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Abstract: The counting of partitions according to their genus is revisited. The case of genus 0 –non-crossing
partitions– is well known. Our approach relies on two pillars: first a functional equation between generating
functions, originally written in genus 0 and interpreted graphically by Cvitanovic, is generalized to higher genus;
secondly, we show that all partitions may be reconstructed from the “(semi)-primitive” ones introduced by Cori
and Hetyei. Explicit results for the generating functions of all types of partitions are obtained in genus 1 and
2.
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1. Introduction

1.1 Partitions, their genus and their census

Consider the set P(n) of partitions of the set [[n]] := {1, · · · , n}. If α ∈ P(n) is made of α1 parts of length 1,
α2 parts of length 2, etc, we say that α is of type [α] = [1α1 , · · · , nαn ], which may be regarded as a partition of
the integer n: [α] ` n.

Let Cn,[α] denote the number of partitions of type [α]

Cn,[α] =
n!∏n

`=1 α`!(`!)
α`
.

The census of partitions may be subject to different conditions. In particular, it is well known, as we
recall below in sect. 2.2, that any partition α may be assigned a genus g(α) by a formula descending from
Euler’s relation. Curiously, the census of partitions according to their genus is still an open problem, in spite
of several fundamental contributions, [5, 6, 15, 20, 21]. Except for a few particular cases, only the case of genus
0 is thoroughly known: the non-crossing partitions (or planar) have been enumerated by Kreweras [15], before
reappearing in various contexts, matrix integrals [1, 7], free probability [18, 19], and more recently, out-of-
equilibrium quantum systems [12,17] or radiation entropy [22].

Let C
(g)
n,[α] denote the number of partitions in P(n) of type [α] and genus g. Obviously

∑
g C

(g)
n,[α] = Cn,[α].

We find it convenient to use generating functions (GF) to encode these numbers. Introduce a set of inde-
terminates κn, n ∈ N+, their GF

W (x) =
∑
n≥1

κnx
n

and then

Z(x) = 1 +
∑
n≥1

∑
[α]`n

Cn,[α]κ[α]x
n =

∑
g

Z(g)(x)

Z(g)(x) = δg0 +
∑
n≥1

∑
[α]`n

C
(g)
n,[α]κ[α]x

n
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where

κ[α] :=

n∏
`=1

κα`` . (1)

There is a well-known relation between Z(0) and W , which has been found in different avatars [1, 7, 18], see
(12) below. To extend such a relation to higher genus, we rely on a proven method. The diagrams encoding the
partitions are first reduced to basic diagrams, in finite number at a given genus. In a second step, all diagrams
–all partitions– are reconstructed by “dressing” the basic ones. This method is well-known in combinatorics
and quantum field theory (“skeleton diagrams”). In the context of the enumeration of unicellular maps and
partitions of a given genus, it has been explored by Chapuy [3] and Cori–Hetyei [6], who call the basic diagrams
schemes and primitive, respectively.

In this paper, explicit formulae relating Z(g) to W and its derivatives will be found for g = 1, 2, and the
corresponding expressions of Z(g)(x) are given by Theorem 1, (18), and Theorem 2, (29). Extension to higher
genera is in principle feasible, if the list of their primitive diagrams is known.

1.2 Genus dependent cumulant expansion

The question of the relation between Z and W also arises in probability theory and statistics. There, it is
common practice to associate cumulants to moments of random variables. If X is a random variable with
moments mn = E(Xn) of arbitrary order, we decompose these moments on cumulants κm and their products
associated with partitions α ∈ P(n)

mn =
∑

α∈P(n)

κα , (2)

where
κα =

∏
Ci

parts of α

κ|Ci|

with |Ci| the cardinal of part Ci. Thus each term in (2) may be regarded as associated with a splitting of [[n]]
into parts described by the partition α: in statistical mechanics, the terms κα are dubbed the connected parts
of the moment mn. Since the κα depend only on the type of the partition α, we may rewrite (2) as

mn =
∑
[α]`n

Cn,[α]κ[α] (3)

with κ[α] as in (1). For example, m4 = κ4 + 4κ3 κ1 + 3κ22 + 6κ2 κ1
2 + κ1

4 .
Thus the indeterminates κ` have acquired the meaning of cumulants, and Z(x) and W (x) are the GF of moments
and cumulants, respectively.

Then, making use of the genus g(α) mentioned above, it is natural to modify the expansion (3) by weighting
the various terms according to their genus. Introducing a parameter ε, we write

mn(ε) =
∑

α∈P(n)

εg(α)κα (4)

or

mn(ε) =
∑
[α]`n

gmax([α])∑
g=0

C
(g)
n,[α]ε

gκ[α], .

For example, m4(ε) = κ4 + 4κ3 κ1 + (2 + ε)κ22 + 6κ2 κ1
2 + κ1

4 , see below.
Obviously for ε = 1, we recover the usual expansion (3), whereas for ε = 0, we have an expansion on

non-crossing (or free, or planar) cumulants. Thus (4) provides an interpolation between the usual cumulant
expansion and that on non-crossing ones.

1.3 Eliminating or reinserting singletons

In a partition, parts of size 1 are called singletons. It is natural and easy to remove them in the counting, or
to relate the countings of partitions with or without singletons. Let us denote with a hat the GF of partitions
without singletons: Ẑ(g)(x), and derive the relation between Ẑ(g)(x) and Z(g)(x). This is particularly easy in
the language of statistics, where discarding singletons amounts to going to a centered variable: X = X̂+E(X) =
X̂ +m1 = X̂ + κ1

mn = E(Xn) = E((X̂ + κ1)n) =

n∑
r=0

(
n

r

)
m̂n−r κ

r
1
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and, since singletons do not affect the genus, see below Section 2.6,

C
(g)
n,[α′,1r] =

(
n

r

)
C

(g)
n−r,[α′]

where the partition α′ is singleton free (s.f.). For example,

m1 = κ1

m2 = κ2 + κ21

m3 = κ3 + 3κ2κ1 + κ31

m4 = κ4 + (2 + ε)κ22 + 4κ3κ1 + 6κ2κ
2
1 + κ41

m5 = κ5 + 5κ4 κ1 + 5(1 + ε)κ3κ2 + 10κ3 κ1
2 + 5(2 + ε)κ2

2κ1 + 10κ2 κ1
3 + κ1

5 ,

etc.
Then

Z(g)(x) =
∑
n≥0

xn
∑
[α]

α∈P(n)

C
(g)
n,[α]κ[α]

=
∑
n≥0

xn
n∑
r=0

∑
[α′]

α′∈P(n−r), s.f.

C
(g)
n,[1r,α′]κ[α′]κ

r
1

=
∑
n′≥0

xn
′ ∑

[α′]
α′∈P(n′), s.f.

