

Enumerative Combinatorics and Applications

New Proofs of Interlacing of Zeros of Eulerian Polynomials. III

Chak-On Chow

28A, Block 2, Banyan Garden, Cheung Sha Wan, Hong Kong Email: cchow@alum.mit.edu

Received: August 8, 2023, Accepted: November 26, 2023, Published: December 15, 2023 The authors: Released under the CC BY-ND license (International 4.0)

ABSTRACT: Many generating functions of combinatorial systems have palindromic coefficients. A notable example is the *n*th Eulerian polynomial $A_n(x)$. It is known that a palindromic polynomial f(x) of degree 2ncan be expressed as $x^n Q(x + \frac{1}{x})$ for some polynomial Q(x) of degree *n*. By exploring the real-rootedness of Q(x), we are able to infer the corresponding property of f(x). By representing $A_n(x)$ in the said form, we give new proof of the real-rootedness and interlacing property of $A_n(x)$. This same approach applied to the *n*th alternating Eulerian polynomial $\hat{A}_n(x)$ allows us to infer the interlacing/alternating property of the real and imaginary parts of its non-real zeros. The analogous type *B* results are also presented.

Keywords: Alternating; Alternating descent; Eulerian polynomial; Interlacing; Real-rootedness 2020 Mathematics Subject Classification: 05A05; 05A15; 26C10

1. Introduction

Let n be a positive integer. Denote by $A_n(x)$ the nth Eulerian polynomial. Two remarkable properties of $A_n(x)$ are the simple $(-\infty, 0)$ -rootedness and $A_n(x)$ interlacing $A_{n+1}(x)$. The latter interlacing property is a strengthening of the real-rootedness, which in turn implies the unimodality and log-concavity of coefficients.

Variants of Eulerian polynomials are available in the literature. Chebikin [1] considered $A_n(x)$, the alternating analogue of $A_n(x)$. Researchers studied properties of $\hat{A}_n(x)$ that parallel those of $A_n(x)$. Ma and Yeh [4] showed that all the zeros of $\tilde{A}_n(x)$ are non-real of moduli 1 with their real and imaginary parts exhibiting certain interlacing/alternating properties.

Although $\widehat{A}_n(x)$'s are not real-rooted, they are closely related to some real-rooted polynomials $R_n^a(x)$ by

$$\widehat{A}_n(x) = (1+x)^{\chi(n \text{ even})} x^{d_n^a} R_n^a(x+\frac{1}{x}), \tag{1}$$

where $2d_n^a := n - 1 - \chi(n \text{ even})$. The key to this connection with $R_n^a(x)$ is the palindromicity of the coefficients of $\hat{A}_n(x)$. The real-rootedness and interlacing/alternating property of $R_n^a(x)$, however, allow us to deduce the interlacing/alternating property of the real, and imaginary, parts of zeros of $\hat{A}_n(x)$. See Theorem 4.2.

Analogous representations of the Eulerian polynomials $A_n(x)$ allow us to approach their real-rootedness and interlacing property from the palindromic perspective. The alternating Eulerian polynomial $\hat{A}_n(x)$, although not being real-rooted, fits the present discussion because it falls within the regime of the equation $x + \frac{1}{x} = \alpha$ having non-real zeros; its Eulerian counterparts fall within the regime of having real zeros.

The same can be said about the type *B* Eulerian polynomial $B_n(x)$ as well as its alternating analogue $\hat{B}_n(x)$. The organization of this paper is as follows. In Sections 2–3, we look at representations of $A_n(x)$ and $B_n(x)$ similar to (1) and study properties of the concerned polynomials. In Section 4–5, we do the same to the alternating Eulerian polynomial $\hat{A}_n(x)$ as well as its type *B* analogue $\hat{B}_n(x)$.

2. The type A Eulerian case

We study in this section the $A_n(x)$ -analogue of (1).

Let $n \in \mathbb{N}$. When n is even, the palindromicity of $A_n(x)$ implies that x + 1 is a factor of $A_n(x)$. Thus, we let $A_n(x) = (1 + x)^{\chi(n \text{ even})} \widetilde{A}_n(x)$ for some polynomial $\widetilde{A}_n(x)$. The first few members of $\widetilde{A}_n(x)$ are:

$$\begin{split} \widetilde{A}_1(x) &= \widetilde{A}_2(x) = 1, \quad \widetilde{A}_3(x) = 1 + 4x + x^2, \quad \widetilde{A}_4(x) = 1 + 10x + x^2, \\ \widetilde{A}_5(x) &= 1 + 26x + 66x^2 + 26x^3 + x^4, \quad \widetilde{A}_6(x) = 1 + 56x + 246x^2 + 56x^3 + x^4. \end{split}$$

Observe that $2d_n^A := \deg \widetilde{A}_n(x) = n - 1 - \chi(n \text{ even}).$

Lemma 2.1. For $n \ge 1$, $\widetilde{A}_n(x)$ satisfies the following recurrence relations:

$$\widetilde{A}_{2n+1}(x) = \left(1 + (2+2n)x + (2n-1)x^2\right)\widetilde{A}_{2n}(x) + x(1-x^2)\widetilde{A}'_{2n}(x),\tag{2}$$

$$(1+x)\widetilde{A}_{2n}(x) = \left((2n-1)x+1\right)\widetilde{A}_{2n-1}(x) + x(1-x)\widetilde{A}'_{2n-1}(x).$$
(3)

Proof. Substituting $A_{2n+1}(x) = \widetilde{A}_{2n+1}(x)$ and $A_{2n}(x) = (1+x)\widetilde{A}_{2n}(x)$ into the recurrence

$$A_{n+1}(x) = (nx+1)A_n(x) + x(1-x)A'_n(x), \quad n = 1, 2, \dots,$$

and simplifying, (2) follows. The proof of (3), being similar, is omitted.

