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Stuart Whittington was educated at Queens’ College Cambridge
and has spent most of his working life at the University of
Toronto. He spent a post-doctoral year at the University of
California San Diego as a Fulbright fellow, working with Fred
Wall on self-avoiding walks, and a second post-doctoral year at
the University of Toronto, working with John Valleau, mainly
estimating the numbers of embeddings of some classes of graphs
in lattices. His primary areas of study are statistical mechanics,
especially problems with a combinatorial or topological flavour,
self-avoiding walks and related objects like lattice trees and lat-
tice animals, self-averaging in quenched random systems, and
random knotting and linking. Most of his research interests are
in the statistical mechanics of lattice models, especially those
related to the configurational and statistical properties of poly-

mers, as well as phase transitions and critical phenomena. He is also interested in the theory
and application of Markov chain Monte Carlo methods.

Mansour: Professor Whittington, first of all,
we would like to thank you for accepting this
interview. Would you tell us broadly what
combinatorics is?

Whittington: I would like to start by thank-
ing you for this opportunity. I think of combi-
natorics as the mathematical treatment of dis-
crete systems. Of course, that’s too broad since
the integers are discrete but clearly form part
of number theory. But there are always over-
laps between fields. The theory of partitions
seems to fit equally well in combinatorics and
in number theory. Combinatorial geometry is
the interface between combinatorics and geom-
etry but is a big subject in its own right. Going
back to combinatorics, there are several types
of questions that typically arise. One can ask
questions about the existence of a combinato-
rial object. Does there exist a finite projec-

tive plane of a certain order? Or one can ask
counting questions. How many Dyck paths are
there with n edges? This is enumerative com-
binatorics and is where my interests lie.

Mansour: What is statistical physics? What
are the main paradigms, questions, and goals
of the field?

Whittington: Statistical physics, or statisti-
cal mechanics1, attempts to provide a micro-
scopic description of macroscopic objects and
phenomena, such as the structure of liquids,
phase transitions (like boiling or freezing of liq-
uids), and critical phenomena (like the Curie
point in magnetism). Thermodynamics2 is a
very powerful approach to these macroscopic
phenomena but it pays no attention to the
behavior at the molecular level. Statistical
physics builds a bridge between the description
of microscopic objects (atoms and molecules)
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1A. I. Khinchin, Mathematical Foundations of Statistical Mechanics, Translated by G. Gamow, Dover Publications, Inc., New
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2A. B. Pippard, Elements of classical thermodynamics for advanced students of physics, Cambridge University Press, New York
1957.
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by quantum mechanics (or sometimes by clas-
sical mechanics) and the description of the
macroscopic world by thermodynamics.

Mansour: What do you think about the de-
velopment of the relations between statistical
physics and mathematics, in particular combi-
natorics?

Whittington: Physicists are more concerned
with finding a theoretical description of the
world that we live in than in justifying every
step of their treatment with full mathemati-
cal rigor. Cyril Domb3 once said that being
trained as a mathematician and then working
as a theoretical physicist enabled him to de-
cide when rigor was essential in physics, and
when it was not. Having said that, I think that
providing rigorous proof has a role in theoreti-
cal physics. Sometimes this is seen as the dis-
tinction between theoretical physics and math-
ematical physics. Combinatorics connects to
statistical mechanics as the mathematical sub-
ject that allows us to count using rigorous ar-
guments, and at a fundamental level statisti-
cal mechanics is all about counting. Some-
times the travel is in the opposite direction.
Some path problems4, like Dyck paths and
Motzkin paths, which have been traditionally
part of combinatorics, have migrated as mod-
els of polymers and are now being studied, with
some embellishments and additions, by people
in statistical mechanics. Another problem that
began its life as a combinatorics question, is
the number of self-avoiding walks in the square
lattice that cross a square to which they are
confined, from one vertex to the opposite ver-
tex. This has become something of a cottage
industry in statistical mechanics.

Mansour: What have been some of the main
goals of your research?