C
(g)
n′,[α′]κ[α′]

∑
r≥0

(
n′ + r

r

)
κr1x

r

=
∑
n′≥0

∑
[α′]

α′∈P(n′), s.f.

C
(g)
n′,[α′]κ[α′]

xn
′

(1− κ1x)n′+1

=
1

1− κ1x
Ẑ(g)

( x

1− κ1x
)
, (5)

and conversely

Ẑ(g)(u) =
1

1 + κ1u
Z(g)

( u

1 + κ1u

)
. (6)

2. Partitions and their genus

In this section, we recall some standard notions on partitions, show how to associate a graphical representation
to a partition and introduce its genus in a natural way.

2.1 Parts of a partition

As explained in sect. 1, we are interested in partitions of the set [[n]]. Note that when listing the parts of a
partition α = ({i1}, · · · {iα1

}, {j1, j2}. · · · ),
(i) the ordering of elements in each part is immaterial, and we thus choose to write them in increasing order;
(ii) the relative position of parts is immaterial.

For example, consider the partition ({1, 3, 4, 6, 7}, {2, 5, 9}, {8}, {10}) of [[10]]. It is of type [12, 3, 5] with two
singletons {8} and {10}. Clearly, the order of elements within each part is irrelevant, e.g. parts {1, 3, 4, 6, 7}
and {3, 4, 1, 7, 6} describe the same subset of [[10]]. One may thus order the elements of each part. Likewise the
relative order of the parts is immaterial:
({1, 3, 4, 6, 7}, {2, 5, 9}, {8}, {10}) and ({2, 5, 9}, {8}, {1, 3, 4, 6, 7}, {10}) describe the same partition.

2.2 Combinatorial and graphical representations of a partition and its genus

A general partition α of P(n) may be described in terms of a pair of permutations σ and τ , both in Sn: σ is
the cyclic permutation (1, 2, · · · , n); τ belongs to the class [α] of Sn, and its cycles are described by the parts
of α, thus subject to the condition (i) above: each cycle is an increasing list of integers.
The genus g of the partition is then defined by [13]

n+ 2− 2g = #cy(τ) + #cy(σ) + #cy(σ ◦ τ−1)

ECA 4:2 (2024) Article #S2R13 3
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or in the present case,

−2g =
∑

α` − 1− n+ #cy(σ ◦ τ−1) . (7)

since here #cy(σ) = 1 and #cy(τ) =
∑
αk. Since #cy(σ ◦ τ−1) ≥ 1, we find an upper bound on g

g ≤ gmax :=

⌊
1

2

(
n−

∑
αk

)⌋
,

see also [23]. We recall below why this definition of the genus is natural.
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Figure 1: The partition ({1, 3, 4, 6, 7}, {2, 5, 9}, {8}, {10}) of [[10]]. (a) and (b): two equivalent representations

of the special 10-vertex; (c) the four other vertices; (d) a contribution to C
(g)
10,[12 3 5]; (e) the double line version

of (d), with three faces and thus genus g = 2; (f) the linear version of (d)

Example 2.1. For the above partition of [[10]], σ = (1, 2, · · · , 10), τ = (1, 3, 4, 6, 7)(2, 5, 9)(8)(10),
σ ◦ τ−1 = (1, 8, 9, 6, 5, 3, 2, 10)(4)(7). Thus 2g = 11− 4− 3 = 4, g = 2, while gmax = 3.

To a given partition, we may also attach a map: it has α` `-valent vertices, in short `-vertices ∗, for
` = 1, 2, · · · , whose edges are numbered clockwise by the elements of the partition, and a special n-valent

∗Remember that α` are the multiplicities introduced in (1)
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vertex, with its n edges numbered anti-clockwise from 1 to n, see Figure 1a,c. Edges are connected pairwise by
matching their indices. Two maps are regarded as topologically equivalent if they encode the same partition.
In fact it is topologically equivalent and more handy to attach n points clockwise on a circle, and to connect
them pairwise by arcs of the circle, see Figure 1b. Now the permutation σ describes the connectivity of the n
points on the circle, while τ describes how these points are connected through the other vertices. It is readily
seen that the permutation σ ◦ τ−1 describes the circuits bounding clockwise the faces of the map. This is even
more clearly seen if one adopts a double line notation for each edge [11], thus transforming the map into a “fat
graph”, see Figure 1e . Thus the number of cycles of σ ◦ τ−1 is the number f of faces of the map. Since each
face is homeomorphic to a disk, gluing a disk to each face transforms the map into a closed Riemann surface,
to which we may apply Euler’s formula

2− 2g = #(vertices)−#(edges) + #(faces) = 1 +
∑
`

α` − n+ f (8)

with f = #cy(σ ◦ τ−1), and we have reproduced (7).

Remark 2.1. This coding of a map, or here of a partition, by a pair of permutations, with a resulting expression
of its genus, is an old idea originating in the work of Jacques, Walsh, and Lehman [13,20,21] and rediscovered
and used with variants by many authors since then [8].

Remark 2.2. The diagrammatic representation that we adopt here differs from that of other authors [6, 23]:
in fact, it is a dual picture, with our vertices corresponding to the faces of these authors. Our preference for the
former is due to its analogy with Feynman diagrams.

2.3 Glossary

It may be useful to list some elements of the terminology used below. It is convenient to represent a partition
of P(n) by a diagram. It may be a circular diagram, with n points equidistributed clockwise, as on Figure 1-d,
and it has a genus as explained above. We distinguish the points on the circle from the vertices which lie inside
the disk.
Occasionally we use a linear diagram, with n points labelled from 1 to n on a line (or an arc), and vertices
above the line.
Note that if we give each point of the circle a weight x and each k-vertex the weight κk, the sum of diagrams
of genus g builds the GF Z(g)(x).
In a (circular) diagram, we call 2-line a pair of edges attached to a 2-vertex. In the following, the middle
2-vertex will be omitted on 2-lines, to avoid overloading the figures. A 2-line is then just a straight line between
two points of the circle.
In a diagram, we call adjacent a pair of edges joining a vertex to adjacent points on the circle. For example, on
Figure 2, the edges ending at 1 and 3 are not adjacent, those ending at 3 and 4 are.
In the following discussion, it will be important to focus on a point on the circle, say point 1, and see what it
is connected to. We shall refer to it as the marked point.
If α is a partition of P(n) of a given type, all its conjugates by powers of the cyclic permutation σ have the
same type. Counting partitions of a given type thus amounts to counting orbits of diagrams under the action of
σ, while recording the length (cardinality) of each orbit. Diagrammatically, the point 1 being marked, we list
orbits under rotations of the inner pattern of vertices and edges by the cyclic group Zn, and record the length
of each orbit. An orbit has a weight equal to its length n/s, where s is the order of the stabilizer of the diagram
– a subgroup of the rotation group. For example, the left-most diagram of Figure 8 has s = 2, the right-most
s = 8, the others have s = 1.