Example 2.1. Consider $A_7(x)$. We have

$$\widetilde{A}_7(x) = x^3 \left((x + \frac{1}{x})^3 + 120(x + \frac{1}{x})^2 + 1118(x + \frac{1}{x}) + 2176 \right)$$

so that $\widetilde{A}_7(x) = x^3 Q_7^A(x + \frac{1}{x})$, where $Q_7^A(x) = x^3 + 120x^2 + 1118x + 2176$.

Supported by the preceding example, we postulate that

$$\widetilde{A}_n(x) = x^{d_n^A} Q_n^A(x + \frac{1}{x}) \tag{4}$$

for some polynomial $Q_n^A(x)$. The first few members of $Q_n^A(x)$ are:

$$\begin{aligned} Q_1^A(x) &= Q_2^A(x) = 1, \quad Q_3^A(x) = x + 4, \quad Q_4^A(x) = x + 10, \quad Q_5^A(x) = x^2 + 26x + 64, \\ Q_6^A(x) &= x^2 + 56x + 244, \quad Q_7^A(x) = x^3 + 120x^2 + 1118x + 2176. \end{aligned}$$

The above list suggests that $Q_n^A(x) \in \mathbb{N}[x]$ is of degree d_n^A .

Proposition 2.1. For $n \ge 1$, the polynomial $Q_n^A(x)$ satisfies the following recurrence relations:

$$Q_{2n+1}^{A}(x) = (2+2n+nx)Q_{2n}^{A}(x) + (4-x^{2})(Q_{2n}^{A})'(x),$$
(5)

$$Q_{2n}^{A}(x) = nQ_{2n-1}^{A}(x) + (2-x)(Q_{2n-1}^{A})'(x),$$
(6)

with initial condition $Q_1^A(x) = 1$.

Proof. Substituting $\widetilde{A}_{2n+1}(x) = x^n Q_{2n+1}^A(x+\frac{1}{x})$ and $\widetilde{A}_{2n}(x) = x^{n-1} Q_{2n}^A(x+\frac{1}{x})$ into (2), canceling x^n from both sides, followed by replacing $x + \frac{1}{x}$ by x, (5) follows. The recurrence (6) follows similarly and whose proof is omitted.

Proposition 2.2. For $n \ge 1$, we have $Q_n^A(x), \widetilde{A}_n(x) \in \mathbb{N}[x]$.

Proof. Write $Q_n^A(x) = \sum_{k=0}^{d_n^A} c_{n,k}^A x^k$. By extracting the coefficients of x^k in (5)–(6), we have the following recurrences:

$$\begin{split} c^A_{2n+1,k} &= (2+2n)c^A_{2n,k} + (n-k+1)c^A_{2n,k-1} + 4(k+1)c^A_{2n,k+1}, \\ c^A_{2n,k} &= (n-k)c^A_{2n-1,k} + 2(k+1)c^A_{2n-1,k+1}, \end{split}$$

whose coefficients are all positive. It then follows by induction that $c_{n,k}^A \in \mathbb{N}$, i.e., $Q_n^A(x) \in \mathbb{N}[x]$. By virtue of (4), $\widetilde{A}_n(x) \in \mathbb{N}[x]$ follows.

Theorem 2.1. For $n \ge 3$, $Q_n^A(x)$ is simply $(-\infty, -2)$ -rooted and $Q_{n+1}^A(x)$ strictly alternates left of $Q_n^A(x)$ or $Q_n^A(x)$ strictly interlaces $Q_{n+1}^A(x)$ depending on whether n is odd or even.

Proof. Induction on *n*. It is clear that $Q_4^A(x)$ alternates left of $Q_3^A(x)$. Since $Q_5^A(x) = 0 \iff x = -13 \pm \sqrt{105}$ and $-13 - \sqrt{105} < -10 < -13 + \sqrt{105} < -2$, it follows that $Q_4^A(x)$ interlaces $Q_5^A(x)$. Thus, cases n = 3, 4 hold. Assume that the result holds for $n \ge 3$.

