Some Linear Transformations on Symmetric Functions Arising From a Formula of Thiel and Williams

Teresa Xueshan Li^{\dagger}, Lili Mu* ${ }^{*}$, and Richard P. Stanley ${ }^{\ddagger}$
${ }^{\dagger}$ School of Mathematics and Statistics, Southwest University, Chongqing 400715, PR China Email: pmgb@swu.edu.cn
*School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, PR China
Email: lilimu@jsnu.edu.cn
\ddagger Department of Mathematics, University of Miami, Coral Gables, FL 33124
Email: rstan@math.mit.edu

Received: January 3, 2023, Accepted: May 31, 2023, Published: June 9, 2023
The authors: Released under the CC BY-ND license (International 4.0)
Abstract: We consider a linear operator ψ_{r} from the ring $\Lambda_{\mathbb{Q}}$ of symmetric functions over \mathbb{Q} to the polynomial ring $\mathbb{Q}[n]$ defined by $\psi_{r} m_{\lambda}=\left[\sum_{i=1}^{l}\left(\lambda_{i}\right)_{r}\right] m_{\lambda}\left(1^{n}\right)$, where m_{λ} is a monomial symmetric function, $\left(\lambda_{i}\right)_{r}$ denotes the falling factorial, and $m_{\lambda}\left(1^{n}\right)$ denotes m_{λ} evaluated at $x_{1}=\cdots=x_{n}=1, x_{i}=0$ for $i>n$. We obtain formulas for many instances of $\psi_{r} b_{\lambda}$, where b_{λ} denotes one of the six standard bases for $\Lambda_{\mathbb{Q}}$. The formula for $\psi_{2} s_{\lambda}$, where s_{λ} is a Schur function, is equivalent to a formula of M. Thiel and N. Williams on the expected square norm of the weight of an irreducible representation of the Lie algebra $\mathfrak{s l}(n, \mathbb{C})$.

Keywords: Schur function; Symmetric function; Thiel-Williams formula
2020 Mathematics Subject Classification: 05E05

1. Introduction

The motivation for this paper is a formula [5, Thm. 1.1] of M. Thiel and N. Williams, namely, for a complex simple Lie algebra \mathfrak{g} with an irreducible representation V_{λ} of highest weight λ, the expected squared norm of a weight in V_{λ} is

$$
\begin{equation*}
\underset{\mu \in V_{\lambda}}{\mathbb{E}}(\langle\mu, \mu\rangle):=\frac{1}{\operatorname{dim} V_{\lambda}} \sum_{\mu \in V_{\lambda}} \operatorname{dim}\left(V_{\lambda}(\mu)\right)\langle\mu, \mu\rangle=\frac{1}{h+1}\langle\lambda, \lambda+2 \rho\rangle, \tag{1}
\end{equation*}
$$

where $\operatorname{dim} V_{\lambda}(\mu)$ is the multiplicity of μ in V_{λ}, h is the Coxeter number of \mathfrak{g}, and ρ is the half-sum of the positive roots. (The sum over $\mu \in V_{\lambda}$ has only finitely many nonzero terms.)

In type A, that is, $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{C})$, equation (1) can be stated in terms of symmetric functions in the variables x_{1}, \ldots, x_{n}. Moreover, this restated formula stabilizes as $n \rightarrow \infty$, so we get a formula involving symmetric functions in infinitely many variables.

To state this formula, we will use standard notation and terminology from the theory of symmetric functions as found in [3, Ch. 7]. In particular, λ and μ now denote partitions (rather than weights). If λ is a partition of d, then we write $\lambda \vdash d,|\lambda|=d$, or $\lambda \in \operatorname{Par}(d)$. We also write $\lambda=\left\langle 1^{m_{1}} 2^{m_{2}} \cdots d^{m_{d}}\right\rangle$ if λ has $m_{i}=m_{i}(\lambda)$ parts equal to i, so $\sum i m_{i}=|\lambda|$. The length $\ell(\lambda)$ is the total number of parts, so $\ell(\lambda)=\sum m_{i}$. Let λ_{i}^{\prime} be the number of parts of λ that are greater than or equal to i. The partition $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{k}^{\prime}\right)$ is called the conjugate partition of λ. Thus $\lambda_{1}^{\prime}=\ell(\lambda)$ and $\lambda_{1}=\ell\left(\lambda^{\prime}\right)$.

Throughout this paper, \mathbb{P} and \mathbb{Q} respectively denote the sets of positive integers and rational numbers. Recall that the algebra $\Lambda_{\mathbb{Q}}(x)$ of symmetric functions has various bases that are indexed by the set Par of partitions, including $m_{\lambda}=m_{\lambda}(x)$ (monomial symmetric functions), p_{λ} (power sum symmetric functions), e_{λ} (elementary symmetric functions), h_{λ} (complete homogeneous symmetric functions), s_{λ} (Schur functions), and fo $\lambda_{\lambda}=\omega m_{\lambda}$ (forgotten symmetric functions), where ω is the involution on $\Lambda_{\mathbb{Q}}$ defined by $\omega\left(h_{\lambda}\right)=e_{\lambda}$. For $f(x) \in \Lambda_{\mathbb{Q}}(x)$, let

$$
f\left(1^{n}\right)=f(\overbrace{1, \ldots, 1}^{n}, 0,0, \ldots) .
$$

For fixed f, the function $f\left(1^{n}\right)$ is always a polynomial in n.
Let $n, r \in \mathbb{P}$. For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \in$ Par, define a \mathbb{Q}-linear transformation

$$
\psi_{r}: \Lambda_{\mathbb{Q}} \rightarrow \mathbb{Q}[n]
$$

by

$$
\psi_{r} m_{\lambda}=\left[\sum_{i=1}^{l}\left(\lambda_{i}\right)_{r}\right] m_{\lambda}\left(1^{n}\right)
$$

where $(a)_{r}=a(a-1) \cdots(a-r+1)$ and $l=\ell(\lambda)$.
We can now state (in an equivalent form) the result of Thiel and Williams [5] in the case $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{C})$, namely, for $\lambda \vdash d$,

$$
\begin{equation*}
\psi_{2} s_{\lambda}=\frac{2 f^{\lambda /(2)}}{(d-2)!} \cdot \frac{\prod_{u \in \lambda}(n+c(u))}{n+1} \tag{2}
\end{equation*}
$$

where $f^{\lambda /(2)}$ is the number of standard tableaux of the skew shape $\lambda /(2)$ (interpreted to be 0 if (2) $\nsubseteq \lambda$, i.e., if $\lambda=\left\langle 1^{d}\right\rangle$), and where $c(u)$ is the content of the square u of (the Young diagram of) λ.