Whittington: I had been fascinated by sta-
tistical mechanics as a student and I decided
quite quickly that I wanted to do research in
that area, without having a clear idea about
a particular problem or sub-field. One of the
problems that I started to look at was a model
of the arrangement of lipid molecules in mem-
branes and this led me to think about self-
avoiding walks. Generally speaking, statisti-
cal mechanics aims to understand thermody-

namics at a microscopic level and I have spent
much of my working life trying to understand
the physics of polymers using statistical me-
chanics.
Mansour: We would like to ask you about
your formative years. What were your early
experiences with mathematics? Did that hap-
pen under the influence of your family or some
other people?
Whittington: I was educated at Chesterfield
Grammar School and I was lucky that it was
an excellent school with excellent mathemat-
ics teachers. When I was fifteen or so I had to
choose between doing Classics or Science. I en-
joyed Latin and English but eventually chose
the Science Sixth Form, where I studied chem-
istry, physics, and pure and applied mathemat-
ics. I especially enjoyed chemistry and pure
maths and had some trouble deciding between
them when I went to university. I had an excel-
lent grounding in calculus and, more generally,
in elementary analysis, and coordinate geome-
try, though we also touched on other subjects
like the theory of equations. My family was
supportive though I was the first person in my
family to go to university. Probably the person
who had the biggest effect on me was my pure
maths teacher.
Mansour: Were there specific problems that
made you first interested in combinatorics?
Whittington: At school, I picked up the rudi-
ments of permutations and combinations but
it was not until I encountered statistical me-
chanics at university that I really developed a
taste for problems involving counting combi-
natorial objects. The problems there were of
the balls in boxes type and I liked learning and
inventing tricks for solving that kind of prob-
lem. Later, I discovered various problems with
counting different kinds of walks on lattices,
such as self-avoiding walks, and I think it was
then that I really became interested in using
combinatorics as a tool.
Mansour: What was the problem you worked
on in your thesis?
Whittington: I did not work on a single prob-
lem but this period gave me the opportunity to
publish papers about several different topics. I
started by looking at a phase transition, called

3C. Domb, Thermodynamics and statistical mechanics (in equilibrium), Twentieth-century physics, Vol. I, II, III, 521–584,
Inst. Phys., Bristol, 1995.

4R. Brak, G. K. Iliev, A. Rechnitzer, and S. G. Whittington, Motzkin path models of long-chain polymers in slits, J. Phys. A
40:17 (2007), 4415–4437.
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rotational premelting, that occurs in crystals of
lipid molecules. One of the approaches that I
used was a Monte Carlo calculation and this
was my introduction to that technique. I then
looked at a model of how lipids behave in bi-
molecular layers that model biological mem-
branes, again using Monte Carlo methods, and
finally, I worked on an approximate treatment
of self-avoiding walks. I spent a year at UCSD
(University of California San Diego) as a post-
doc working with Fred Wall on a self-avoiding
walk problem.

Mansour: What would guide you in your re-
search? A general theoretical question or a
specific problem?

Whittington: I like problems that have a ba-
sis in physics or chemistry or molecular biol-
ogy where the essence of the problem can be
boiled down to something that can be attacked
using mathematics with the hope of eventually
obtaining a rigorous result. This often means
simplifying the original problem and trimming
away many details that a biologist, say, might
feel are essential parts of the problem. The
trick is not to do this to excess. Often these
specific questions grow into quite a wide area
of research.

Mansour: When you are working on a prob-
lem, do you feel that something is true even
before you have the proof?

Whittington: Yes. I spend a lot of time try-
ing to develop intuition about a problem and
often try simpler versions that might be solv-
able, or attack the problem numerically before
settling down to formulate a theorem or con-
struct a proof.

Mansour: What three results do you consider
the most influential at the interplay of statis-
tical physics and combinatorics during the last
thirty years?