If n is odd, then $d_n^A = d_{n+1}^A = (n-1)/2$. Let $x_{n,1}^A < x_{n,2}^A < \cdots < x_{n,(n-1)/2}^A < -2$ be the zeros of $Q_n^A(x)$. Define also $x_{n,0}^A := -\infty$ so that $\operatorname{sgn} Q_{n+1}(x_{n,0}^A) = (-1)^{(n-1)/2}$. As

$$\operatorname{sgn} Q_{n+1}^{A}(x_{n,j}^{A}) = \operatorname{sgn} \left((2 - x_{n,j}^{A})(Q_{n}^{A})'(x_{n,j}^{A}) \right) = (-1)^{(n-1)/2-j}, \quad j = 1, 2, \dots, \frac{n-1}{2},$$

there exist $x_{n+1,j}^A \in (x_{n,j-1}^A, x_{n,j}^A)$ such that $Q_{n+1}^A(x_{n+1,j}^A) = 0$. This proves $Q_{n+1}^A(x)$ alternating left of $Q_n^A(x)$. If *n* is even, then $d_n^A = n/2 - 1$ and $d_{n+1}^A = n/2$. Let $x_{n,1}^A < x_{n,2}^A < \dots < x_{n,n/2-1}^A < -2$ be the zeros of

If *n* is even, then $d_n^* = n/2 - 1$ and $d_{n+1}^* = n/2$. Let $x_{n,1}^* < x_{n,2}^* < \cdots < x_{n,n/2-1}^* < -2$ be the zeros of $Q_n^A(x)$. Define also $x_{n,0}^A := -\infty$ and $x_{n,n/2}^A := -2$ so that $\operatorname{sgn} Q_{n+1}^A(x_{n,0}) = (-1)^{n/2}$. As

$$\operatorname{sgn} Q_{n+1}^A(x_{n,j}^A) = \operatorname{sgn} \left((4 - (x_{n,j}^A)^2)(Q_n^A)'(x_{n,j}^A) \right) = (-1)^{n/2-j+2}, \quad j = 1, 2, \dots, \frac{n}{2} - 1,$$

and $\operatorname{sgn} Q_{n+1}^A(x_{n,n/2}^A) = \operatorname{sgn} 2Q_n^A(x_{n,n/2}^A) = 1$. Thus, there exist $x_{n+1,j}^A \in (x_{n,j-1}^A, x_{n,j}^A)$ such that $Q_{n+1}^A(x_{n+1,j}^A) = 0, j = 1, 2, \dots, \frac{n}{2}$. This proves $Q_n^A(x)$ interlacing $Q_{n+1}^A(x)$.

This finishes the induction and the proof of the theorem.

Since $Q_n^A(x) \in \mathbb{N}[x]$, in principal, its coefficients are amenable to a combinatorial interpretation so that it is natural to ask the next question.

Question 2.1. For $n \ge 1$, what do the coefficients of $Q_n^A(x)$ count?

Lemma 2.2. Let $\alpha \in (-\infty, -2)$. Then the equation $x + \frac{1}{x} = \alpha$ has distinct negative real roots.

Proof. We have $x + \frac{1}{x} = \alpha \iff x^2 - \alpha x + 1 = 0$, whose roots are $\frac{\alpha \pm \sqrt{\alpha^2 - 4}}{2}$. Since $0 < \sqrt{\alpha^2 - 4} < |\alpha| = -\alpha$, $\frac{\alpha \pm \sqrt{\alpha^2 - 4}}{2} \in (-\infty, 0)$ follows.

Lemma 2.3. The mapping $\Phi: (-\infty, -2) \to (-\infty, -1)$ defined by $\Phi(x) = \frac{x - \sqrt{x^2 - 4}}{2}$ for all $x \in (-\infty, -2)$ is an order preserving bijection.

Proof. Let $x \in (-\infty, -2)$. Since $\Phi'(x) = \frac{-x + \sqrt{x^2 - 4}}{2\sqrt{x^2 - 4}} > 0$, $\lim_{x \to -2^-} \Phi(x) = -1$ and $\lim_{x \to -\infty} \Phi(x) = -\infty$, $\Phi(x)$ being an order preserving bijection follows.

Since the zeros of $\widetilde{A}_n(x)$ satisfy $x + \frac{1}{x} = \alpha^A$, where $\alpha^A \in (-\infty, -2)$ satisfies $Q_n^A(\alpha^A) = 0$, we conclude from Theorem 2.1 and Lemmas 2.2–2.3 that all zeros of $\widetilde{A}_n(x)$ are simple and negative. More specifically, let $\alpha_{n,1}^A < \alpha_{n,2}^A < \cdots < \alpha_{n,d_n}^A$ be the zeros of $Q_n^A(\alpha)$. Then $x_{n,j}^A := \Phi(\alpha_{n,j}^A), j = 1, 2, \ldots, d_n^A$, are the zeros of $\widetilde{A}_n(x)$ in $(-\infty, -1)$ in ascending order.

That $Q_{n+1}^A(x)$ strictly alternating left of $Q_n^A(x)$ or $Q_n^A(x)$ strictly interlacing $Q_{n+1}^A(x)$ depending on whether n is odd or even then translates to become $\widetilde{A}_{n+1}(x)$ strictly alternates left of $\widetilde{A}_n(x)$ or $\widetilde{A}_n(x)$ strictly interlaces $\widetilde{A}_{n+1}(x)$ in $(-\infty, -1)$ depending on whether n is odd or even.

Since $\Phi(\alpha^A)^{-1} = \frac{2}{\alpha^A - \sqrt{(\alpha^A)^2 - 4}} = \frac{\alpha^A + \sqrt{(\alpha^A)^2 - 4}}{2}$ is the other root of the equation $x + \frac{1}{x} = \alpha^A$, it follows that $(x_{n,1}^A)^{-1}, \ldots, (x_{n,d_n^A}^A)^{-1}$ are the zeros of $\widetilde{A}_n(x)$ in (-1,0) in descending order. Together with the zero x = -1 when n is even, $A_n(x)$ interlacing $A_{n+1}(x)$ follows.

