (Theorem of the Highest Weight). For every tuple α = (α1, . . . , αn) ∈ Zn with α1 ≥ . . . ≥ αn,
there is a unique irreducible rational representation V α of GLn(C) with highest weight α. Moreover, all such
irreducible rational representations of GLn(C) are of this form.

For more on the representation theory of GLn(C) we refer the reader to [7], [19], and [9].

3.2 GLn(C)–Harmonic polynomials

The discrete Gini index arises as the top degree in which an irrep appears as a direct summand in the space
of harmonic polynomials on the Lie algebra of GLn(C). In this section, we provide a cursory overview of the
GLn(C)−harmonic polynomials.

It is well-known that the Lie algebra g of G = GLn(C) is the Lie algebra of n×n complex matrices, Mn(C).
The general linear group acts on its Lie algebra by the adjoint representation,

Ad(g)X := gXg−1,

for g ∈ G and X ∈ g. Choose a basis X1, . . . Xn2 for g, and define the algebra of polynomial functions on g by
identifying

C[g] = C[X1, . . . , Xn2 ].

The group G acts on g via the adjoint representation, and therefore also acts on C[g] by conjugation. The
algebra C[g] is thus an infinite dimensional graded representation of G with gradation

C[g] =
⊕
d≥0

C[g]d,

where C[g]d is the vector space of homogeneous degree d polynomials in C[g]. The ring of G−invariant polyno-
mials in C[g] is the set

C[g]G = {f ∈ C[g] : g · f = f for all g ∈ G} .

The coinvariant ring of G is the quotient

C[g]G := C[g]/C[g]G+

of the full polynomial ring by the ideal C[g]G+ of G−invariant polynomials without constant term.

Let ∂i = ∂
∂xi

, and for f ∈ C[g], define f(∂) = f(∂1, . . . , ∂n2). The G-invariant differential operators with no
constant term is the set

D(g)G+ =
{
f(∂)|f ∈ C[g]G+

}
.

The module of G−harmonic polynomials on g is then defined by

H (g) =
{
f ∈ C[g]|∆(f) = 0 for all ∆ ∈ D(g)G+

}
.

As a (infinite dimensional) representation of G, H (g) is isomorphic to the coinvariant ring C[g]G.
The G−harmonic polynomials also form a graded representation of GLn(C);

H (g) =

∞⊕
d=0

H (g)
d
,

where Hd (g) = H (g) ∩ C[g]d. This fact is non-trivial since it says that if a function is harmonic, then so are
its homogeneous components. In general, every polynomial function can be expressed as a sum of G−invariant
functions multiplied by G-harmonic polynomials. In other words, there is a surjection

C[g]G ⊗H(g) −→ C[g] −→ 0

obtained by linearly extending multiplication. Kostant showed in [15] that the product of invariants and
harmonics is unique, and thus

C[g] ∼= C[g]G ⊗H(g).

Each degree d homogeneous component, H(g)d, is a finite-dimensional rational representation of G, and
therefore decomposes into a finite direct sum of irreducible representations of G. We then pose the question,
“given an irreducible rational representation V α of GLn(C) with highest weight α, in what degrees does V α

occur in the direct sum decomposition of H(g)d?” This question can be further formalized by considering the
graded multiplicity of the representation V α, which is defined as follows. If V α is a finite dimensional irreducible
rational representation of G with highest weight α, we denote by

[
V α,H(g)d

]
the multiplicity with which V α
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occurs in the direct sum decomposition of the homogeneous degree d harmonic polynomials, H(g)d. The
degrees in which and multiplicities with which the representation V α occurs within the harmonic polynomials
is summarized in what is called the graded multiplicity polynomial of V α in H(g), and is defined by

mα(q) :=

∞∑
d=0

[
V α,H(g)d

]
qd, (6)

where q is a dummy variable. It follows from [15] that mα(q) 6= 0 if and only if α 6= 0 and α1 + · · · + αn = 0.
We now state our main result.

Theorem 3.1. Let V α be a GLn(C) irrep of highest weight α = (α1 ≥ α2 ≥ · · · ≥ αn) with α1+α2+· · ·+αn = 0.
Let k ∈ N be such that k ≥ |αn|, and let λ := α+(kn). Then degmα(q) = gnk,n(λ), where gnk,n is the generalized
Gini index defined in Equation 5.

It is worth noting that the Gini index gnk,n(λ) is independent of the choice of integer k, so long as k ≥ |αn|. In
simple terms, Theorem 3.1 states that for a given irreducible rational representation V α of GLn(C), the graded
multiplicity polynomial mα(q) is either zero, or of degree gnk,n(λ), where λ = α + (kn), and k is any integer
greater than |αn|. In other words, the maximal homogeneous degree in which an irreducible representation
of GLn(C) appears in the GLn(C)−harmonics is completely determined by the Gini index. The proof of this
result is provided in Section 3.3.

3.3 Kostka-Foulkes polynomials, and proof of main result

If λ = (λ1 ≥ · · · ≥ λn) is a partition of nk with at most n parts, let α ∈ Zn be given by α := λ − (kn). Then
α1 + · · ·+ αn = 0 and k ≥ |αn|. We will show that, in this setting, the degree of mα(q) is gnk,n(λ) by relating
the graded multiplicities to Kostka-Foulkes polynomials.

Given two partitions λ and µ of a positive integer n, the Kostka number Kλµ is the number of semistandard
Young tableaux of shape λ and weight µ. The Kostka numbers can also be defined as the coefficients obtained
by expressing the Schur polynomial sλ as a linear combination of monomial symmetric functions mµ;

sλ =
∑
µ

Kλµmµ.