Whittington: I am going to pick problems
that fit into the area that most interests me.
When you encounter a problem that is interest-
ing but where it is difficult to make progress it
is natural to look for a simpler model that will
provide insight into the solution to the original

problem. Self-avoiding walks have been used
as models of several polymer problems, such
as the adsorption of polymers at surfaces, the
response of polymers to a force, or the collapse
of a polymer in a poor solvent. Of course, the
model has to be decorated in various ways to
suit the details of the physical problem. Since
self-avoiding walks are so intractable, simpler
models have been used. Dyck paths, with ver-
tices in the distinguished line being weighted,
have proved to be a useful model of poly-
mer adsorption5. The model is exactly solv-
able at the level of generating functions and
the asymptotics can be extracted, and this has
given some insight into the original physical is-
sue. In a similar way, partially directed walks
with a weight for nearest neighbor pairs of ver-
tices, not connected by an edge of the walk,
have proved to be a useful model of polymer
collapse6. This is tougher to solve but consid-
erable progress has been made, using methods
from both combinatorics and probability the-
ory.
Mansour: What are the top three open ques-
tions in your list?
Whittington: It is hard to pick the top three!
For self-avoiding walks, the ultimate question
is to find an expression for the number of self-
avoiding walks with n edges, cn. At the mo-
ment this seems completely out of reach. Com-
ing down a level, find the rate of exponential
growth of the number of self-avoiding walks
on, say, the square lattice. That is, deter-
mine the value of the connective constant7,
κ = limn→∞ n

−1 log cn. With that solved or
not, determine the rate of approach to the
limit. Proving that

cn = exp[κn+O(log n)]

would be a major advance. Of course, there
are similar questions about the behavior of re-
lated objects such as lattice trees and lattice
animals. In a somewhat different area of statis-
tical physics, the 3-dimensional Ising problem8

is a major open problem
Mansour: What kind of research directions

5A. Rechnitzer and E. J. Janse van Rensburg, Exchange relations, Dyck paths, and copolymer adsorption, Discrete Appl. Math.
140:1-3 (2004), 49–71

6R. Brak, A. J. Guttmann, and S. G. Whittington, A collapse transition in a directed walk model, J. Phys. A 25:9 (1992),
2437–2446.

7J. M. Hammersley and K. W. Morton, Poor man’s Monte Carlo, J. Roy. Statist. Soc. Ser. B 16 (1954), 23–38.
8S. Istrail, Statistical mechanics, three-dimensionality and NP-completeness: I. Universiality of intractability of the partition

functions of the Ising model across non-planar lattices, In Proceedings of the 32nd ACM Symposium on the Theory of Computing
(STOC00), Portland, OR, USA, 21–23, 2000; ACM Press: New York, NY, USA, 2000; pp. 87–96.
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would you like to see in the next ten-to-twenty
years as the continuation of your work?

Whittington: In the general area of self-
avoiding walks, I think that the two outstand-
ing questions are (i) the value of the con-
nective constant for several different lattices
(other than the hexagonal lattice9, where its
value is now known), and (ii) the existence
of critical exponents such as that character-
izing the rate at which the limit defining the
connective constant is approached. More gen-
erally, I would like to see progress with un-
derstanding some phase transitions associated
with self-avoiding walks, such as the collapse
and adsorption transitions, and progress with
our understanding of random knotting of lat-
tice polygons10.

Mansour: What do you think about the dis-
tinction between pure and applied mathemat-
ics that some people focus on? Is it mean-
ingful at all in your case? How do you see the
relationship between so-called “pure” and “ap-
plied” mathematics?

Whittington: I think it is more a question
of what motivates you to attack a problem. I
like problems that have their genesis in a sci-
entific problem and in that sense, I do applied
mathematics. The techniques used in pure and
applied mathematics are often the same.

Mansour: What advice would you give young
people thinking about pursuing a research ca-
reer in mathematics or science?

Whittington: If you want a research career
in theoretical physics or theoretical chemistry,
take as many mathematics courses as possi-
ble. After that, do not be afraid to learn and
use other areas of mathematics. The standard
sorts of courses that people in chemistry and
physics take at university are real and complex
analysis, linear algebra, group theory, ordinary
and partial differential equations, probability,
and perhaps some elementary statistics. But
topology, geometry, number theory, and com-
binatorics, to mention just a few areas, all have
applications in the sciences. If you are tack-
ling a problem that seems to require an area
of mathematics that you do not know, read a

book!

Mansour: Would you tell us about your in-
terests besides mathematics?

Whittington: Since I was a small child I have
always been interested in natural history. I en-
joy bird watching and bird identification but
I also enjoy widening my knowledge of plants
and animals. I spent a year trying to learn
ferns and another trying to learn horsetails!
I have to admit that this is not very useful
knowledge!