The elegant formula (2) suggests that it might be interesting to apply ψ_{2} to other symmetric function bases and to generalize from ψ_{2} to ψ_{r}.

In the next section (Section 2) we prove that for any symmetric function f,

$$
\left[z^{r}\right] f(z+1, \overbrace{1, \ldots, 1}^{n-1}, 0,0, \ldots)=\frac{1}{n \cdot r!} \psi_{r} f
$$

where $\left[z^{r}\right] g$ denotes the coefficient of z^{r} in g (when expanded as a power series in z). This representation allows us to compute $\psi_{r} b_{\lambda}$ for various bases of $\Lambda_{\mathbb{Q}}$. In particular, if $\lambda \vdash d$ then

$$
\psi_{r} s_{\lambda}=C_{\lambda r} \cdot \frac{\prod_{u \in \lambda}(n+c(u))}{(n+1)(n+2) \cdots(n+r-1)} .
$$

Here $c(u)$ is the content of the square u of the (diagram of) λ and

$$
C_{\lambda r}= \begin{cases}\frac{r!}{(d-r)!} f^{\lambda /(r)} & \text { if } \lambda_{1} \geq r \\ 0 & \text { otherwise }\end{cases}
$$

where $f^{\lambda /(r)}$ is the number of standard Young tableaux of the skew shape $\lambda /(r)$.
Remark 1.1. The actual formula of Thiel and Williams mentioned above dealt (essentially) with the operator $\hat{\psi}_{2}: \Lambda_{\mathbb{Q}} \rightarrow \mathbb{Q}[n]$ defined by

$$
\hat{\psi}_{2} m_{\lambda}=\left(\sum_{i=1}^{l} \lambda_{i}^{2}\right) m_{\lambda}\left(1^{n}\right)
$$

Since for $\lambda \vdash d$ we have

$$
\begin{aligned}
\hat{\psi}_{2} m_{\lambda} & =\psi_{2} m_{\lambda}+\left(\sum_{i=1}^{l} \lambda_{i}\right) m_{\lambda}\left(1^{n}\right) \\
& =\psi_{2} m_{\lambda}+d m_{\lambda}\left(1^{n}\right)
\end{aligned}
$$

it follows that for any homogeneous symmetric function f of degree d,

$$
\hat{\psi}_{2} f=\psi_{2} f+d f\left(1^{n}\right)
$$

More generally, we can define a linear transformation $\hat{\psi}_{r}$ for $r \geq 2$ by

$$
\hat{\psi}_{r} m_{\lambda}=\left(\sum_{i=1}^{l} \lambda_{i}^{r}\right) m_{\lambda}\left(1^{n}\right)
$$

Since in general (e.g., [2, (1.96)])

$$
a^{r}=\sum_{k=1}^{r} S(r, k)(a)_{k},
$$

where $S(r, k)$ is a Stirling number of the second kind, our formulas for $\psi_{r} f$ yield formulas for $\hat{\psi}_{r} f$.

2. A formula for $\psi_{r} f$

Let $n \in \mathbb{P}$ and z be an indeterminate. For any symmetric function $f \in \Lambda_{\mathbb{Q}}$ write

$$
\vartheta f=f(z+1, \overbrace{1, \ldots, 1}^{n-1}, 0,0, \ldots) .
$$

It is clear from the definition that $\vartheta\left(m_{\lambda}\right)$ is a polynomial in z (with coefficients in $\mathbb{Q}[n]$) of degree at most λ_{1}. Hence ϑ is an algebra homomorphism $\Lambda_{\mathbb{Q}} \rightarrow \mathbb{Q}[n, z]$. For instance,

$$
\vartheta s_{21}=(n-1) z^{2}+(n-1)(n+1) z+\frac{1}{3}(n-1) n(n+1) .
$$

Theorem 2.1. For any $r \in \mathbb{P}$ and $f \in \Lambda_{\mathbb{Q}}$, we have

$$
\left[z^{r}\right] \vartheta f=\frac{1}{n \cdot r!} \psi_{r} f
$$

Proof. By linearity it suffices to show that the theorem is true for $f=m_{\lambda}$. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)=$ $\left\langle 1^{m_{1}} 2^{m_{2}} \cdots d^{m_{d}}\right\rangle \vdash d$. Set

$$
b_{\lambda}(n):=\binom{n-1}{l} \cdot\binom{l}{m_{1}, m_{2}, \ldots, m_{d}} .
$$