3. The type *B* Eulerian case

Let $n \in \mathbb{N}$. Denote by $B_n(x)$ the *n*th type *B* Eulerian polynomial. When *n* is odd, the palindromicity of $B_n(x)$ implies that 1 + x is a factor of $B_n(x)$. So, we write $B_n(x) = (1 + x)^{\chi(n \text{ odd})} \tilde{B}_n(x)$ for some polynomial $\tilde{B}_n(x)$. The first few members of $\tilde{B}_n(x)$ are:

$$\begin{aligned} \widetilde{B}_1(x) &= 1, \quad \widetilde{B}_2(x) = 1 + 6x + x^2, \quad \widetilde{B}_3(x) = 1 + 22x + x^2, \\ \widetilde{B}_4(x) &= 1 + 76x + 230x^2 + 76x^3 + x^4, \quad \widetilde{B}_5(x) = 1 + 236x + 1446x^2 + 236x^3 + x^4. \end{aligned}$$

It is clear that $2d_n^B := \deg \widetilde{B}_n(x) = n - \chi(n \text{ odd})$. From the recurrence for $B_n(x)$, namely,

$$B_{n+1}(x) = ((2n+1)x+1)B_n(x) + 2x(1-x)B'_n(x), \quad n = 1, 2, \dots,$$

we have

$$\widetilde{B}_{2n}(x) = \left(1 + (2+4n)x + (-3+4n)x^2\right)\widetilde{B}_{2n-1}(x) + 2x(1-x^2)\widetilde{B}'_{2n-1}(x), (1+x)\widetilde{B}_{2n+1}(x) = ((4n+1)x+1)\widetilde{B}_{2n}(x) + 2x(1-x)\widetilde{B}'_{2n}(x).$$

We next postulate that

$$\widetilde{B}_n(x) = x^{d_n^B} Q_n^B(x + \frac{1}{x})$$

for some polynomial $Q_n^B(x)$. The first few members of $Q_n^B(x)$ are as follows:

$$\begin{aligned} Q_1^B(x) &= 1, \quad Q_2^B(x) = x + 6, \quad Q_3^B(x) = x + 22, \quad Q_4^B(x) = x^2 + 76x + 228, \\ Q_5^B(x) &= x^2 + 236x + 1444, \quad Q_6^B(x) = x^3 + 722x^2 + 10540x + 22104, \end{aligned}$$

which suggest that $Q_n^B(x) \in \mathbb{N}[x]$ is of degree d_n^B .

Proposition 3.1. For $n \ge 1$, the polynomial $Q_n^B(x)$ satisfies the following recurrence relations:

$$Q_{2n+1}^B(x) = (2n+1)Q_{2n}^B(x) + 2(2-x)(Q_{2n}^B)'(x),$$

$$Q_{2n}^B(x) = (2+4n+(-1+2n)x)Q_{2n-1}^B(x) + 2(4-x^2)(Q_{2n-1}^B)'(x).$$
(8)

From the recurrences (7)–(8), the coefficients of $Q_n^B(x) = \sum_{k=0}^{d_n^B} c_{n,k}^B x^k$ satisfy

$$\begin{split} c^B_{2n+1,k} &= (2n-2k+1)c^B_{2n,k} + 4(k+1)c^B_{2n,k+1}, \\ c^B_{2n,k} &= (4n+2)c^B_{2n-1,k} + (2n-2k+1)c^B_{2n-1,k-1} + 8(k+1)c^B_{2n-1,k+1} \end{split}$$

It then follows by induction that $Q_n^B(x) \in \mathbb{N}[x]$. Hence, $\widetilde{B}_n(x) \in \mathbb{N}[x]$. Since $Q_n^B(x) \in \mathbb{N}[x]$, it is natural to ask the next question.

Question 3.1. For $n \ge 1$, what do the coefficients of $Q_n^B(x)$ count?

The proof of the next theorem, being similar to that of Theorem 2.1, is omitted.

Theorem 3.1. For $n \ge 2$, $Q_n^B(x)$ is simply $(-\infty, -2)$ -rooted and $Q_{n+1}^B(x)$ strictly alternates left of $Q_n^B(x)$ or $Q_n^B(x)$ strictly interlaces $Q_{n+1}^B(x)$ depending on whether n is even or odd.

Since the zeros of $B_n(x)$ satisfy $x + \frac{1}{x} = \alpha^B$, where $\alpha^B \in (-\infty, -2)$ satisfies $Q_n^B(\alpha^B) = 0$, we conclude from Theorem 3.1 and Lemmas 2.2–2.3 that all zeros of $\widetilde{B}_n(x)$ are simple and negative. Let $\alpha_{n,1}^B < \alpha_{n,2}^B < \cdots < \alpha_{n,d_n}^B$ be the zeros of $Q_n^B(\alpha^B) = 0$. Then $x_{n,j}^B := \Phi(\alpha_{n,j}^B), \ j = 1, 2, \dots, d_n^B$, are the zeros of $\widetilde{B}_n(x)$ in $(-\infty, -1)$ in ascending order.