Mansour: Polyominoes are interesting com-
binatorial objects widely used to model dis-
tinct physical and chemical phenomena. Math-
ematicians, unfortunately, have not achieved a
complete understanding of their enumerative
aspects yet. Do you think we will be able to
see the solutions to the most challenging ones
soon? For instance, their enumeration in the
most general case?

Whittington: Let me start by saying some-
thing about polyominoes. If we look at the
dual to a polyomino (by putting a vertex at
the center of each square and joining pairs of
vertices by an edge if the two squares share a
common edge) we have a (connected) section
graph of the lattice. In the physics literature,
these are sometimes called strong embeddings
or site animals11. If instead of considering sec-
tion graphs we consider subgraphs then these
are sometimes called weak embeddings or bond
animals. Let us write an for the number of
bond animals with n vertices. Then we know
that an = λn+o(n) but we do not know the
value of λ rigorously, though we do have good
numerical estimates. It is probably true that
an = λn+O(logn) but we do not have proof of
this. There are similar results and conjectures
for site animals (polyominoes) and I think that
we are much more likely to find the values of
λ, etc., and establish the conjecture about the
sub-dominant asymptotics, than to find an ex-
pression for the number of polyominoes.

Mansour: With E.J. Janse van Rensburg, you
have several interesting publications on self-
avoiding walks. Would you tell us about this
topic more by emphasizing the combinatorial

9H. Duminil-Copin and S. Smirnov, The connective constant of the honeycomb lattice equals
√

2 +
√

2, Ann. of Math. 175:3
(2012), 1653–1665.

10E. Orlandini, M. C. Tesi, E. J. Janse van Rensburg, and S. G. Whittington, Asymptotics of knotted lattice polygons, J. Phys.
A 31:28 (1998), 5953–5967.

11S. G. Whittington and C. E. Soteros, Lattice animals: rigorous results and wild guesses, Disorder in physical systems, 323–335,
Oxford Sci. Publ., Oxford Univ. Press, New York, 1990.
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side? What are the most important open ques-
tions in this research area?
Whittington: The basic question about self-
avoiding walks is how many walks are there
with n edges? The dream is to find an expres-
sion that gives this number, cn, as a function
of n. We do know that cn = eκn+o(n) = µn+o(n)

but we do not know the value of κ for any lat-
tice except the hexagonal lattice, and we do
not know much about the o(n) term. John
Hammersley and Dominic Welsh12 showed that
µn ≤ cn ≤ µn+O(

√
n) and there have been some

improvements since then, notably by Harry
Kesten13. It is believed, from a mixture of nu-
merical work and physical arguments, that

cn = Anγ−1µn(1 + o(1))

where γ is a critical exponent that depends on
the dimension but not on the particular lat-
tice. Proving this form is a major challenge.
Oddly enough, in two dimensions it is believed
that γ = 43/32 but we do not know that the
exponent exists! Self-avoiding walks can be
embellished in various ways to model physical
situations. Polymers can adsorb at surfaces
and there is a well-known self-avoiding walk
model of this. Take the square lattice, for in-
stance, with the obvious (x, y)-coordinate sys-
tem. Think of self-avoiding walks that start at
the origin and are confined to the half-plane
y ≥ 0, so these are positive walks. Ask for
the number, cn(m) of these walks with n edges
and with m + 1 vertices in the line y = 0.
We say that the walk visits the line m times.
Weight the walk according to the number of
visits by writing Cn(x) =

∑
m cn(m)xm, so

that for large x the walk will visit the distin-
guished line frequently. This corresponds to
adsorption. We know that the limit κ(x) =
limn→∞ n

−1 logCn(x) exists and κ(x) is the free
energy. We can prove that there is a critical
value of x, x0 say, such that κ(x) = log µ for
x ≤ x0 and κ(x) > log µ for x > x0

14 with x0

being the point where adsorption occurs. The
value of x0 is not known except for the hexag-
onal lattice15. Recently, Buks van Rensburg
and I16,17 have been looking at the situation
when the adsorbed walk is pulled off the line
by an applied force. Suppose that the y coor-
dinate of the last vertex is h. Then we want
to count by the number of visits and by the
height, that is, we want the number cn(m,h)
of walks with n edges, m visits, and height h.
Now, the appropriate quantity to examine is
Cn(x, t) =

∑
m,h cn(m,h)xmth and we need the

behavior of this quantity when n is large.