2.4 The coefficients C
(g)
n,[α]

We now return to our problem of determining the coefficients C
(g)
n,[α] in (4). From the previous discussion, if we

denote On([α]) ⊂ Sn the subset of permutations of class [α], whose cycles involve only increasing sequences of
integers, we have

C
(g)
n,[α] = #

{
τ
∣∣τ ∈ On([α]), g =

1

2

(
n+ 1−

∑
α` −#cy(σ ◦ τ)

)}
. (9)

Alternatively, one may use the diagrammatic language to write

C
(g)
n,[α] =

∑
orbits

length of orbit = n
∑
orbits

1

s
, (10)

with a sum over orbits of diagrams of type [α] and genus g.

ECA 4:2 (2024) Article #S2R13 5
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2.5 Remark on matrix integrals

As ’t Hooft’s double line notation [11] suggests, the coefficient

Cn,[α](ε) =
∑
g

C
(g)
n,[α]ε

g

could be defined and computed in matrix integrals

(i) as the coefficient of
∏
` κ

α`
` in the computation of 〈 1N : trMn :〉rc in a matrix theory with action S =

− 1
2NtrM2 +N

∑
` κ` trM `/`; the notation : : and the subscript “rc” will be explained shortly;

(ii) as the value of 〈: 1
N trMn : :

∏
`
(NtrM`/`)α`

α`!
:〉rc in a Gaussian matrix theory.

In both cases, ε = 1
N2 , if N is the size of the (Hermitian) matrices; Cn,[α](N

−2) is given by a sum of Feynman
diagrams (in fact, of “fat graphs”, or of maps) with 1 +

∑
` α` vertices, n edges (“propagators”) joining the

n-vertex trMn to the other `-vertices, and f faces associated with each closed index circuit. The double dots
: : is a standard notation in quantum field theory, where it denotes the normal or Wick product, that forbids
edges from a vertex to itself: here it forces all edges to reach the n-vertex. The crucial point is that we impose a
restricted crossing (“rc”) condition: the edges connecting each `-vertex to the n-vertex cannot cross one another,
thus respecting their original cyclicity and ordering. Only crossings of edges emanating from distinct vertices
are allowed.

It is that constraint, a direct consequence of rule 2.1 (i) above, that makes the computation of the coefficients

C
(g)
n,[α] by matrix integrals or group theoretical techniques, and the writing of recursion formulae between them,

quite non trivial. For partitions into doublets, however, one deals only with 2-vertices for which the constraint

is irrelevant, and C
(g)
n=2p,[2p] is computable by these techniques [2, 10,20].

3

(a) (c)(b)
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Figure 2: (a) Diagram for the partition of [[10]] into ({1, 3, 4, 6, 7}, {2, 5}, {8, 9, 10}), f = 6 hence genus g =
1− (3 + 1− 10 + 6)/2 = 1; (b) after removal of the three adjacent edges coming from the “centipede” {8, 9, 10},
here a 3-vertex, now n′ = 7, f ′ = 4, g′ = 1; (c) after reduction of two sets of adjacent edges to points 3 and 4,
and 6, 7 and 1: now n′′ = 4, f ′′ = 1, g′′ = 1 + (2 + 1− 4 + 1)/2 = 1
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Figure 3: Removing the blue parallel pair of edges and the light blue face does not affect the genus: Variations
∆n = −2, ∆f = −1, ∆

∑
αk = −1, hence ∆g = 0

2.6 Reducing the diagrams

In this subsection, we show that certain modifications of a diagram associated with a partition do not modify
its genus. The present discussion follows closely that of Cori and Hetyei [6].

ECA 4:2 (2024) Article #S2R13 6
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(i) Removing singletons. Removing p singletons changes the number of parts
∑
αk by −p, n by −p and the

number of faces f is unchanged, hence according to (8) the genus remains unchanged.

(ii) Removing centipedes. Definition. A centipede is a planar linear subdiagram made of a p-vertex, all the
edges of which are attached in a consecutive way to the outer circle, Figure 2. In other words, it corresponds
to a part of the partition with consecutive integers (modulo n), {j, j+ 1, · · · , j+ p}. Removing it changes
the number of parts

∑
αk by −1, n by −p and the number of faces f by −(p − 1), see the figure, hence

the genus remains unchanged.

(iii) Removing adjacent edges. If two edges emanating from a vertex go to two consecutive points of the circle,
(adjacent pair), see Figure 2b-c, removing one of them does not change

∑
αk but changes n and f by −1,

hence does not change the genus. One may iterate this operation on the same vertex until one meets a
crossing with an edge emanating from another vertex. (If no crossing occurs, this means that the vertex
and its edges formed a centipede in the sense of (ii) and may be erased without changing the genus.) To
allow an unambiguous reconstruction of all diagrams later in the dressing process, we adopt the following
Convention 1: in removing such adjacent edges, one keeps the edge attached to the marked point 1,
or the first edge encountered clockwise starting from 1, and one removes the others. See Figure 2 for
illustration.

(iv) Removing parallel lines. Definition. Suppose two pairs of edges join respectively points i and τ(i) = j+1
on the circle, and j and τ(j) = i+ 1. We call two such pairs parallel.
Note that this is equivalent to saying that they form a 2-cycle of the permutation σ ◦ τ−1. For example,
on Figure 3, σ ◦ τ−1 has the 2-cycle (2, 7). And conversely, any such 2-cycle is associated with two parallel
pairs of edges.

(a) If one of these two vertices is a 2-vertex, one may remove the corresponding pair of edges and the
2-vertex without changing the genus, since

∑
α` and f have decreased by 1 and n by 2, see Figure

3 for illustration. If both pairs of edges are attached to 2-vertices, we choose by Convention 2 to
keep the pair attached to the point of the circle of the smallest label. In particular, if one of the pairs
is attached to the marked point 1, it is kept and the other removed.

(b) If both pairs of edges are attached to vertices of valency larger that 2, we keep them both. See Figure
13 below for an example.
After carrying these removals of parallel lines, we are left with primitive or semi-primitive diagrams
(or partitions), following Cori–Hetyei’s terminology: in primitive diagrams, no parallel pair is left;
therefore, by the remark above, all cycles of σ ◦ τ−1 have length larger than 2. Semi-primitive
diagrams still have parallel pairs of type (b).

Now Cori and Hetyei have proved some fundamental results:

Proposition 2.1. To an arbitrary diagram corresponds a unique primitive (or semi-primitive) diagram obtained
by a sequence of reductions as above, and independent of the order of these reductions.

Our new observation is that, conversely, any diagram may be recovered by “dressing” a primitive (or semi-
primitive) diagram, as we shall see below.