The interlacing/alternating conditions on $Q_n^B(x)$ then translates to become $\widetilde{B}_{n+1}(x)$ strictly alternates left

of $\widetilde{B}_n(x)$ or $\widetilde{B}_n(x)$ strictly interlaces $\widetilde{B}_{n+1}(x)$ in $(-\infty, -1)$ depending on whether *n* is even or odd. Since $\Phi(\alpha^B)^{-1} = \frac{2}{\alpha^B - \sqrt{(\alpha^B)^2 - 4}} = \frac{\alpha^B + \sqrt{(\alpha^B)^2 - 4}}{2}$ is the other root of the equation $x + \frac{1}{x} = \alpha^B$, where Φ is the order preserving bijection in Lemma 2.3, it follows that $(x_{n,1}^B)^{-1}, \ldots, (x_{n,d_n^B}^B)^{-1}$ are the zeros of $\widetilde{B}_n(x)$ in (-1,0) in descending order. Together with the zero x = -1 when n is odd, $B_n(x)$ interlacing $B_{n+1}(x)$ follows.

The (type A) alternating Eulerian polynomials **4**.

In this section, we study the representation (1) of $\widehat{A}_n(x)$.

Let $n \in \mathbb{N}$, $[n-1] := \{1, 2, \dots, n-1\}$ and \mathfrak{S}_n denotes the symmetric group of degree n. Chebikin [1] defined the alternating descent set of $\sigma \in \mathfrak{S}_n$ by

Altdes(
$$\sigma$$
) := ({2i: $\sigma(2i) < \sigma(2i+1)$ } \cup {2i - 1: $\sigma(2i-1) > \sigma(2i)$ }) \cap [n - 1],

the nth alternating Eulerian polynomial by

$$\widehat{A}_n(x) := \sum_{\sigma \in \mathfrak{S}_n} x^{\operatorname{altdes}(\sigma)}$$

where $\operatorname{altdes}(\sigma) := \#\operatorname{Altdes}(\sigma)$ is the number of alternating descents of σ , and showed the following recurrence holds:

$$2\dot{A}_{n+1}(x) = (1+n+2x+(n-1)x^2)\dot{A}_n(x) + (1-x)(1+x^2)\dot{A}'_n(x), \quad n = 1, 2, \dots$$
(9)

The first few members of $A_n(x)$ are:

$$\widehat{A}_1(x) = 1, \quad \widehat{A}_2(x) = 1 + x, \quad \widehat{A}_3(x) = 2 + 2x + 2x^2, \quad \widehat{A}_4(x) = 5 + 7x + 7x^2 + 5x^3, \\ \widehat{A}_5(x) = 16 + 26x + 36x^2 + 26x^3 + 16x^4, \quad \widehat{A}_6(x) = 61 + 117x + 182x^2 + 182x^3 + 117x^4 + 61x^5.$$

The palindromicity of $\hat{A}_n(x)$ implies that x + 1 is a factor when n is even. So, we let $\hat{A}_n(x) = (1 + x)^{\chi(n \text{ even})} \tilde{A}_n(x)$ for some polynomial $\tilde{A}_n(x)$. It is known that $\hat{A}_n(x)$ has unimodal coefficients [2, Theorem 1.1].

Proposition 4.1. For $n \ge 1$, $\tilde{A}_n(x)$ satisfies the following recurrence relations:

$$2\tilde{A}_{2n+1}(x) = 2((1+n)(1+x+x^2) + (n-1)x^3)\tilde{A}_{2n}(x) + (1-x^4)\tilde{A}'_{2n}(x),$$
(10)

$$2(1+x)\tilde{A}_{2n}(x) = 2(n+x+(n-1)x^2)\tilde{A}_{2n-1}(x) + (1-x)(1+x^2)\tilde{A}'_{2n-1}(x).$$
(11)

Proof. The recurrence (10) readily follows by substituting $\hat{A}_{2n+1}(x) = \tilde{A}_{2n+1}(x)$ and $\hat{A}_{2n}(x) = (1+x)\tilde{A}_{2n}(x)$ into (9). The proof of (11), being similar, is omitted.

The first few members of $A_n(x)$ are:

$$\tilde{A}_1(x) = \tilde{A}_2(x) = 1, \quad \tilde{A}_3(x) = 2 + 2x + 2x^2, \quad \tilde{A}_4(x) = 5 + 2x + 5x^2, \\
\tilde{A}_5(x) = 16 + 26x + 36x^2 + 26x^3 + 16x^4, \quad \tilde{A}_6(x) = 61 + 56x + 126x^2 + 56x^3 + 61x^4.$$

Observe that $2d_n^a := \deg \tilde{A}_n(x) = n - 1 - \chi(n \text{ even})$. We postulate that

$$\tilde{A}_n(x) = x^{d_n^a} R_n^a \left(x + \frac{1}{x}\right)$$

for some polynomial $R_n^a(x)$. The first few members of $R_n^a(x)$ are:

$$\begin{aligned} R_1^a(x) &= R_2^a(x) = 1, \quad R_3^a(x) = 2x + 2, \quad R_4^a(x) = 5x + 2, \\ R_5^a(x) &= 16x^2 + 26x + 4, \quad R_6^a(x) = 61x^2 + 56x + 4. \end{aligned}$$

The above list suggests that $R_n^a(x) \in \mathbb{N}[x]$ is of degree d_n^a .