Mansour: Polymer models are widely studied
by mathematicians, physicists, and chemists.
They play an essential role in understanding
physical phenomena such as phase transitions
and biological structures such as DNA, RNA,
and protein folding. Would you tell us about
the main ideas behind these models and the
role of combinatorial methods in their study?

Whittington: It is true that polymer models
have become a popular area of research, espe-
cially in probability theory18. They originated
as mathematical models of linear polymer
molecules in dilute solution (where polymer
molecules essentially never encounter another
polymer molecule). The original question was
about the dimensions of these molecules. Peo-
ple asked how the radius of gyration, or per-
haps the mean end-to-end length, depended on
the number of monomers in the molecule. The
radius of gyration can be measured by light
scattering so experimental results were avail-
able. The simplest model that you can think
of is a random walk, either on a lattice or in the
continuum, and then the mean square end-to-
end length is given by 〈R2

n〉 = An where A
depends on the details of the random walk.
The problem with a random walk model is
that it can self-intersect and this corresponds
to two monomers occupying the same space.
But monomers do occupy space and exclude

12J. M. Hammersley and D. J. A. Welsh, Further results on the rate of convergence to the connective constant of the hypercubical
lattice, Quart. J. Math. Oxford Ser. (2) 13 (1962), 108–110.

13H. Kesten, On the number of self-avoiding walks, J. Mathematical Phys. 4 (1963), 960–969.
14J. M. Hammersley, G. M. Torrie, and S. G. Whittington, Self-avoiding walks interacting with a surface, J. Phys. A 15:2

(1982), 539–571.
15N. R. Beaton, M. Bousquet-Mélou, J. de Gier, H. Duminil-Copin, and A. J. Guttmann, The critical fugacity for surface

adsorption of self-avoiding walks on the honeycomb lattice is 1 +
√

2, Comm. Math. Phys 326 (2014), 727–754.
16E. J. Janse van Rensburg and S. G. Whittington, Adsorbed self-avoiding walks subject to a force, J. Phys. A: Math. Theor.

46 (2013), 435003.
17E. J. Janse van Rensburg and S. G. Whittington, Copolymeric stars adsorbed at a surface and subject to a force: a self-avoiding

walk model, J. Phys. A: Math. Theor. 55 (2022), 265003.
18W. T. F. den Hollander, Random Polymers, In: W. T. F. Hollander and S. A. Molchanov, Random Media at Saint-Flour,

Heidelberg: Springer, 295–558.
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other monomers. This is called the excluded
volume effect19 and leads to a change in the n-
dependence. In 1949, Paul Flory19 developed
an approximate physical treatment that pre-
dicted that, in three dimensions, 〈R2

n〉 = An2ν

with ν = 3/5. This roughly agreed with the
experiment and with Monte Carlo results. In
about 1965, Sam Edwards20 developed a beau-
tiful self-consistent field treatment that gave
the same result for the exponent ν. Self-
avoiding walks respect this excluded volume ef-
fect and they have become the standard model.

Of course, there are lots of other questions
in the polymer business. Polymers undergo a
collapse transition as the temperature or the
solvent changes. They can adsorb at a surface.
Molecules like circular DNA can knot and link.
All of these can be modeled by variants of self-
avoiding walks.

The name polymer model can mean two dif-
ferent things. Sometimes it means random
walks, interpreted broadly to include directed
walks like Dyck paths, ballot paths, Motzkin
paths, etc. Sometimes it means walk models
more generally, including self-avoiding walks.
For probabilists working in the area, there is
often a random component either in the sur-
roundings or in the composition of the walk.
That is the vertices of the walk can be colored
at random and different colors correspond to
different interactions with one another or with
the surroundings. There is a very nice book
by Frank den Hollander called Random Poly-
mers18 that describes both the combinatorial
and probabilistic aspects of these models

Mansour: Polygons and understanding their
topological invariants are very active areas of
research. Would you tell us about these ob-
jects? What are the main mathematical ques-
tions they motivate?