Then we have

$$
\begin{aligned}
\vartheta m_{\lambda} & =\left[\sum_{i=1}^{d}(z+1)^{i} \cdot\binom{n-1}{l-1} \cdot\binom{l-1}{m_{1}, \ldots, m_{i-1}, m_{i}-1, m_{i+1}, \ldots, m_{d}}\right]+b_{\lambda}(n) \\
& =\left[\sum_{i=1}^{d} m_{i}(z+1)^{i} \cdot\binom{n-1}{l-1} \cdot\binom{l-1}{m_{1}, m_{2}, \ldots, m_{d}}\right]+b_{\lambda}(n) \\
& =\left[\sum_{i=1}^{l}(z+1)^{\lambda_{i}}\right] \cdot\binom{n-1}{l-1} \cdot\binom{l-1}{m_{1}, m_{2}, \ldots, m_{d}}+b_{\lambda}(n) \\
& =\left[\sum_{i=1}^{l} \sum_{r=0}^{\lambda_{i}}\binom{\lambda_{i}}{r} z^{r}\right] \cdot \frac{1}{n}\binom{n}{l}\binom{l}{m_{1}, m_{2}, \ldots, m_{d}}+b_{\lambda}(n) \\
& =\frac{1}{n}\binom{n}{l}\binom{l}{m_{1}, m_{2}, \ldots, m_{d}} \cdot\left[\sum_{r=0}^{\lambda_{1}} \frac{1}{r!}\left(\sum_{i=0}^{l}\left(\lambda_{i}\right)_{r}\right) z^{r}\right]+b_{\lambda}(n) \\
& =\frac{1}{n} m_{\lambda}\left(1^{n}\right) \cdot\left[\sum_{r=0}^{\lambda_{1}} \frac{1}{r!}\left(\sum_{i=0}^{l}\left(\lambda_{i}\right)_{r}\right) z^{r}\right]+b_{\lambda}(n),
\end{aligned}
$$

so the proof follows.
We can also prove Theorem 2.1 by applying ϑ (acting on x variables only, so y variables are regarded as scalars) to both sides of the following identity

$$
\sum_{\lambda} m_{\lambda}(x) h_{\lambda}(y)=\prod_{i, j} \frac{1}{1-x_{i} y_{j}}=\exp \left(\sum_{i \geq 1} \frac{1}{i} p_{i}(x) p_{i}(y)\right)
$$

to get

$$
\begin{aligned}
\sum_{\lambda} \vartheta m_{\lambda}(x) \cdot h_{\lambda}(y)= & \exp \left(\sum_{i \geq 1} \frac{1}{i} \vartheta p_{i}(x) \cdot p_{i}(y)\right) \\
& =\exp \left\{\sum_{i \geq 1} \frac{1}{i}\left[(n-1)+(z+1)^{i}\right] p_{i}(y)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\exp \left(\sum_{i \geq 1} \frac{1}{i} p_{i}(y)\right)\right]^{n-1} \cdot\left[\exp \left(\sum_{i \geq 1} \frac{1}{i}(z+1)^{i} p_{i}(y)\right)\right] \\
& =\left[\sum_{k=0}^{\infty} h_{k}(y)\right]^{n-1} \cdot\left[\sum_{j=0}^{\infty}(z+1)^{j} h_{j}(y)\right] .
\end{aligned}
$$

Then we can complete the proof by comparing the coefficient of $h_{\lambda}(y)$; we omit the details.

3. Schur functions

Theorem 3.1. For $\lambda \vdash d$ and $r \in \mathbb{P}$, we have

$$
\psi_{r} s_{\lambda}=C_{\lambda r} \cdot \frac{\prod_{u \in \lambda}(n+c(u))}{(n+1)(n+2) \cdots(n+r-1)}
$$

where

$$
C_{\lambda r}= \begin{cases}\frac{r!}{(d-r)!} f^{\lambda /(r)}, & \text { if } \lambda_{1} \geq r \\ 0, & \text { otherwise }\end{cases}
$$

Proof. Firstly, we claim that

$$
\begin{equation*}
s_{\lambda}\left(x_{1}+1, x_{2}+1, \ldots, x_{n}+1\right)=\sum_{\mu \subseteq \lambda} \frac{f^{\lambda / \mu}}{|\lambda / \mu|}\left(\prod_{u \in \lambda / \mu}(n+c(u))\right) s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) . \tag{3}
\end{equation*}
$$

Indeed, using standard notation from [3, §7.15] we have

$$
\begin{aligned}
s_{\lambda}\left(x_{1}+1, \ldots, x_{n}+1\right) & =\frac{a_{\lambda+\delta}\left(x_{1}+1, \ldots, x_{n}+1\right)}{a_{\delta}\left(x_{1}+1, \ldots, x_{n}+1\right)} \\
& =\frac{a_{\lambda+\delta}\left(x_{1}+1, \ldots, x_{n}+1\right)}{a_{\delta}\left(x_{1}, \ldots, x_{n}\right)} .
\end{aligned}
$$

We can expand the entries of $a_{\lambda+\delta}\left(x_{1}+1, \ldots, x_{n}+1\right)$ and use the multilinearity of the determinant to get (see [1, Example I.3.10, p. 47])

$$
s_{\lambda}\left(x_{1}+1, \ldots, x_{n}+1\right)=\sum_{\mu \subseteq \lambda} d_{\lambda \mu} s_{\mu}
$$

where

$$
d_{\lambda \mu}=\operatorname{det}\left(\binom{\left.\lambda_{i}+n-i\right)}{\mu_{j}+n-j}\right)_{1 \leq i, j \leq n}
$$

We can factor out factorials from the numerators of the row entries and denominators of the column entries of the above determinant. These factorials altogether yield $\prod_{u \in \lambda / \mu}(n+c(u))$. What remains is exactly the determinant for $f^{\lambda / \mu} /|\lambda / \mu|$! given by Corollary 7.16 .3 in [3]. This completes the proof of equation (3). Set $x_{1}=z$ and $x_{2}=x_{3}=\cdots=x_{n}=0$ in (3). Then we have

$$
\vartheta s_{\lambda}=\sum_{\mu \subseteq \lambda} \frac{f^{\lambda / \mu}}{|\lambda / \mu|!}\left(\prod_{u \in \lambda / \mu}(n+c(u))\right) s_{\mu}(z, 0,0, \cdots, 0)
$$

Note that

$$
s_{\mu}(z, 0,0, \cdots, 0)=\left\{\begin{array}{lc}
z^{r} & \text { if } \mu=(r) \\
0 & \text { otherwise }
\end{array}\right.
$$