Proposition 4.2. For $n \ge 1$, the polynomial $R_n^a(x)$ satisfies the following recurrence relations:

$$2R_{2n+1}^{a}(x) = \left((n-1)x^{2} + (2n+2)x + 4\right)R_{2n}^{a}(x) + x(4-x^{2})(R_{2n}^{a})'(x),$$
(12)

$$2R_{2n}^{a}(x) = \left(2 + (n-1)x\right)R_{2n-1}^{a}(x) + x(2-x)(R_{2n-1}^{a})'(x).$$
(13)

Proof. Substituting $\tilde{A}_{2n+1}(x) = x^n R_{2n+1}^a(x+\frac{1}{x})$ and $\tilde{A}_{2n}(x) = x^{n-1} R_{2n}^a(x+\frac{1}{x})$ into (10), canceling x^n from both sides, followed by replacing $x + \frac{1}{x}$ by x, (12) follows. The recurrence (13) follows similarly and whose proof is omitted.

Write $R_n^a(x) = \sum_{k=0}^{d_n^a} c_{n,k}^a x^k$. By equating coefficients of x^k on both sides of (12)–(13), we obtain the following recurrences:

$$2c_{2n+1,k}^{a} = (4k+4)c_{2n,k}^{a} + (2n+2)c_{2n,k-1}^{a} + (n-k+1)c_{2n,k-2}^{a} + 2c_{2n,k}^{a} = (2k+2)c_{2n-1,k}^{a} + (n-k)c_{2n-1,k-1}^{a}.$$

Unlike those cases in Sections 2–3, the integrality of $c_{n,k}^a$'s does not follow immediately due to the presence of the factor 2 on the left sides of these recurrences. The most natural way to establish $R_n^a(x) \in \mathbb{N}[x]$ is the following:

Problem 4.1. Show that $R_n^a(x)$ is the generating function of a certain combinatorial system.

Theorem 4.1. For $n \ge 3$, $R_n^a(x)$ is simply (-2,0)-rooted and $R_n^a(x)$ strictly alternates left of, or strictly interlaces, $R_{n+1}^a(x)$, depending on whether n is odd or even.

Proof. Induction on *n*. Since $R_3^a(x) = 0 \iff x = -1$ and $R_4^a(x) = 0 \iff x = -\frac{2}{5}$, $R_3^a(x)$ alternating left of $R_4^a(x)$ in (-2,0) follows. Since $R_5^a(x) = 0 \iff x = \frac{-13\pm\sqrt{105}}{16}$ and $-2 < \frac{-13-\sqrt{105}}{16} < -\frac{2}{5} < \frac{-13+\sqrt{105}}{16} < 0$ holds, $R_4^a(x)$ interlacing $R_5^a(x)$ in (-2,0) follows. Assume that the result holds for $n \ge 3$.

When n is odd, $d_n^a = d_{n+1}^a = (n-1)/2$. Let $-2 < x_{n,1}^a < x_{n,2}^a < \dots < x_{n,(n-1)/2}^a < 0$ be the zeros of $R_n^a(x)$. Define also $x_{n,(n+1)/2}^a := 0$ so that sgn $R_{n+1}^a(x_{n,(n+1)/2}^a) = 1$. As

$$\operatorname{sgn} 2R_{n+1}^{a}(x_{n,j}^{a}) = \operatorname{sgn}\left(x_{n,j}^{a}(2-x_{n,j}^{a})(R_{n}^{a})'(x_{n,j}^{a})\right) = (-1)^{(n-1)/2-j+1}, \quad j = 1, 2, \dots, \frac{n-1}{2},$$

there exist $x_{n+1,j}^a \in (x_{n,j}^a, x_{n,j+1}^a)$ such that $R_{n+1}^a(x_{n+1,j}^a) = 0$ for $j = 1, 2, \ldots, \frac{n-1}{2}$, i.e., $R_n^a(x)$ alternates left of $R_{n+1}^a(x)$ in (-2,0).

When n is even, $d_n^a = (n-2)/2$ and $d_{n+1}^a = n/2$. Let $-2 < x_{n,1}^a < x_{n,2}^a < \cdots < x_{n,(n-2)/2}^a < 0$ be the zeros of $R_n^a(x)$. Define also $x_{n,0}^a := -2$ and $x_{n,n/2}^a := 0$ so that $\operatorname{sgn} R_{n+1}^a(x_{n,0}^a) = (-1)^{n/2}$ and $\operatorname{sgn} R_{n+1}^a(x_{n,n/2}^a) = 1$. As

$$\operatorname{sgn} 2R_{n+1}^{a}(x_{n,j}) = \operatorname{sgn}\left(x_{n,j}^{a}(4 - (x_{n,j}^{a})^{2})(R_{n}^{a})'(x_{n,j}^{a})\right) = (-1)^{n/2-j+1}, \quad j = 1, 2, \dots, \frac{n-2}{2}$$

there exist $x_{n+1,j}^a \in (x_{n,j-1}^a, x_{n,j}^a)$ such that $R_{n+1}^a(x_{n+1,j}^a) = 0$ for $j = 1, 2, ..., \frac{n}{2}$, i.e., $R_n^a(x)$ interlaces $R_{n+1}^a(x)$ in (-2, 0).

This finishes the induction and the proof of the theorem.