Whittington: Polygons, or lattice polygons,
are embeddings of simple closed curves in a lat-
tice or, if you prefer, embeddings of connected
graphs with all vertices having degree 2. They
are a useful model of ring polymers21 and turn

up in treatments of the Ising model. Suppose
that, for some particular lattice, the number of
polygons, modulo translation, with n edges is
pn. It is a classic result of John Hammersley22

that pn grows at the same exponential rate as
cn. That is limn→∞ n

−1 log pn = κ, the con-
nective constant of the lattice. But there are
many fewer polygons than self-avoiding walks
so the rates of approach to the limit must be
very different. Polygons and walks have differ-
ent critical exponents. Proving that the critical
exponent exists for polygons would be a big ad-
vance. In 3 dimensions, polygons can be knot-
ted and different polygons can have different
knot types. If p0

n is the number of unknotted
polygons with n edges then we know that23,24

lim
n→∞

n−1 log p0
n = κ0 < κ,

so unknotted polygons are exponentially rare.
We know that most polygons are very badly
knotted for large n. This means, for instance,
that the knots are highly composite – they have
many prime components. But if we ask about
polygons with fixed knot type we know surpris-
ingly little. If pn(K) is the number of polygons
with knot type K we know that21

κ0 ≤ lim inf
n→∞

n−1 log pn(K)

≤ lim sup
n→∞

n−1 log pn(K) < κ

but that is a very weak result. We do not even
know that the limit exists. If the limit does ex-
ist, is it independent of K? Proving something
more about pn(K), even when K is a particu-
lar knot such as the trefoil, 31, would be a big
improvement in our knowledge.
Mansour: The concept of universality plays
an important role in statistical physics. Would
you tell us about this concept and how it helps
us to understand nature?
Whittington: Universality25 is a very useful
concept in statistical physics, even though the
term is a bit vague. The basic idea is that in
some circumstances (when a fluid or a magnet
is close to its critical point, or when a polymer

19P. J. Flory, The configuration of real polymer chains, J. Chem. Phys. 17 (1949), 303–309.
20S. F. Edwards, The statistical mechanics of polymers with excluded volume, Proc. Phys. Soc. 85 (1965), 613–624.
21S. G. Whittington, Topology of polymers, New scientific applications of geometry and topology (Baltimore, MD, 1992), 73–95,

Proc. Sympos. Appl. Math., 45, Amer. Math. Soc., Providence, RI, 1992.
22J. M. Hammersley, The number of polygons on a lattice, Proc. Camb. Phil. Soc. 57 (1961), 516–523.
23D. W. Sumners and S. G. Whittington, Knots in self-avoiding walks, J. Phys. A: Math. Gen. 21 (1988), 1689–1694.
24N. Pippenger, Knots in random walks, Disc. Appl. Math. 25 (1989), 273–278.
25D. S. Gaunt, M. F. Sykes, G. M. Torrie, and S. G. Whittington, Universality in branched polymers on d-dimensional hypercubic

lattices, J. Phys. A 15:10 (1982), 3209–3217.
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is very large) some properties do not depend
strongly on the particular system being stud-
ied. For instance, if we take various polymers
like polyethylene or polypropylene, and mea-
sure their radius of gyration (say by light scat-
tering) in dilute solution in certain solvents,
the radius of gyration will behave like Anν ,
where n is the number of monomers in the
polymer. The amplitude A will depend on the
polymer but the critical exponent ν will be the
same for many polymers. The fact that ν does
not depend on the chemical details is an exam-
ple of universality. In a similar way, if we mea-
sure how the magnetic susceptibility diverges
near the Curie point for different magnetic ma-
terials, the exponent characterizing this diver-
gence will be the same for many different ma-
terials. When the exponent changes we say
that we have moved into a different universal-
ity class.

Mansour: When we read papers on statistical
physics, we usually encounter the terms phase
transition, critical exponents, scaling limits.
What are they? Why are they important?