Moreover [6],

Proposition 2.2. For a given genus, there are only a finite number of primitive diagrams.

This follows from two inequalities: f = #cy(σ ◦ τ−1) ≤ n
3 , since in a primitive diagram all cycles of σ ◦ τ−1

are of length larger or equal to three (see above); and
∑
αi ≤ n/2 after eliminating the singletons. Hence

plugging these inequalities in (7), we get for a primitive diagram

n ≤ 6(2g − 1) . (11)

As for the semi-primitive diagrams, it was shown in [6] that they are all obtained by a finite number of operations
from the primitive ones, hence are themselves in finite number.

For example

Proposition 2.3. The primitive diagrams of genus 1 are the two diagrams of Figure 4, which have two, resp.
three 2-lines. No semi-primitive occurs in genus 1.

The proof of that statement is given in [6], sect. 8, where the two primitive partitions or diagrams are
referred to as β1 and β2.

ECA 4:2 (2024) Article #S2R13 7
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Figure 4: The two “primitive” diagrams of genus 1. The blue figure in the middle is the weight of the diagram
in (9), namely the length of its orbit

3. From genus 0 to genus 1 . . .

3.1 Non-crossing partitions and the genus 0 generating function

Recall first that in genus 0, the formula given by Kreweras [15] on the census of non-crossing partitions may be
conveniently encoded in the following functional relation between the genus 0 GF of moments Z(0)(x) and that
of cumulants W (x) defined above †

Z(0)(x) = 1 +W (xZ(0)(x)) . (12)

Indeed by application of Lagrange inversion formula, one recovers Kreweras’ result

C
(0)
n,[α] =

n!

(n+ 1−
∑
αk)!

∏
k αk!

,

as proved in [1].
There is a simple diagrammatical interpretation of the relation (12) due to Cvitanovic [7], see Figure 5,

which reads: in an arbitrary planar (i.e., non-crossing) diagram, the marked point 1 on the exterior circle is
necessarily connected to a n-vertex, n ≥ 1, between the n edges of which lie arbitrary insertions of other (linear)
diagrams of Z(0). Our aim is to extend this kind of relation to higher genus.

Z
(0)

Z
(0)

Z
(0)

g=0

. . .
x x

xx

x

x

x

1 + =1 + = = κΣ n

. ..
x

x
x

x x

x
x

x
x

x x

x
n=1

W(x Z (x))
(0)(0)

Z (x)

Figure 5: A graphical representation of identity Z(0)(j) = W (j Z(0)(j))

3.2 Dressing the genus 1 primitive diagrams

We have seen that genus 1 diagrams may be reduced to the two primitive ones of Figure 4. We now write a
relation à la Cvitanovic between the generating functions W , Z(0) and Z(1), depicted in Figure 6

Z(1)(x) =
∑
n≥2

κnnx
n(Z(0))n−1Z(1) + sum of dressed diagrams of Figure 4 , (13)

which reads: in a generic diagram of genus 1, the marked point 1 is attached (a) either to an edge of an
n-vertex, between the non-crossing edges of which are inserted one (linear) subdiagram of genus 1 and (n− 1)
subdiagrams of genus 0 ‡, (b) or to an edge of a dressed primitive diagram of genus 1.

Let us concentrate on the case (b) and make explicit what is meant by dressing.
The dressing consists in reinserting the elements removed in steps (iv)–(i) of Section 2.6, in that reverse

order. First, additional 2-lines are introduced, “parallel” to the two, resp. three 2-lines of the primitive diagrams
of Figure 4. Each of these 2-lines carries by definition a 2-vertex. Then to reinsert “adjacent” edges removed
in step (iii), each of these 2-vertices may be transformed into a k-vertex, whose k− 2 additional edges may fall,

† Recall this relation is equivalent to the functional identityX◦Y = id, where Y (x) := x−1Z(0)(x−1) andX(y) := y−1(1+W (y)),
and R(y) = X(y)− 1

y
= 1

y
W (y) is the celebrated Voiculescu R function [18,19].

‡Remember that by convention, Z(0)(x) starts with 1, hence these subdiagrams of genus 0 may be trivial
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Figure 6: Top: A graphical representation of identity (14). Bottom: a schematic representation of the dressing
of the (red) 2-line attached to the marked point 1; or to another (blue) 2-line. In the latter case, according to
Convention 1, additional edges may be “emitted” from the central vertex to go to clockwise adjacent points on
the circle, and their contribution to the generating function is X2(x). For the red line, these additional edges
may connect to either side of the marked point, and they contribute Y2(x) to the GF

by Convention 1, on either of the two arcs of the circle adjacent to the endpoints of the 2-line and “clockwise
downstream”, and without crossing one another: there are k − 1 partitions of k − 2 into two parts, one of
them possibly empty, hence we attach a weight X2(x) :=

∑
k≥1(k − 1)κkx

k to each of these parallel lines.
Since there is an arbitrary number r ≥ 0 of parallel lines, they contribute X2(x)r, and their geometric series
sums up to 1/(1 −X2(x)). The same applies to the original blue 2-lines of the primitive diagram of Figure 6,
which thus gives each a factor X2(x). The red 2-line, which is the one attached to the marked point 1, has a
different weight, as the k − 2 edges emanating from its k-vertex may fall on either side of the marked point or
on the rightmost part of the diagram (see Convention 2 above): this is associated with a partition of the k − 2
edges into three parts (two of them possibly empty), in number k(k − 1)/2, which gives the red 2-line a weight

Y2(x) =
∑
k
k(k−1)

2 κkx
k, while its dressing by parallel lines leads to a factor 1/(1 − X2(x))2, because again,

parallel lines above or below the red 2-line are possible. The last step is to reinsert “centipedes” and (possibly)
singletons, namely in changing everywhere x into x̃ = xZ(0)(x).
In that way, we have reinstated all features that had been erased in the reduction to primitive diagrams, and
constructed the contribution to the GF Z(1)(x) of all diagrams in which the marked point 1 is attached to an
edge that belongs to a dressed primitive diagram. Indeed in the resulting diagrams, the marked point 1 may be
attached to any of the edges, as it should: this is clear whenever that edge is an edge of the primitive diagram;
this is also true if the edge is one of the parallel lines added, or one of the added adjacent edges: that was the
role of the factors in the definition of X2 or Y2 to count these cases. It is thus clear that all possible diagrams
of type (b) contributing to Z(1) have been obtained by the dressing procedure, and that they are generated
once and only once, hence with the right weight. Finally, the cases (a) where 1 is not attached to a dressed
primitive, but to some genus 0 subdiagram, are accounted for by the first term in (13).