Therefore we have

$$
\vartheta s_{\lambda}=\sum_{r=0}^{\lambda_{1}} \frac{f^{\lambda /(r)}}{(d-r)!}\left(\prod_{u \in \lambda /(r)}(n+c(u))\right) z^{r}
$$

$$
=\sum_{r=0}^{\lambda_{1}} \frac{f^{\lambda /(r)}}{(d-r)!} \cdot \frac{\prod_{u \in \lambda}(n+c(u))}{n(n+1) \cdots(n+r-1)} z^{r} .
$$

Then it follows from Theorem 2.1 that, for any $1 \leq r \leq \lambda_{1}$,

$$
\begin{aligned}
\psi_{r} s_{\lambda} & =n \cdot r!\cdot\left[z^{r}\right]\left(\vartheta s_{\lambda}\right) \\
& =\frac{r!}{(d-r)!} f^{\lambda /(r)} \cdot \frac{\prod_{u \in \lambda}(n+c(u))}{(n+1)(n+2) \cdots(n+r-1)} .
\end{aligned}
$$

4. Formulas for $\psi_{2}\left(p_{\lambda}\right), \psi_{2}\left(e_{\lambda}\right)$ and $\psi_{2}\left(h_{\lambda}\right)$

For any $f \in \Lambda_{\mathbb{Q}}$, by Theorem 2.1 and by the definition of ϑ, we have

$$
\begin{equation*}
\vartheta f=f\left(1^{n}\right)+\frac{1}{n} \sum_{r \geq 1} \frac{\psi_{r} f}{r!} z^{r} \tag{4}
\end{equation*}
$$

This implies that ϑf can be regarded as the generating function for $\psi_{r} f$. Then it is natural to consider $\psi_{r} b_{\lambda}$ for other bases $\left\{b_{\lambda}\right\}$. We shall show that, for general $r, \psi_{r} e_{\lambda}$ also has a nice formula that can be written as the product of linear factors. Although for general $r, \psi_{r} p_{\lambda}, \psi_{r} h_{\lambda}$ and ψ_{r} fo ${ }_{\lambda}$ do not have such nice formulas, the case for $r=2$ turns out to be simple.

In this section, we will exploit the relation (4) to get formulas for $\psi_{r} e_{\lambda}, \psi_{2} p_{\lambda}$ and $\psi_{2} h_{\lambda}$. For the forgotten symmetric function fo ${ }_{\lambda}$, this method seems to be not very effective. We will use another tool in the next section to derive the formula for $\psi_{2} \mathrm{fo}_{\lambda}$.

Theorem 4.1. For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right) \vdash d$, we have
(1) $\psi_{r} e_{\lambda}=\widetilde{C}_{\lambda r} \cdot n^{l-r+1} \cdot \prod_{i \geq 2}(n-i+1)^{\lambda_{i}^{\prime}}$, where

$$
\widetilde{C}_{\lambda r}= \begin{cases}\frac{r!}{\prod_{i=1}^{l} \lambda_{i}!}\left(\sum_{i_{1}<i_{2}<\cdots<i_{r}} \lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{r}}\right) & \text { if } r \leq l \\ 0 & \text { otherwise }\end{cases}
$$

(2) $\psi_{2} p_{\lambda}=n^{l-1} \cdot\left[\left(\sum_{i=1}^{l} \lambda_{i}^{2}-d\right) n+d^{2}-\sum_{i=1}^{l} \lambda_{i}^{2}\right]$.
(3) $\psi_{2} h_{\lambda}=\frac{\left[2\left(\sum_{i=1}^{l} \lambda_{i}^{2}\right)-2 d+2 \sum_{i<j} \lambda_{i} \lambda_{j}\right] \cdot n+2 \sum_{i<j} \lambda_{i} \lambda_{j}}{n(n+1) \prod_{i=1}^{l} \lambda_{i}!} \cdot \prod_{i \geq 1}(n+i-1)^{\lambda_{i}^{\prime}}$.

Proof. (1) By equation (4), we have

$$
\begin{aligned}
\psi_{r} e_{\lambda} & =r!n \cdot\left[z^{r}\right]\left(\vartheta e_{\lambda}\right) \\
& =r!n \cdot\left[z^{r}\right]\left(\vartheta e_{\lambda_{1}} \cdot \vartheta e_{\lambda_{2}} \cdots \vartheta e_{\lambda_{l}}\right) \\
& =r!n \cdot\left[z^{r}\right]\left(\vartheta s_{1^{\lambda_{1}}} \cdot \vartheta s_{1^{\lambda_{2}}} \cdots \vartheta s_{1^{\lambda_{l}}}\right)
\end{aligned}
$$

By the proof of Theorem 3.1, we get

$$
\vartheta s_{1^{k}}=\frac{(n-1)(n-2) \cdots(n-k+1)}{k!}(n+k z) .
$$

Then we obtain that

$$
\begin{aligned}
\psi_{r} e_{\lambda} & =r!n \cdot\left[z^{r}\right]\left[\prod_{i=1}^{l} \frac{(n-1)(n-2) \cdots\left(n-\lambda_{i}+1\right)}{\lambda_{i}!}\left(n+\lambda_{i} z\right)\right] \\
& =r!n \cdot \frac{\prod_{i \geq 2}(n-i+1)^{\lambda_{i}^{\prime}}}{\prod_{i=1}^{l} \lambda_{i}!} \cdot\left[z^{r}\right]\left[\prod_{i=1}^{l}\left(n+\lambda_{i} z\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& = \begin{cases}r!n \cdot \frac{\prod_{i \geq 2}(n-i+1)^{\lambda_{i}^{\prime}}}{\prod_{i=1}^{l} \lambda_{i}!}\left(\sum_{i_{1}<i_{2}<\cdots<i_{r}} \lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{r}}\right) \cdot n^{l-r}, & \text { if } r \leq l \\
0, & \text { otherwise }\end{cases} \\
& =\widetilde{C}_{\lambda r} \cdot n^{l-r+1} \cdot \prod_{i \geq 2}(n-i+1)^{\lambda_{i}^{\prime}}
\end{aligned}
$$

where

$$
\widetilde{C}_{\lambda r}= \begin{cases}\frac{r!}{\prod_{i=1}^{l} \lambda_{i}!}\left(\sum_{i_{1}<i_{2}<\cdots<i_{r}} \lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{r}}\right) & \text { if } r \leq l, \\ 0 & \text { otherwise }\end{cases}
$$