Whittington: A phase transition is when a
system changes from one phase to another.
When a solid melts to form a liquid, it is under-
going a phase transition. The transition hap-
pens at a particular temperature at fixed pres-
sure and this is the transition temperature. The
pressure dependence of the transition temper-
ature is a curve in the (pressure, temperature)-
plane and describes a phase boundary. In ther-
modynamics, a phase transition corresponds
to a singularity in the free energy of the sys-
tem. Staying with 1-component systems where
we have melting, boiling, and sublimation, the
phase boundary between the liquid and vapor
phases stops at some pressure and tempera-
ture. This point is the critical point. Critical
exponents characterize how various properties
behave near the critical point. Scaling limits
are a bit different. Sometimes phenomena can
be described by lattice models and by contin-
uum models, where the ambient space is R2

or R3. Roughly speaking, if the lattice model
maps to the continuum model as the lattice
size is decreased, then the continuum model is
the scaling limit.

Mansour: You use Monte Carlo methods26 in

some of your works. Simulations are essential
to understand some theoretically intractable
models. Are there also some interesting com-
binatorial questions motivated by these meth-
ods?

Whittington: If I can slightly expand com-
binatorics to include discrete probability, then
the answer is yes. One family of Monte Carlo
methods involves sampling along a realization
of a Markov chain, defined on the space of in-
terest. To take self-avoiding walks as an exam-
ple, the space might be the set of self-avoiding
walks of length n, or perhaps the set of all self-
avoiding walks of all lengths. We are interested
in making sure that the Markov chain has a
unique limit distribution so that the sample
won’t depend too seriously on the initial state
in the realization of the Markov chain. Proving
that the Markov chain has a unique limit distri-
bution or characterizing its ergodic classes usu-
ally requires arguments from combinatorics or
discrete probability. There are lots of Markov
chains that are in popular use where we don’t
have this information at a rigorous level.

Mansour: Journal of Physics A: Mathemati-
cal and Theoretical is an important journal for
interdisciplinary research, and you have been
on the editorial board for many years. What
do you think about the role of journals in scien-
tific development? What factors make a jour-
nal prestigious, influential, and long-lasting?

Whittington: I think that journals are still
the primary means of communicating research
results, although preprint servers like arXiv
are becoming more important. For a journal to
be prestigious and influential, it has to attract
high-quality papers. Eventually, this becomes
a self-fulfilling prophecy – the more prestigious
a journal is, the more likely that it will attract
high-quality papers. I think that good referee-
ing is essential. The journal has to find referees
who are competent and fair and who will put
in the time to make the right decisions about
a submission.

Mansour: Mathematicians usually classify
the results in mathematical physics as math-
ematically rigorous or not. Do you think that
mathematical standards are essential for the
validity of a claim about how nature works?

Whittington: While I do not think that rigor
26E. J. Janse van Rensburg, The statistical mechanics of interacting walks, polygons, animals and vesicles, Second edition,

Oxford Lecture Series in Mathematics and its Applications 39, Oxford University Press, Oxford, 2015.
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is essential for progress in theoretical physics,
I do think that it is desirable. I can think
of problems in statistical physics that seemed
to be “solved” by non-rigorous arguments but,
when a rigorous treatment was developed, the
solution proved to be somewhat different. The
other side of the coin is that there are lots of
places in theoretical physics where we “know”
the answer, by a combination of numerical
work and physical reasoning, but where we do
not have proof.

Mansour: In your work, you have extensively
used combinatorial reasoning to address im-
portant problems. How do enumerative tech-
niques engage in your research?

Whittington: Self-avoiding walks are a suffi-
ciently tricky problem that standard enumer-
ation methods don’t work. One has to use
very robust and general techniques, like sub-
additivity to prove the existence of limits and
bounds to get useful information about the
general behavior and the existence of phase
transitions. One often looks at simpler mod-
els when progress can’t be made on the self-
avoiding walk version. These simpler models
have some additional features like directedness
or convexity. Examples are Dyck paths, ballot
paths, Motzkin paths, partially directed walks,
row-convex polygons, etc. For these problems,
there are combinatorial techniques that work
well. Generating functions are often useful
tools and one can often find equations deter-
mining the generating function by using ideas
like wasp-waist factorizations.

Mansour: Would you tell us about your
thought process for the proof of one of your
favorite results? How did you become inter-
ested in that problem? How long did it take
you to figure out a proof? Did you have a “eu-
reka moment”?