3.3 The genus 1 generating function

Define x̃ = xZ(0)(x) .Gathering all the contributions of Section 3.2 we have

Z(1)(x) =
∑
n≥2

κnnx
n(Z(0)(x))n−1Z(1)(x) +

Y2(x̃)X2(x̃)

(1−X2(x̃))3
+

Y2(x̃)X2
2 (x̃)

(1−X2(x̃))4
, (14)

i.e.,

(1− V (x))Z(1)(x) =
Y2(x̃)X2(x̃)

(1−X2(x̃))4

where

X2(x) =
∑
k≥2

(k − 1)κkx
k = xW ′(x)−W (x) , (15)

Y2(x) =
∑
k≥2

k(k − 1)

2
κkx

k =
1

2
x2W ′′(x) (16)
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V (x) =
∑
k

kκkx
kZ(0) k−1 = xW ′(x̃) . (17)

This is summarized in the following theorem.

Theorem 3.1. If x̃ = xZ(0)(x), the generating function of genus 1 partitions is given by

Z(1)(x) =
X2(x̃)Y2(x̃)

(1−X2(x̃))4 (1− V (x))
. (18)

Alternatively, if we introduce

X̃2(x) :=
X2(x̃)

(1−X2(x̃))
, Ỹ2(x) :=

Y2(x̃)

(1−X2(x̃))2
(19)

we have the simple expression

Z(1)(x) =
Ỹ2(x)X̃2(x)(1 + X̃2(x))

(1− V (x))
.

3.4 Examples and applications

3.4.1 n = 2p, [2p] ` n

If all κi vanish but κ2 = 1, i.e., if we consider partitions of n = 2p into p doublets, which is the celebrated case
considered in [10,20], we have W (x) = x2, hence

Z(0)(x;κ2 = 1, κi6=2 = 0) =
1−
√

1− 4x2

2x2

as the solution of (12). Then following Theorem 1, we find

Z(1)(x;κ2 = 1, κi 6=2 = 0) =
x4

(1− 4x2)5/2
, (20)

in accordance with known results.

3.4.2 n = 3p, [3p] ` n

In that case, we take κ3 = 1, W (x) = x3, hence Z(0) satisfies the third degree equation,

(xZ)3 − Z + 1 = 0 (21)

and it is the GF of Fuss–Catalan numbers. We may write it as

Z(0)(x;κ3 = 1, κi 6=3 = 0) =
2√
3x3

sin
(1

3
Arcsin

(3

2

√
3x3
))
.

Then following Theorem 1, one finds, after some algebra,

Z(1)(x;κ3 = 1, κi 6=3 = 0) =
1152x3 sin6

(
1
3Arcsin

(
3
√
3x3

2

))
(
2 cos

(
1
3Arccos

(
1− 27x3

2

))
− 1
) (

9
√
x3 − 4

√
3 sin

(
1
3Arcsin

(
3
√
3x3

2

)))4 (22)

with a Taylor expansion

6x6 + 102x9 + 1212x12 + 12330x15 + 114888x18 + 1011486x21 + 8558712x24 + 70324884x27 + 564931230x30 + · · ·

in agreement with direct calculation, see [4]. Note that the closest singularity of Z(1) is at the vanishing point
of the discriminant of (21), namely x3 = 4/27:

Z(1)(x;κ3 = 1, κi6=3 = 0) ∼ const.

( 4
27 − x3)5/2

,

when x3 → 4/27, with the same exponent 5/2 as in (20).
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3.4.3 Total number of partitions of genus 0 and 1

Let all κ be equal to 1, resp. all κ’s but κ1 = 0. Then the previous expressions yield the GF of the numbers of
partitions of genus 0 or 1, with, resp. without singletons:

Z(0)(x;κi = 1) =
1−
√

1− 4x

2x
(23)

Ẑ(0)(x) := Z(0)(x;κ1 = 0, κi≥2 = 1) =
1−

√
1− 4x

1+x

2x
=

1 + x−
√

1− 2x− 3x2

2x(1 + x)
no singleton

Z(1)(x;κi = 1) =
x4

(1− 4x)5/2
(24)

Ẑ(1)(x) := Z(1)(x;κ1 = 0, κi≥2 = 1) =
x4

(1− 2x− 3x2)5/2
no singleton (25)

on which we may verify the relations (5-6) above.
Proof. If all κi = 1, W (x) = x/(1− x) as a formal series, and Z(0)(x), solution of Z(0)(x) = W (xZ(0)(x))

as a formal series, is given by (23), (the GF of the Catalan numbers). Likewise, if κ1 = 0, the others equal to
1, W (x) = x2/(1− x), etc. For genus 1, we then make use of Theorem 1 to derive (24-25).

3.4.4 Number of partitions with a fixed number of parts, in genus 0 and 1

Let all κ be equal to y, then W (x) = xy/(1−x), and Z(g)(x, y) =
∑
n,k p

(g)(n, k)xnyk is the GF of the numbers

p(g)(n, k) of genus g partitions of n with k parts. Z(0) is the solution of (12)

Z(0)(x, y) =
1 + x− xy −

√
(1 + x− xy)2 − 4x

2x
.

which is the GF of Narayana numbers, and then we compute by (18)

Z(1)(x, y) =
x4y2

((1 + x− xy)2 − 4x)5/2

which is the expression given by Yip [23], and Cori and Hetyei [5].
If we exclude singletons, W (x;κ1 = 0) = x2y/(1− x), and the GF read now

Ẑ(0)(x, y) := Z(0)(x, y;κ1 = 0) =
1 + x−

√
(1− x)2 − 4x2y

2x(1 + xy)

Ẑ(1)(x, y) := Z(1)(x, y;κ1 = 0) =
x4y2

((1− x)2 − 4x2y)5/2
.

4. . . . to genus 2

4.1 Primitive and semi-primitive diagrams of genus 2

The list of primitive and semi-primitive diagrams of genus 2 is known, thanks to the work of Cori and Hetyei [6].
This has been confirmed independently, in the present work, by generating on the computer all partitions of
genus 2 of a given type, and then eliminating all those that involve adjacent or parallel edges. By (11) these
primitive diagrams have at most 18 points (i.e., n ≤ 18), and either up to 9 2-vertices, or one or two 3-vertices,
or one 4-vertex. In Table 1, are listed their number for increasing total number of points n. §

§In Table 1 of [6] there is the unfortunate omission of the 175 primitive diagrams with one 3-vertex (a 3-cycle in their terminology),
while those diagrams are properly taken into account in the ensuing formulae. These missing diagrams are listed in Figure 10.
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2-vertices one 3-vertex two 3-vertices two 3-vertices one 4-vertex
n semi-prim.
6 0 0 1 0 0
7 0 14 0 0 0
8 21 0 20 0 6
9 0 141 0 0 0
10 168 0 65 15 15
11 0 407 0 0 0
12 483 0 52 36 9
13 0 455 0 0 0
14 651 0 0 21 0
15 0 175 0 0 0
16 420 0 0 0 0
17 0 0 0 0 0
18 105 0 0 0 0

Table 1. Number of (semi-)primitive diagrams of genus 2

Based on this list of primitive diagrams, we may now write an equation similar to (14)

Z(2)(x) =
∑
n

nκnx
n(Z(0)(x))n−1Z(2)(x) (26)

+ dressing of (semi−)primitive diagrams of genus 2

as illustrated in Figure 7.