(2) Again, by equation (4), we have

$$
\begin{aligned}
\psi_{2} p_{\lambda} & =2 n \cdot\left[z^{2}\right]\left(\vartheta p_{\lambda}\right) \\
& =2 n \cdot\left[z^{2}\right]\left(\vartheta p_{\lambda_{1}} \cdot \vartheta p_{\lambda_{2}} \cdots \vartheta p_{\lambda_{l}}\right) \\
& =2 n \cdot\left[z^{2}\right]\left\{\prod_{i=1}^{l}\left[n-1+(z+1)^{\lambda_{i}}\right]\right\} \\
& =2 n \cdot\left[n^{l-2}\left(\sum_{i<j} \lambda_{i} \lambda_{j}\right)+n^{l-1}\left(\sum_{i=1}^{l}\binom{\lambda_{i}}{2}\right)\right] \\
& =n^{l-1} \cdot\left[2 \sum_{i<j} \lambda_{i} \lambda_{j}+n\left(\sum_{i=1}^{l} \lambda_{i}^{2}-d\right)\right] \\
& =n^{l-1} \cdot\left[\left(\sum_{i=1}^{l} \lambda_{i}^{2}-d\right) n+d^{2}-\sum_{i=1}^{l} \lambda_{i}^{2}\right]
\end{aligned}
$$

This completes the proof of the formula for $\psi_{2} p_{\lambda}$.
(3) The formula of $\psi_{2} h_{\lambda}$ can be proved similarly, by using the fact that h_{λ} is a multiplicative basis of $\Lambda_{\mathbb{Q}}$ and by Theorem 2.1. We omit the details here.

Remark 4.1. For general r, the formulas of $\psi_{r} p_{\lambda}$ and $\psi_{r} h_{\lambda}$ do not necessarily have such nice decompositions. For instance,

$$
\psi_{3} h_{321}=n(n+1)\left(19 n^{2}+35 n+6\right)
$$

and

$$
\psi_{3} p_{3211}=6 n^{2}\left(n^{2}+17 n+17\right)
$$

5. Forgotten symmetric functions

To prove the formula for $\psi_{2} \mathrm{fo}_{\lambda}$, we need the following reformulation of the \mathbb{Q}-linear transformation ψ_{2} in terms of a differential operator.

Since we have

$$
\frac{\partial^{2}}{\partial x_{i}^{2}}\left(x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots\right)=\alpha_{i}\left(\alpha_{i}-1\right) x_{1}^{\alpha_{1}} \cdots x_{i}^{\alpha_{i}-2} \cdots
$$

then it is easy to see that

$$
\begin{equation*}
\left[\left(\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}\right) m_{\lambda}\right]_{\substack{x_{1}=\cdots=x_{n}=1 \\ x_{n+1}=\cdots=0}}=\left(\sum_{i=1}^{l} \lambda_{i}\left(\lambda_{i}-1\right)\right) m_{\lambda}\left(1^{n}\right) \tag{5}
\end{equation*}
$$

For simplicity of notation we define a \mathbb{Q}-linear transformation $D_{n}^{2}: \Lambda_{\mathbb{Q}}(x) \rightarrow \mathbb{Q}[n]$ by

$$
D_{n}^{2} f=\left[\left(\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}\right) f\right]_{\substack{x_{1}=\ldots=x_{n}=1 \\ x_{n+1}=\cdots=0}}
$$

By equation (5), we have $D_{n}^{2} f=\psi_{2} f$ for any $f \in \Lambda_{\mathbb{Q}}$.
Theorem 5.1. For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right) \vdash d$, we have

$$
\psi_{2} \mathrm{fo}_{\lambda}=\frac{\varepsilon_{\lambda} \prod_{i=1}^{l}(n+i-1)}{(n+1) \prod m_{i}(\lambda)!}\left[\left(\sum_{i=1}^{l} \lambda_{i}^{2}-d\right) n+2 d^{2}-d-\sum_{i=1}^{l} \lambda_{i}^{2}\right]
$$

where $\varepsilon_{\lambda}=(-1)^{|\lambda|+\ell(\lambda)}$.
Proof. By regarding variables y as scalars and applying ω to the identity

$$
H(x, y)=\prod_{i, j=1}^{\infty}\left(1+x_{i} y_{j}\right)=\sum_{\lambda} m_{\lambda}(x) e_{\lambda}(y)
$$

we then obtain

$$
\begin{equation*}
C(x, y)=\prod_{i, j} \frac{1}{1-x_{i} y_{j}}=\sum_{\lambda} \mathrm{fo}_{\lambda}(x) \cdot e_{\lambda}(y) \tag{6}
\end{equation*}
$$

By applying D_{n}^{2} to the left hand side of (6) and ψ_{2} to the right hand side, we deduce that

$$
n C\left(1^{n}, y\right)\left[\left(\sum_{m=1}^{\infty} p_{m}(y)\right)^{2}+\sum_{m=1}^{\infty}(m-1) p_{m}(y)\right]=\sum_{\lambda} \psi_{2} \mathrm{fo}_{\lambda} \cdot e_{\lambda}(y)
$$

Then it follows that $\psi_{2} \mathrm{fo}_{\lambda}$ is the coefficient of $e_{\lambda}(y)$ in

$$
\left[n \sum_{\mu} \mathrm{fo}_{\mu}\left(1^{n}\right) \cdot e_{\mu}(y)\right] \cdot\left[\left(\sum_{m=1}^{\infty} p_{m}(y)\right)^{2}+\sum_{m=1}^{\infty}(m-1) p_{m}(y)\right]
$$