Lemma 4.1. Let $\alpha \in (-2, 0)$. Then all roots of $x + \frac{1}{x} = \alpha$ are non-real and of moduli 1.

Proof. We have $x + \frac{1}{x} = \alpha \iff x^2 - \alpha x + 1 = 0$, whose roots $\frac{\alpha \pm i\sqrt{4-\alpha^2}}{2}$ have moduli $\frac{\sqrt{\alpha^2 + (4-\alpha^2)}}{2} = 1$. \square

Since the zeros of $\tilde{A}_n(x)$ satisfy $x + \frac{1}{x} = \alpha^a$, where $\alpha^a \in (-2,0)$ satisfies $R_n^a(\alpha^a) = 0$, we conclude from Lemma 4.1 that all zeros of $\tilde{A}_n(x)$ are non-real and of moduli 1.

Lemma 4.2. The mappings $\Phi_1, \Phi_2: (-2,0) \to (-1,0)$ defined by $\Phi_1(x) = \frac{x}{2}$ and $\Phi_2(x) = -\frac{\sqrt{4-x^2}}{2}$, for all $x \in (-2,0)$, are bijections with Φ_1 order preserving and Φ_2 order reversing.

Proof. The mapping Φ_1 being an order-preserving bijection is obvious. Since $\Phi'_2(x) = \frac{x}{2\sqrt{4-x^2}} < 0$ for all $x \in (-2,0)$, $\lim_{x \to -2^+} \Phi_2(x) = 0^-$, and $\lim_{x \to 0^-} \Phi_2(x) = -1^+$, Φ_2 being an order reversing bijection follows. \Box

Although $\tilde{A}_n(x)$'s are not real-rooted, $R_n^a(x)$'s are. Let $-2 < \alpha_{n,1}^a < \alpha_{n,2}^a < \cdots < \alpha_{n,d^a}^a < 0$ be the zeros of $R_n^a(x)$. For $j \in [d_n^a]$, the zeros of $\tilde{A}_n(x)$ corresponding to $\alpha_{n,j}^a$ are $\frac{\alpha_{n,j}^a}{2} + \pm i \frac{\sqrt{4 - (\alpha_{n,j}^a)^2}}{2} = \Phi_1(\alpha_{n,j}^a) \pm i \Phi_2(\alpha_{n,j}^a)$. Define $p_n^a(x) = \prod_{j=1}^{d_n^a/2} (x - \Phi_1(\alpha_{n,j}^a))$ and $q_n^a(x) = \prod_{j=1}^{d_n^a/2} (x - \Phi_2(\alpha_{n,j}^a))$. The following is a restatement of [4, Theorem 4].

Theorem 4.2. For $n \ge 3$, $\tilde{A}_n(x)$ has non-real zeros $\Phi_1(\alpha_{n,j}^a) \pm i\Phi_2(\alpha_{n,j}^a)$ of moduli 1, $j = 1, 2, \ldots, d_n^a$, where $-2 < \alpha_{n,1}^a < \alpha_{n,2}^a < \cdots < \alpha_{n,d_n}^a < 0$ are the simple zeros of $R_n^a(x)$. Moreover, $p_n^a(x)$ alternates left of or interlaces $p_{n+1}^a(x)$, and $q_{n+1}^a(x)$ alternates left of $q_n^a(x)$ or $q_n^a(x)$ interlaces $q_{n+1}^a(x)$, depending on whether n is odd or even.

The type B alternating Eulerian polynomials 5.

In this section, we study the type B analogue of (1).

Let $n \in \mathbb{N}$, $[0, n-1] := \{0, 1, \dots, n-1\}$ and B_n denotes the nth hyperoctahedral group. Ma et al. [3] defined the type B alternating descent set of $\sigma \in B_n$ by

$$Altdes_B(\sigma) := (\{2i: \sigma(2i) < \sigma(2i+1)\} \cup \{2i-1: \sigma(2i-1) > \sigma(2i)\}) \cap [0, n-1],$$

where $\sigma(0) := 0$, the *n*th type B alternating Eulerian polynomial by

$$\widehat{B}_n(x) = \sum_{\sigma \in B_n} x^{\operatorname{altdes}_B(\sigma)}$$

where $\operatorname{altdes}_B(\sigma) := \#\operatorname{Altdes}_B(\sigma)$ is the number of type B alternating descents of σ , and showed the following recurrence holds:

$$\widehat{B}_{n+1}(x) = (1+n+x+nx^2)\widehat{B}_n(x) + (1-x)(1+x^2)\widehat{B}'_n(x), \quad n = 1, 2, \dots,$$

with the initial conditions $\widehat{B}_1(x) = 1 + x$. The first few members of $\widehat{B}_n(x)$'s are as follows:

$$\widehat{B}_1(x) = 1 + x, \quad \widehat{B}_2(x) = 3 + 2x + 3x^2, \quad \widehat{B}_3(x) = 11 + 13x + 13x^2 + 11x^3,$$

 $\widehat{B}_4(x) = 57 + 76x + 118x^2 + 76x^3 + 57x^4.$

By virtue of the palindromicity, x+1 is a factor of $B_n(x)$ when n is odd. So, we let $\hat{B}_n(x) = (1+x)^{\chi(n \text{ odd})}\check{B}_n(x)$ for some polynomial $B_n(x)$. The first few members of $B_n(x)$ are:

$$\check{B}_1(x) = 1, \quad \check{B}_2(x) = 3 + 2x + 3x^2, \quad \check{B}_3(x) = 11 + 2x + 11x^2, \\ \check{B}_4(x) = 57 + 76x + 118x^2 + 76x^3 + 57x^4, \quad \check{B}_5(x) = 361 + 236x + 726x^2 + 236x^3 + 361x^4.$$

Proofs in this section are similar to those in Section 5. We simply state the results, and leave their proofs to the interested readers.