Remark 4.1. It might seem natural to also have in the r.h.s. of (26 ) a term with two insertions of genus 1
subdiagrams. In fact, such diagrams will be included in the set of primitives and their dressings. An example is
given by the first diagram of Figure 8.

x
x

x

diagrams of genus 2

dressed primitive  
g=2=

. . .

=

x x

xx

x

x

x

Z (x)
(2)

Σ
n

κΣ n
n

. ..
x

x

x

x

+
x

x
(2)

Z

x
x

x

Z
(0)

Z
(0)

Figure 7: A graphical representation of relation (26)

4.2 Dressing of primitive diagrams of genus 2

The dressing of primitive diagrams with only 2-lines (Column 2 of Table 1) involves the same functions X̃2 and
Ỹ2 defined above in sect. 3.3: Ỹ2 is assigned to the line attached to point 1, while the other lines carry the
weight X̃2. Hence their contribution to the r.h.s. of (26) reads

z2 = Ỹ2(x)
(

21X̃3
2 (x) + 168X̃4

2 (x) + 483X̃5
2 (x) + 651X̃6

2 (x) + 420X̃7
2 (x) + 105X̃8

2 (x)
)

with the notations of (19).
For the dressing of primitive diagrams with 3- or 4-vertices, we must introduce new functions that generalize

X2 and Y2 defined in (15-16)

X`(x) =
∑
k≥`

(
k − 1

`− 1

)
κkx

k (27)

Y`(x) =
∑
k≥`

(
k

`

)
κkx

k

` > 2 X̃`(x) :=
X`(x̃)

(1−X2(x̃))`
; Ỹ`(x) :=

Y`(x̃)

(1−X2(x̃))`
.

with, as before, x̃ = xZ(0)(x). (Beware that the power of (1−X2(x̃)) in the denominator of X̃` does not apply
to ` = 2, compare with (19).) These functions too may also be expressed in terms of derivatives of W : for
example, Y3(x) = 1

6x
3W ′′′(x), etc.
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Consider first a primitive diagram with one 3-vertex, like those depicted in Figure 9. Remember that all
distinct rotated diagrams must be considered and hence, the marked point 1 may be attached to the 3-vertex
or to any one of the 2-lines.

(i) In the case where the marked point 1 is attached to one of the 2-lines, its 2-vertex may be changed into a
k vertex, k > 2 and as in Section 3.2, this yields a weight Y2(x)/(1−X2(x))2, while the lines emanating
from the 3-vertex or parallel to it contribute X3(x)/(1 −X2(x))3. And again, a final change of x into x̃
completes the dressing.

(ii) In the former case, 1 attached to the 3-vertex, this 3-vertex may be promoted to a k-vertex, k > 3, with
k − 3 lines ending on four different arcs of the circle: there are

(
k
3

)
ways of distributing them, whence a

weight Y3(x). Then adding parallel lines may be done in 3 ways, whence a weight 1/(1 −X2(x))3. The
2-lines, on the other hand, carry a weight X2(x)/(1 − X2(x)), just like in Section 3.2. Finally, again as
in Section 3.2, the variable x has to be substituted for the dressed one x̃ = xZ(0) to take into account all
possible insertions of genus 0 subdiagrams.

(iii) There is, however, a case not yet accounted for by the previous dressing. When the marked point 1 is
attached to a 2-line parallel to a pair of edges of the 3-vertex, that line has been erased in the reduction
process and must be restored. A weight 2Y2(x)/(1−X2(x)) is attached to that new line, with a factor 2
comes from the two ends of the 2-line, and a single factor 1/(1−X2(x)) as compared with what we saw
in Section 3.2, because the counting of parallel lines between the new line and the 3-vertex has already
been taken into account in the term X̃3(x).

Now each of the previous contributions must be weighted by its number of occurrences when the diagram is
rotated. For example, each of the two diagrams of Figure 9 contributes + 4Ỹ2X̃2X̃3 (since marked point 1
may be at any of the four end-points of the 2-lines) + 3Ỹ3X̃

2
2 (3 ways of attaching point 1 to the 3-vertex)

+3X̃3X̃
2
2 (2Y2(x̃)/(1−X2(x̃)) (when 1 lies on a line parallel to two edges of the 3-vertex). More generally, for a

primitive diagram of an orbit of symmetry order s, with one 3-vertex and p 2-lines, n = 3 + 2p, the weight is

1

s

(
2pỸ2X̃

p−1
2 X̃3 + 3Ỹ3X̃

p
2 + 3X̃3X̃

p
2 (2Y2(x̃)/(1−X2(x̃))

)
,

where we write X̃` and Ỹ` in short for X̃`(x) and Ỹ`(x). Thus the orbits of partitions of [[n]] with a primitive
diagram with a single 3-vertex contribute∑

orbits

1

s

(
(n− 3)Ỹ2X̃

n−5
2

2 X̃3 + 3X̃
n−3
2

2

(
Ỹ3 + X̃3

2Y2(x̃)

(1−X2(x̃))

))
.

But as we saw in (10), for a given n,
∑

orbits
1
s = N

n , where N is the number listed in Table 1, column 3, row n.
In total, the diagrams with a single 3-vertex contribute to the r.h.s. of (26) the amount z3 listed below in (31).

The dressing of primitive diagrams with two 3-vertices or one 4-vertex (columns 4 and 6 of Table 1) is done
along similar lines. Thus for an orbit of primitive diagram with two 3-vertices and p 2-lines, with now n = 2p+6,
we get

1

s

(
2pỸ2X̃

2
3 X̃

p−1
2 + 6X̃p

2 X̃3

(
Ỹ3 + X̃3

2Y2(x̃)

(1−X2(x̃))

))
(28)

and the total contribution z33 of such diagrams is given in (32).
For a primitive diagram with one 4-vertex and p 2-lines, (and n = 2p+ 4), likewise, we get

1

s

(
2pỸ2X̃4X̃

p−1
2 + 4X̃p

2

(
Ỹ4 + X̃4

2Y2(x̃)

(1−X2(x̃))

))
and the total contribution z4 is given in (34).