By Newton's identities, we have

$$
\begin{aligned}
p_{m}(y) & =\sum_{\substack{\left(r_{1}, r_{2}, \ldots, r_{m}\right) \in \mathbb{N}^{m} \\
r_{1}+2 r_{2}+\cdots+m r_{m}=m}}(-1)^{m} \frac{m\left(r_{1}+r_{2}+\cdots+r_{m}-1\right)!}{r_{1}!\cdots r_{m}!} \prod_{i=1}^{m}\left(-e_{i}(y)\right)^{r_{i}} \\
& =\sum_{\nu \vdash m}(-1)^{|\nu|+\ell(\nu)} \frac{|\nu|(\ell(\nu)-1)!}{\prod m_{i}(\nu)!} e_{\nu}(y) \\
& =\sum_{\nu \vdash m} \varepsilon_{\nu}|\nu| \frac{(\ell(\nu)-1)!}{\prod m_{i}(\nu)!} e_{\nu}(y)
\end{aligned}
$$

where $\varepsilon_{\nu}=(-1)^{|\nu|+\ell(\nu)}$. Note that for a partition $\mu \in$ Par, we have

$$
\begin{aligned}
\text { fo }_{\mu}\left(1^{n}\right) & =(-1)^{|\mu|}\binom{-n}{\ell(\mu)}\binom{\ell(\mu)}{m_{1}(\mu), m_{2}(\mu), \ldots} \\
& =\frac{\varepsilon_{\mu}(n+\ell(\mu)-1)!}{\left(\prod m_{i}(\mu)!\right)(n-1)!}
\end{aligned}
$$

Write Par* for Par $\backslash \emptyset$, the set of all partitions excluding the partition \emptyset of 0 . We then deduce that for any $\lambda \vdash d$ with $\ell(\lambda) \geq 2$,

$$
=n \sum_{\substack{(\mu, \nu, \rho) \in \operatorname{Par}_{\begin{subarray}{c}{ } \text { Par}^{*} \times \text { Par}^{*}, }}^{\mu \cup \nu \cup \rho=\lambda \text { as multisets }} ⿺}\end{subarray}}^{\psi_{2} \mathrm{fo}_{\lambda}} \frac{\varepsilon_{\mu}(n+\ell(\mu)-1)!\varepsilon_{\nu}|\nu|(\ell(\nu)-1)!\varepsilon_{\rho}|\rho|(\ell(\rho)-1)!}{\left(\prod m_{i}(\mu)!\right)(n-1)!\left(\prod m_{i}(\nu)!\right)\left(\prod m_{i}(\rho)!\right)}
$$

$$
\begin{align*}
& +n \sum_{\substack{(\mu, \nu) \in \operatorname{Par} \times \operatorname{Par}^{*}, \mu \cup \nu=\lambda \text { as multisets }}} \frac{\varepsilon_{\mu}(n+\ell(\mu)-1)!\varepsilon_{\nu}|\nu|(|\nu|-1)(\ell(\nu)-1)!}{\left(\prod m_{i}(\mu)!\right)(n-1)!\left(\prod m_{i}(\nu)!\right)} \\
& =\frac{n \varepsilon_{\lambda}}{\prod m_{i}(\lambda)!} \sum_{(\mu, \nu, \rho)}(n)^{\overline{\ell(\mu)}}(1)^{\overline{\ell(\nu)-1}}(1)^{\overline{\ell(\rho)-1}} \frac{|\nu||\rho| \prod m_{i}(\lambda)!}{\prod_{i}\left(m_{i}(\mu)!m_{i}(\nu)!m_{i}(\rho)!\right)} \tag{7}\\
& +\frac{n \varepsilon_{\lambda}}{\prod m_{i}(\lambda)!} \sum_{(\mu, \nu)}(n)^{\overline{\ell(\mu)}}(1)^{\overline{\ell(\nu)-1}} \frac{|\nu|(|\nu|-1) \prod m_{i}(\lambda)!}{\prod_{i}\left(m_{i}(\mu)!m_{i}(\nu)!\right)} \tag{8}
\end{align*}
$$

where $(x)^{\bar{k}}$ denotes the rising factorial. Now we simplify the summands (7) and (8) respectively. Note that the summand (7) is equal to

$$
\frac{n \varepsilon_{\lambda}}{\prod m_{i}(\lambda)!} \sum_{\substack{\left(l_{1}, l_{2}, l_{3}\right) \\
l_{1}+0, l_{2}, l_{3} \geq 1 \\
l_{1}+l_{2}+l_{3}=\ell(\lambda)}}(n)^{\overline{l_{1}}}(1)^{\overline{l_{2}-1}}(1)^{\overline{l_{3}-1}} \sum_{\begin{array}{c}
(\mu, \nu, \rho) \\
\ell(\mu)=l_{1} \\
\ell \ell(\nu)=l_{2} \\
\ell(\rho) l_{3} \\
\mu \cup \nu \cup \rho=\lambda
\end{array}} \frac{|\nu||\rho| \prod m_{i}(\lambda)!}{\prod_{i}\left(m_{i}(\mu)!m_{i}(\nu)!m_{i}(\rho)!\right)} .
$$