These numbers are significant in representation theory, as Kλµ counts the dimension of the weight space cor-
responding to µ in the irreducible representation V λ with highest weight λ. This result is often expressed in
terms of Kostant’s partition function P : Zn −→ Z. Let εi ∈ Zn denote the tuple with a 1 in the i-th position,
and 0’s elsewhere. Define εij = εi− εj . The tuples εij with i 6= j form the root system of the Lie algebra sln(C),
and the positive roots are generally defined as the εij with i < j. Kostant’s partition function P(α) counts
the number of ways in which a weight α of sln(C) can be expressed as a sum of positive roots of sln(C). This
function can also be defined as the coefficients in the series∑

α∈Zn

P(α)xα1
1 · · ·xαn

n =
∏

1≤i<j≤n

(
1− xi

xj

)−1
,

where x1, . . . , xn are indeterminants. The Kostka numbers can then be written in terms of P, yielding Kostant’s
weight multiplicity formula

Kλµ =
∑
w∈Sn

ε(w)P(w(λ+ ρ)− (µ+ ρ)),

where ρ = (n− 1, n− 2, . . . , 1, 0). The q−analogue of Kostant’s partition function can be defined as

∑
α∈Zn

Pq(α)xα1
1 · · ·xαn

n =
∏

1≤i<j≤n

(
1− q xi

xj

)−1
.

Substituting P for its q−analogue, we obtain the Kostka-Foulkes polynomial

Kλµ(q) :=
∑
w∈Sn

ε(w)Pq(w(λ+ ρ)− (µ+ ρ)).

Hesselink connected Kλµ(q) to the graded multiplicity of an irrep V α of GLn(C) [11]. If α ∈ Zn is decreasing
and sums to zero, and if λ = α+ (kn), with k ≥ |αn|, then the graded multiplicity polynomial mα(q) defined in
Equation 6 is given by

mα(q) =
∑
w∈Sn

ε(w)Pq(w(α+ ρ)− ρ).
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Since λ = α+ (kn), it follows that
mα(q) = Kλ(kn)(q).

For more on this result see [3] and [10].
The Kostka-Foulkes polynomials are understood combinatorially in [16] and [18]. From this interpretation,

the degree of the polynomial Kλµ(q) can be expressed in terms of the weighted totals of λ and µ, defined in
Equation 4, and is given by b(µ)− b(λ).

In summary, the only irreducible rational representations V α with highest weight α ∈ Zn for whichmα(q) 6= 0
are those whose highest weight satisfies α1 + · · ·+ αn = 0. If mα(q) is nonzero, then we have

mα(q) = Kλ(kn)(q),

where k is any integer satisfying k ≥ |αn| and λ = α+ (kn). From [16] and [18] It follows that

deg mα(q) = b((kn))− b(λ) = gnk,n(λ).

This proves Theorem 3.1.

4. The Gini index and the Earth Mover’s Distance

This formulation of a discrete Gini index was motivated by recent research on the discrete Earth Mover’s
Distance (EMD) – also known as the Wasserstein distance. Consider two different distributions of s pebbles
into n distinct piles. Simply put, the one-dimensional EMD counts the least number of moves needed to convert
the first distribution into the second, where each move involves moving one pebble to a neighboring pile. An
example of this procedure is provided in Figure 3.

Figure 3: The minimum number of moves required to convert the top distribution, (3, 1, 4, 2), into the bottom
distribution, (2, 3, 4, 1), is 3.

The Gini index and EMD are both measures of dissimilarity and are, in fact, measuring the same quantity.
A composition of a positive integer s into n parts is an n-tuple of non-negative integers whose sum is s.

The EMD of such compositions was discussed in [1] (the one-dimensional case) and [4] (a higher dimensional
generalization) – generating functions and connections to representation theory were found in both instances.
In [5] it was shown that if µ and λ are compositions of s into n parts, then EMD(µ, λ) can be expressed as the
symmetric difference of the Young diagrams of the words of µ and λ. The word of a composition µ is a tuple
of integers constructed by writing “0” µ1 times, then “1” µ2 times, and so on, ending with “n− 1” written µn
times. If µ is a composition of s into n parts, then the word of µ will be weakly increasing with length s. The
Young diagram of a word is a collection of square boxes arranged in left-justified rows, whose ascending row
lengths are given by the word. The symmetric difference of the diagrams is the number of boxes in their union
minus their intersection.

Example 4.1. The EMD of the compositions µ = (3, 1, 4, 2) and λ = (2, 3, 4, 1) can by found as in Figure 3,
or by using Young diagrams as shown in [5]. The word of µ is (0, 0, 0, 1, 2, 2, 2, 2, 3, 3) and the word of λ is
(0, 0, 1, 1, 1, 2, 2, 2, 2, 3). Their Young diagrams and symmetric difference are shown in Figure 4.

ECA 3:3 (2023) Article #S2R21 6



Grant Kopitzke

Figure 4: The Young diagrams of the words of µ (left) and λ (middle) and their union (right), with symmetric
difference shaded.

The number of shaded cells in the final diagram is the symmetric difference. Hence, for Example 4.1,
EMD(µ, λ) = 3.

In general, EMD(µ, λ) can be expressed in terms of the weighted totals of µ and λ (defined in Equation 4)
as

EMD(µ, λ) = b(µ)− b(λ)

whenever µ and λ are partitions of s into n parts, and µ majorizes λ – that is, whenever
∑k
i=1 µi ≥

∑k
i=1 λi

for all 1 ≤ k ≤ n. The discrete Gini index can also be defined in terms of Young diagrams as in [13] and [14].
From this interpretation, in the special case where s = nk, it follows that

EMD((kn), λ) = b((kn))− b(λ) = gnk,n(λ).

That is, the discrete Gini index is a restriction of the discrete one-dimensional Earth Mover’s Distance to the
set of partitions of nk with at most n parts.
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