Finally, the dressing of semi-primitive diagrams (see a sample in Figure 13) requires special care to avoid
double counting. Consider such a semi-primitive diagram, thus with two 3-vertices and p 2-lines, n = 2p + 6.
First, when the point 1 is attached to one of the 2-lines or one of the two 3-vertices, we have a contribution
like the first two terms in (28), but multiplied by (1 −X2(x̃)) not to count twice the set of lines between the
two parallel lines. Moreover, when the point 1 is attached to an added line parallel to one of the branches of
the two 3-vertices, there are 5 locations for that line, whence a contribution 5

s X̃
2
3 X̃

p
2 × 2Y2(x̃), with no further

factor 1/(1−X2(x̃)). In total, a semi-primitive diagram contributes

1

s

(
(1−X2(x̃))

(
2pỸ2X̃

2
3 X̃

p−1
2 + 6Ỹ3X̃3X̃

p
2

)
+ 5X̃p

2 X̃
2
3 (2Y2(x̃))

)
and the total from semi-primitive diagrams appears as z33s in (33).

ECA 4:2 (2024) Article #S2R13 13



Jean-Bernard Zuber

Remark 4.2. As noticed by Cori and Hetyei [6], the semi-primitive diagrams may be obtained from the primitive
ones by “splitting” a vertex of valency larger than 3. For example the three diagrams of Figure 13 may be
obtained from those of Figure 14 by splitting their 4-vertex as in Figure 15. One might thus consider only
primitive diagrams and include the splitting operation in the dressing procedure. The benefit is that primitive
diagrams are easy to characterize: they are such that, in genus 2, the permutation τ has no 1-cycle and σ ◦ τ−1
no 2-cycle.

4.3 General case of genus 2

Collecting all the contributions of the previous subsection, we can now make (26) more explicit in the form of

Theorem 4.1. The generating function of genus 2 partitions is given by

Z(2)(x)(1− V (x)) = z2 + z3 + z33 + z33s + z4 (29)

where V (x) has been given in (17) and z2, · · · , z4 are the contributions of dressing the (semi-)primitive diagrams
listed in Table 1.

z2 = Ỹ2(21X̃3
2 + 168X̃4

2 + 483X̃5
2 + 651X̃6

2 + 420X̃7
2 + 105X̃8

2 ) ; (30)

z3 = X̃3Ỹ2(8X̃2 + 94X̃2
2 + 296X̃3

2 + 350X̃4
2 + 140X̃5

2 ) (31)

+X̃2(6X̃2 + 47X̃2
2 + 111X̃3

2 + 105X̃4
2 + 35X̃5

2 )
(
Ỹ3 + X̃3

2Y2(x̃)

(1−X2(x̃))

)
;

z33 = X̃2
3 Ỹ2(5 + 26X̃2 + 26X̃2

2 ) (32)

+X̃3(1 + 15X̃2 + 39X̃2
2 + 26X̃3

2 )
(
Ỹ3 + X̃3

2Y2(x̃)

(1−X2(x̃))

)
;

z33s = Ỹ2X̃
2
3 X̃2(6 + 18X̃2 + 12X̃2

2 )(1−X2(x̃)) (33)

+Ỹ3X̃3X̃
2
2 (9 + 18X̃2 + 9X̃2

2 )(1− (X2(x̃)) + X̃2
3 X̃

2
2 (15 + 30X̃2 + 15X̃2

2 )Y2(x̃) ;

z4 = Ỹ2X̃4(3X̃2 + 9X̃2
2 + 6X̃3

2 ) + (3X̃2
2 + 6X̃3

2 + 3X̃4
2 )
(
Ỹ4 + X̃4

2Y2(x̃)

(1−X2(x̃))

)
, (34)

and we recall that X̃` and Ỹ` stand for X̃`(x) and Ỹ`(x) defined in (27).

The resulting expressions for the numbers C
(2)
n,[α] have been tested up to n = 15 and all [α] against direct

enumeration using formulae (9) or (10), and for some higher values of n for a few particular cases.

Figure 8: The primitive diagrams of order 8, type [24] and genus 2, with their weight in blue

4.4 Particular cases

4.4.1 Genus 2 partitions of n = 2p into p doublets

In the simplest case where only κ2 6= 0 (and set equal to 1 with no loss of generality), the primitive diagrams
are of order n ≤ 18 – a sample of which is shown in Figure 8¶. They involve only 2-lines and their dressing is
given by the expression (30) above. Thus

Z(2)(x;κ2 = 1, κi 6=2 = 0) =

Ỹ2(x)

(1− 2x2Z(0)(x))

(
21X̃3

2 (x) + 168X̃4
2 (x) + 483X̃5

2 (x) + 651X̃6
2 (x) + 420X̃7

2 (x) + 105X̃8
2 (x)

)
¶All genus 2 primitive and semi-primitive diagrams may be found on https://www.lpthe.jussieu.fr/~zuber/Z_UnpubPart.html
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Figure 9: The primitive diagrams of order 7, type [22 3] and genus 2, with the sum of weights equal to 14

Figure 10: The primitive diagrams of order 15, type [26 3] and genus 2, with the sum of weights equal to 175

Figure 11: The primitive diagram of order 6, type [32] and genus 2, of weight 1
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Figure 12: The primitive diagrams of order 8, type [2 32] and genus 2, of total weight 20

Figure 13: The 3 semi-primitive diagrams of order 10, type [22 32], and genus 2, with the sum of weights equal
to 15

Figure 14: The 2 primitive diagrams of order 8, type [22 4], and genus 2, with the sum of weights equal to 6

Figure 15: The splitting procedure, by which here a 4-vertex is split into two 3-vertices
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with the notations of (19). After some substantial algebra (carried out by Mathematica), one finds

Z(2)(x;κ2 = 1, κi 6=2 = 0) =
21x8(1 + x2)

(1− 4x2)11/2
(35)

in agreement with the results of [10].

4.4.2 Genus 2 partitions of n = 3p into p triplets

We now assume as in Section 3.4.2 that only κ3 6= 0 (and equals 1 with no loss of generality). Let s :=
sin
(
1
3 sin−1

(
3
2

√
3x3/2

))
. Then, following (29), Z(2) takes the fairly cumbersome form

Z(2)(x;κ3 = 1;κi 6=3 = 0) =

192s6x6
(
8s3

(
128

(
11264s9 + 8676

√
3s6x3/2 + 3105s3x3

)
+ 9315

√
3x9/2

)
+ 729x6

)
(
2 cos

(
1
3Arccos

(
1− 27x3

2

))
− 1
) (

9
√
x3 − 4

√
3 sin

(
1
3Arcsin

(
3
√
3x3

2

)))10
(compare with the denominator of Z(1) in (22). The first terms of the series expansion read

x6 + 144x9 + 6046x12 + 149674x15 + 2771028x18 + 42679084x21 + · · ·

One finds again a singular behaviour of the form

Z(2)(x;κ3 = 1;κi 6=3 = 0) ∼ const.