Whittington: My favorite result is about self-
avoiding walks confined to a wedge geometry27,
though I have written other papers that have
attracted more attention! Consider the square
lattice and ask for the number of self-avoiding
walks such that the walk starts at the origin
and the (x, y)-coordinates of every vertex sat-
isfy x ≥ 0 and 0 ≤ y ≤ ax for some pos-
itive value of a. Write cn(a) for the num-
ber of these walks. What can we say about
cn(a)? How does this compare with cn? I first

thought about this problem when I was work-
ing on a self-avoiding walks model of polymer
adsorption. I wanted to know something about
the behavior of the number of walks starting
at the origin and confined to the half-space
y ≥ 0. These are now called positive walks and
the number is often written as c+

n . I showed
that the exponential growth rate of c+

n is the
same as that of cn. This raised the question of
how severe the geometrical constraint has to be
to change the exponential growth rate. After
quite a lot of effort I constructed a proof that
walks in a quarter space have the same expo-
nential growth rate but otherwise, the problem
defeated me and I put it aside. A few years
later I was on sabbatical at Trinity College,
Oxford, collaborating with John Hammersley.
I talked to him about this problem and we de-
cided to work on it. We solved it and proved a
stronger result. Suppose that the walk starts
at the origin and the coordinates of the ver-
tices satisfy x ≥ 0, 0 ≤ y ≤ f(x) where
f(x) ≥ 1 and limx→∞ f(x) = +∞. Call the
number of these walks cn(f). Then the expo-
nential growth rate of cn(f) is equal to that
of cn. This struck us as a very pretty result.
Returning to the question of how strong the
constraint has to be to change this behavior,
confining the walk between two parallel lines
is sufficient.

Mansour: Is there a specific problem you
have been working on for many years? What
progress have you made?

Whittington: I will pick two different prob-
lems but both are tales of failure! In the early
1970’s I started working on the self-avoiding
walk model of polymer adsorption, attacking
it mainly by Monte Carlo methods and by ex-
act enumeration (for small n) and series analy-
sis. This gave lots of information but not many
rigorous results. Around 1980, John Hammer-
sley visited Toronto and we discussed the prob-
lem. Over the next couple of years, in collab-
oration with Glenn Torrie14, we made a lot of
progress at the rigorous level and developed a
complete qualitative understanding but with
lots of quantitative questions outstanding. We
have not made much progress since then on
the original problem though Buks van Rens-
burg and I16,17 have recently made progress on
the extension where a force is applied to pro-

27J. M. Hammersley and S. G. Whittington, Self-avoiding walks in wedges, J. Phys. A 18:1 (1985), 101–111.

ECA 3:2 (2023) Interview #S3I6 8



Interview with Stuart Whittington

mote desorption.
The other problem that I will mention is

random knotting. In around 1986, I was at a
conference and listened to a talk by De Witt
Sumners about a conjecture in random knot-
ting. I thought that I saw a way to approach a
proof, introduced myself, and we started work-
ing on it. It took a year or so but we finally
published a paper23 proving that all except ex-
ponentially few polygons on the simple cubic
lattice Z3 are knotted. So unknotted polygons
are exponentially rare. A few years later, in
a collaboration with Chris Soteros28, we ex-
tended this result in various ways and showed
that polygons were typically badly knotted.
But we could not prove much about the prob-

ability that a polygon would have a particu-
lar knot type. We turned our attention to the
knotting of p-spheres in the (p+2)-dimensional
hypercubic lattice but could only prove any-
thing useful if the 2-sphere was confined in
a “tube” where we could use transfer ma-
trix methods. More recently we extended this
to look at the entanglement complexity of 2-
manifolds without boundary. We have contin-
ued to work on both the 3-dimensional and d-
dimensional cases but without much success.
Mansour: Professor Stuart Whittington, I
would like to thank you for this very interesting
interview on behalf of the journal Enumerative
Combinatorics and Applications.

28C. E. Soteros, D. W. Sumners, and S. G. Whittington, Entanglement complexity of graphs in Z3, Math. Proc. Cambridge
Philos. Soc. 111:1 (1992), 75–91.
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