Considering the inner sum of the above equation, we have

$$
\begin{aligned}
\sum_{\substack{(\mu, \nu, \rho) \\
\ell(\mu)=l_{1} \\
\ell(\nu)=l_{2} \\
\ell(\rho)=l_{3} \\
\mu \cup \nu \cup \rho=\lambda}} \frac{|\nu||\rho| \prod m_{i}(\lambda)!}{\prod_{i}\left(m_{i}(\mu)!m_{i}(\nu)!m_{i}(\rho)!\right)} & =\sum_{\substack{(S, T) \\
S, T \subseteq[\Lambda], S \cap T=\emptyset \\
|S|=l_{2},|T|=l_{3}}}\left(\sum_{i \in S} \lambda_{i}\right)\left(\sum_{j \in T} \lambda_{j}\right) \\
& =\sum_{i \neq j} \lambda_{i} \lambda_{j} \cdot\binom{l-2}{l_{2}-1, l_{3}-1, l_{1}} \\
& =2\left(\sum_{i<j} \lambda_{i} \lambda_{j}\right)\binom{l-2}{l_{2}-1, l_{3}-1, l_{1}}
\end{aligned}
$$

since for each pair (i, j) with $i \neq j$, there are exactly $\binom{l-2}{l_{2}-1, l_{3}-1, l_{1}}$ pairs (S, T) such that $i \in S$ and $j \in T$. Therefore the summand (7) can be simplified to be

$$
\begin{gathered}
\frac{2 n \varepsilon_{\lambda}}{\prod m_{i}(\lambda)!}\left(\sum_{i<j} \lambda_{i} \lambda_{j}\right) \sum_{\substack{\left.l_{1}, l_{2}, l_{3}\right) \\
l_{1} \geq 0, l_{2}, l_{3} \geq 1 \\
l_{1}+l_{2}+l_{3}=\ell(\lambda)}}(n)^{\overline{l_{1}}}(1)^{\overline{l_{2}-1}}(1)^{\overline{l_{3}-1}}\binom{l-2}{l_{2}-1, l_{3}-1, l_{1}} \\
=\frac{2 n \varepsilon_{\lambda}}{\prod m_{i}(\lambda)!}\left(\sum_{i<j} \lambda_{i} \lambda_{j}\right)(n+2)^{\overline{l-2}},
\end{gathered}
$$

where we use the fact that rising factorials are Sheffer sequences of binomial type, namely, we use the following relation

$$
(a+b+c)^{\bar{n}}=\sum_{\substack{(i, j, k) \\ i+j+k=n}}\binom{n}{i, j, k}(a)^{\bar{i}}(b)^{\bar{j}}(c)^{\bar{k}} .
$$

Similarly, the summand (8) can be represented as

$$
\frac{n \varepsilon_{\lambda}}{\prod m_{i}(\lambda)!} \sum_{\substack{\left(l_{1}, l_{2}\right) \\
l_{1} \geq 0, l_{2} \geq 1 \\
l_{1}+l_{2}=l}}(n)^{\overline{l_{1}}}(1)^{\overline{l_{2}-1}} \sum_{\begin{array}{l}
(\mu, \nu) \\
\ell(\mu)=l_{1} \\
\ell(\nu)=l_{2} \\
\mu \cup \nu=\lambda
\end{array}} \frac{\prod m_{i}(\lambda)!|\nu|(|\nu|-1)}{\prod_{i}\left(m_{i}(\mu)!m_{i}(\nu)!\right)} .
$$

And the inner sum of the above equation can be simplified as follows.

$$
\sum_{\substack{S \subseteq[l] \\|S|=l_{2}}}\left(\sum_{i \in S} \lambda_{i}\right)\left(\sum_{j \in S} \lambda_{j}-1\right)
$$

$$
=\sum_{i=1}^{l} \lambda_{i}^{2}\binom{l-1}{l_{2}-1}+2 \sum_{i<j} \lambda_{i} \lambda_{j}\binom{l-2}{l_{2}-2}-\sum_{i=1}^{l} \lambda_{i}\binom{l-1}{l_{2}-1} .
$$

Therefore, we can simplify the summand (8) as follows:

$$
\begin{aligned}
& \frac{n \varepsilon_{\lambda}}{\prod m_{i}(\lambda)!}\left[\left(\sum_{i=1}^{l} \lambda_{i}^{2}-d\right)(n+1)^{\overline{l-1}}+2 \sum_{i<j} \lambda_{i} \lambda_{j} \sum_{\substack{l_{1} \geq 0, l_{2} \geq 1 \\
l_{1}+l_{2}=l}}(n)^{\overline{l_{1}}}(1)^{\overline{l_{2}-1}}\binom{l-2}{l_{2}-2}\right] \\
= & \frac{n \varepsilon_{\lambda}}{\prod m_{i}(\lambda)!}\left[\left(\sum_{i=1}^{l} \lambda_{i}^{2}-d\right)(n+1)^{\overline{l-1}}+2 \sum_{i<j} \lambda_{i} \lambda_{j} \sum_{\substack{l_{1} \geq 0, l_{2} \geq 2 \\
l_{1}+l_{2}=l}}(n)^{\overline{l_{1}}}(2)^{\overline{l_{2}-2}}\binom{l-2}{l_{2}-2}\right] \\
= & \frac{n \varepsilon_{\lambda}}{\prod m_{i}(\lambda)!}\left[\left(\sum_{i=1}^{l} \lambda_{i}^{2}-d\right)(n+1)^{\overline{l-1}}+2 \sum_{i<j} \lambda_{i} \lambda_{j}(n+2)^{\overline{l-2}}\right] \\
= & \frac{n \varepsilon_{\lambda}}{\prod m_{i}(\lambda)!}(n+2)^{\overline{l-2}}\left[\left(\sum_{i=1}^{l} \lambda_{i}^{2}-d\right) n+d^{2}-d\right] .
\end{aligned}
$$

Hence, for $\lambda \vdash d$ with $\ell(\lambda) \geq 2$, we have

$$
\begin{aligned}
& \psi_{2} \mathrm{fo}_{\lambda} \\
= & \frac{n \varepsilon_{\lambda}}{\prod m_{i}(\lambda)!}(n+2)^{\overline{l-2}}\left[\left(\sum_{i=1}^{l} \lambda_{i}^{2}-d\right) n+d^{2}-d+2 \sum_{i<j} \lambda_{i} \lambda_{j}\right] \\
= & \frac{n \varepsilon_{\lambda}}{\prod m_{i}(\lambda)!}(n+2)^{\overline{l-2}}\left[\left(\sum_{i=1}^{l} \lambda_{i}^{2}-d\right) n+2 d^{2}-d-\sum_{i=1}^{l} \lambda_{i}^{2}\right] \\
= & \frac{\varepsilon_{\lambda}}{\prod m_{i}(\lambda)!} \cdot \frac{\prod_{i=1}^{l}(n+i-1)}{n+1}\left[\left(\sum_{i=1}^{l} \lambda_{i}^{2}-d\right) n+2 d^{2}-d-\sum_{i=1}^{l} \lambda_{i}^{2}\right] .
\end{aligned}
$$