( 4
27 − x3)11/2

.

4.4.3 Total number of genus 2 partitions

Taking all κ’s equal to 1 (and possibly κ1 = 0), as in Section 3.4.3, hence W (x) = x/(1−x) or Ŵ (x) = x2/(1−x),
we compute by (7) the GF of the total number of genus 2 partitions (with or without singletons), and we recover
the result of Cori and Hetyei [6]

Z(2)(x;κi = 1) =
x6(1 + 6x− 19x2 + 21x3)

(1− 4x)11/2
,

and also

Z(2)(x;κ1 = 0;κi>1 = 1) =
x6(1 + 10x+ 5x2 + 5x3 + 9x4)

(1− 2x− 3x2)11/2

in accordance with (5).

4.4.4 Genus 2 partitions into r parts

The two-variable GF of the number of genus 2 partitions into a given number of parts is obtained as in Section
3.4.4 by setting all κi = y. Theorem 2 leads to

Z(2)(x, y) =
x6y2 p(x, y)

((1 + x− xy)2 − 4x)11/2
(36)

p(x, y) = 1− x(4− 10y) + x2(6− 10y − 15y2)− x3(4 + 10y − 39y2 + 4y3)

+x4(1 + 10y − 15y2 − 4y3 + 8y4)

as first derived by Cori–Hetyei [6]. Similar formulae are obtained if singletons are excluded

Ẑ(2)(x, y) =
x6y2 p̂(x, y)

((1− x)2 − 4x2y)11/2

p̂(x, y) = 1 + x(−4 + 14y) + x2(6− 22y + 21y2) + x3(−4 + 2y + 7y2) + x4(1 + 6y − 19y2 + 21y3) .

The counting of genus 2 partitions into r parts is then obtained by identifying the coefficient of yr in (36).
For example, for r = 2 (partitions into two parts with or without singleton)

Z(2)(x; r = 2) = Ẑ(2)(x; r = 2) =
x6

(1− x)7
=
∑
n≥6

(
n

6

)
xn =

∑
n≥6

xn
n−2∑
p=2

n

6

(
p− 1

2

)(
n− p− 1

2

)
in agreement with a general result for r = 2 and arbitrary genus [4]. For r = 3 (partitions into three parts
without singleton)

Z(2)(x; r = 3) =
14x7(1 + 2x)

(1− x)9
= 14

∑
n≥7

(
n

7

)
3n− 13

8
xn .
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5. Conclusion and perspectives

In principle the method could be extended to higher genus, but at the price of an increasing number of
(semi)primitive diagrams, whose set remains to be listed, with an Ansatz of the form

Z(g)(x) =

∑
dressing of (semi)primitive diagrams of genus g

1−
∑
n nκnx

n(Z(0)(x))n−1
.

For instance, in genus 3, primitive diagrams may occur up to n = 30 and they start at order n = 12. An Ansatz
for partitions into doublets (i.e., of type [2p]), for g = 3 is thus

Z(3)(x;κ2 = 1, κi 6=2 = 0) =
Ỹ2(x)X̃5

2 (x)

(1− 2x2Z(0)(x))

9∑
j=0

ajX̃
j
2(x)

in which the numerical coefficients aj count the primitives of type [2j+6] and may be determined against the
known result of [10,20]

Z(3)(x;κ2 = 1, κi 6=2 = 0) =
11x12(135 + 558x2 + 158x4)

(1− 4x2)17/2
. (37)

Hence

Z(3)(x;κ2 = 1, κi6=2 = 0) =
11Ỹ2(x)X̃5

2 (x)

(1− 2x2Z(0)(x))

(
135 + 2313X̃2(x) + 15728X̃2

2 (x) + 57770X̃3
2 (x)

+128985X̃4
2 (x) + 183955X̃5

2 (x) + 169078X̃6
2 (x) + 97188X̃7

2 (x) + 31850X̃8
2 (x) + 4550X̃9

2 (x)
)
.

Likewise, in genus 4,

Z(4)(x;κ2 = 1, κi 6=2 = 0) =
143x16(1575 + 13689x2 + 18378x4 + 2339x6)

(1− 4x2)23/2
(38)

=
143Ỹ2X̃

7
2

(1− 2x2Z(0)(x))

(
1575 + 43614X̃2 + 497277X̃2

2 + 3194702X̃3
2 + 13162499X̃4

2

+ 37212840X̃5
2 + 74956749X̃6

2 + 109645557X̃7
2 + 117063972X̃8

2 + 90449979X̃9
2

+ 49312410X̃10
2 + 18008865X̃11

2 + 3956750X̃12
2 + 395675X̃13

2

)
.

We end this paper with a few remarks on some intriguing issues. There is some evidence of a universal
singular behaviour of all generating functions,

Z(g)(x) ∼ (x0 − x)
1
2−3g

as can be seen on the partitions into doublets (20), (35), (37), (38), and for g = 1, 2 on other cases. This would

imply a large n behaviour of coefficients C
(g)
n,[α] (for appropriately rescaled patterns α) of the form

C
(g)
n,[α] ∼ const x

−n−3g+ 1
2

0 n3g−
1
2 as n, [α] grow large .

This type of singularity of the GF and the associated asymptotic behaviour have been observed in the parallel
problem of enumeration of unicellular maps by Chapuy [3], who interpreted the number 6g − 1 as the number
of edges in his dominant “schemes” (the analogues of our primitives). That the same behaviour appears in
the present context of partitions indicates that the restriction of maps due to the restricted crossing constraint
discussed in Section 2.5 is “irrelevant” (in the sense of critical phenomena), i.e., does not affect the singular
behaviour. The “critical exponent” 1

2 − 3g is also familiar to physicists in the context of boundary loop models
and Wilson loops [14]. Such a connection is natural in the case of partitions into doublets, since it is known that
in that case, the counting amounts to computing the expectation value of trMn in a Gaussian matrix integral,
hence for large n, of a large loop. That the same singular or asymptotic behaviour takes place in (all ?) other
cases seems to indicate that an effective Gaussian theory takes place in that limit‖.

A natural question is whether the Topological Recurrence of Chekhov, Eynard, and Orantin [9] is relevant
for the counting of partitions and is related to or independent of the approach of this paper ∗∗.

‖I’m grateful to Ivan Kostov for discussions on that point.
∗∗In a recent paper http://arxiv.org/abs/2306.16237, Hock has been able to recast the results of Theorems 3.1 and 4.1 in a

compact form, using the function X of footnote † and its derivatives, as motivated by Topological Recurrence.
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As mentioned in the introduction, the formulae derived in this paper yield an interpolation between expan-
sions on ordinary and on free cumulants. What is the relevance of this interpolation? How does it compare
with other existing interpolations?

All these questions are left for future investigation.
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