When $\ell(\lambda)=1$, i.e., $\lambda=(d)$, it is easy to show that the above formula for $\psi_{2} \mathrm{fo}_{\lambda}$ still holds.
Remark 5.1. We can also use the differential operator D_{n}^{2} to deduce formulas for $\psi_{2} p_{\lambda}, \psi_{2} e_{\lambda}$ and $\psi_{2} h_{\lambda}$. The computation will be simpler than the case for fo_{λ}; we leave the proof to the reader.

6. Final remarks

Based on Theorem 2.1 and the operator D_{n}^{2}, we derive nice formulas for $\psi_{2}\left(b_{\lambda}\right)$ when $b_{\lambda} \in\left\{s_{\lambda}, p_{\lambda}, e_{\lambda}, h_{\lambda}\right.$, fo $\left.\lambda\right\}$. It would be of interest if some nice formulas can still be obtained when applying ψ_{2} to other symmetric functions. We will conclude this paper with a nice formula for $\psi_{r}\left(G_{k}^{(a, b, c)}\right)$, where $G_{k}^{(a, b, c)}$ denotes a generalization of the (r, k)-parking symmetric functions introduced by Stanley and Wang [4].
Theorem 6.1. Let a, b, r, k be positive integers, and let c be an indeterminate. Let

$$
\begin{aligned}
H(t) & =\sum_{n \geq 0} h_{n} t^{n}=\frac{1}{\left(1-x_{1} t\right)\left(1-x_{2} t\right) \cdots} \\
F_{k}^{(a, b)} & =\frac{b}{a k+b}\left[t^{k}\right](H(t))^{a k+b}
\end{aligned}
$$

and

$$
G_{k}^{(a, b, c)}=\left[y^{k}\right]\left(\sum_{j=0}^{\infty} F_{j}^{(a, b)} y^{j}\right)^{c}
$$

Then we have

$$
\begin{equation*}
\psi_{r}\left(G_{k}^{(a, b, c)}\right)=(r-1)!b c n\binom{a k+b c+r-1}{r-1}\binom{(a k+b c) n+k-1}{k-r} \tag{9}
\end{equation*}
$$

Proof. It suffices to prove the theorem for positive integer c, since both sides of equation (9) are polynomials in c. Now let c be an positive integer, by the relation in [4, Theorem 3.1], we deduce that $G_{k}^{(a, b, c)}=F_{k}^{(a, b c)}$. So we only need to verify that

$$
\begin{equation*}
\psi_{r}\left(F_{k}^{(a, b)}\right)=(r-1)!b n\binom{a k+b+r-1}{r-1}\binom{(a k+b) n+k-1}{k-r} . \tag{10}
\end{equation*}
$$

The remainder of the proof is just routine computation as follows.

$$
\begin{aligned}
\psi_{r}\left(F_{k}^{(a, b)}\right) & =\frac{b}{a k+b}\left[t^{k}\right] \psi_{r}(H(t))^{a k+b} \\
& =\frac{r!b n}{a k+b}\left[t^{k} z^{r}\right] \vartheta(H(t))^{a k+b} \\
& =\frac{r!b n}{a k+b}\left[t^{k} z^{r}\right] \frac{1}{(1-(z+1) t)^{a k+b}(1-t)^{(a k+b)(n-1)}} \\
& =\frac{r!b n}{a k+b} \sum_{m=0}^{k-r}\binom{-(a k+b)(n-1)}{m}(-1)^{m}\binom{-(a k+b)}{k-m}(-1)^{k-m}\binom{k-m}{r} \\
& =\frac{r!b n}{a k+b} \sum_{m=0}^{k-r}\binom{-(a k+b)(n-1)}{m}(-1)^{m}\binom{a k+b+k-m-1)}{k-m-r}\binom{a k+b+r-1}{r} \\
& =\binom{a k+b+r-1}{r} \frac{r!b n}{a k+b} \sum_{m=0}^{k-r}\binom{-(a k+b)(n-1)}{m}(-1)^{m}\binom{-(a k+b)-r}{k-m-r}(-1)^{k-m-r} \\
& =\binom{a k+b+r-1}{r} \frac{r!b n}{a k+b}(-1)^{k-r}\binom{-(a k+b)(n-1)-(a k+b+r)}{k-r} \\
& =\frac{r!b n}{a k+b}\binom{a k+b+r-1}{r}\binom{(a k+b) n+k-1}{k-r} \\
& =(r-1)!b n\binom{a k+b+r-1}{r-1}\binom{(a k+b) n+k-1}{k-r} .
\end{aligned}
$$

Acknowledgement

The authors would like to thank the referee for his/her helpful suggestions. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 12071383, 12271222) and Scientific Research Foundation of Jiangsu Normal University (Grant Nos. 21XFRS019).

References

[1] I. G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., Oxford University Press, Oxford, 1995.
[2] R. P. Stanley, Enumerative Combinatorics, Volume I, second ed., Cambridge University Press, New York/Cambridge, 2012.
[3] R. P. Stanley, Enumerative Combinatorics, Volume II, Cambridge University Press, New York/Cambridge, 1999.
[4] R. P. Stanley and Y. Wang, Some aspects of (r, k)-parking functions, J. Combin. Theory Ser. A 159 (2018), 54-78.
[5] M. Thiel and N. Williams, Strange expectations and the Winnie-the-Pooh problem, J. Combin. Theory Ser. A 176 (2020), 105298.