Proposition 5.1. For $n \ge 1$, $\dot{B}_n(x)$ satisfies the following recurrence relations:

$$(1+x)\dot{B}_{2n+1}(x) = (1+2n+x+2nx^2)\dot{B}_{2n}(x) + (1-x)(1+x^2)\dot{B}'_{2n}(x),$$

$$\dot{B}_{2n}(x) = (1+2n+2nx+(1+2n)x^2 + (-2+2n)x^3)\dot{B}_{2n-1}(x) + (1-x^4)\dot{B}'_{2n-1}(x).$$

Observe that $2d_n^b := \deg \check{B}_n(x) = n - \chi(n \text{ odd})$. We postulate that

$$\check{B}_n(x) = x^{d_n^b} R_n^b (x + \frac{1}{x})$$

for some polynomial $R_n^b(x)$. The first few members of $R_n^b(x)$ are:

$$\begin{aligned} R_1^b(x) &= 1, \quad R_2^b(x) = 3x + 2, \quad R_3^b(x) = 11x + 2, \quad R_4^b(x) = 57x^2 + 76x + 4, \\ R_5^b(x) &= 361x^2 + 236x + 4, \quad R_6^b(x) = 2763x^3 + 5270x^2 + 1444x + 8. \end{aligned}$$

The above list suggests that $R_n^b(x) \in \mathbb{N}[x]$ is of degree d_n^b .

Proposition 5.2. For $n \ge 1$, the polynomial $R_n^b(x)$ satisfies the following recurrence relations:

$$R_{2n+1}^b(x) = (nx+1)R_{2n}^b(x) + x(2-x)(R_{2n}^b)'(x),$$

$$R_{2n}^b(x) = (2 + (2n+1)x + (n-1)x^2)R_{2n-1}^b(x) + x(4-x^2)(R_{2n-1}^b)'(x).$$

Write $R_n^b(x) = \sum_{k=0}^{d_n} c_{n,k}^b x^k$. From the preceding recurrences, $c_{n,k}^b$'s satisfy

$$\begin{aligned} c^{b}_{2n+1,k} &= (2k+1)c^{b}_{2n,k} + (n-k+1)c^{b}_{2n,k-1}, \\ c^{b}_{2n,k} &= (4k+2)c^{b}_{2n-1,k} + (2n+1)c^{b}_{2n-1,k-1} + (n-k+1)c^{b}_{2n-1,k-2}. \end{aligned}$$

It then follows by induction that $R_n^b(x) \in \mathbb{N}[x]$. Hence, $\check{B}_n(x) \in \mathbb{N}[x]$.

Question 5.1. For $n \ge 1$, what do the coefficients of $R_n^b(x)$ count?

Theorem 5.1. For $n \ge 2$, $R_n^b(x)$ is simply (-2,0)-rooted and $R_n^b(x)$ strictly alternates left of, or strictly interlaces, $R_{n+1}^b(x)$, depending on whether n is even or odd.

Since the zeros of $\check{B}_n(x)$ satisfy $x + \frac{1}{x} = \alpha^b$, where $\alpha^b \in (-2,0)$ satisfies $R_n^b(\alpha^b) = 0$, we conclude from

Lemma 4.1 that all zeros of $\check{B}_n(x)$ such $j = \alpha$, where $\alpha \in (-2, b)$ such $i = n_n(\alpha)$, j = 0, we construct that Lemma 4.1 that all zeros of $\check{B}_n(x)$ are non-real and of moduli 1. Let $-2 < \alpha_{n,1}^b < \alpha_{n,2}^b < \dots < \alpha_{n,d_n^b}^b < 0$ be the zeros of $R_n^b(x)$. For $j \in [d_n^b]$, the zeros of $\check{B}_n(x)$ corresponding to $\alpha_{n,j}^b$ are $\frac{\alpha_{n,j}^b}{2} + \pm i \frac{\sqrt{4 - (\alpha_{n,j}^b)^2}}{2} = \Phi_1(\alpha_{n,j}^b) \pm i \Phi_2(\alpha_{n,j}^b)$, where Φ_1, Φ_2 are those bijections in Lemma 4.2. Define $p_n^b(x) = \prod_{j=1}^{d_n^b} (x - \Phi_1(\alpha_{n,j}^b))$ and $q_n^b(x) = \prod_{j=1}^{d_n^b} (x - \Phi_2(\alpha_{n,j}^b))$. The type B analogue of Theorem 4.2 is

Theorem 5.2. For $n \ge 2$, $\check{B}_n(x)$ has non-real zeros $\Phi_1(\alpha_{n,j}^b) \pm i\Phi_2(\alpha_{n,j}^b)$ of moduli 1, $j = 1, 2, ..., d_n^b$, where $-2 < \alpha_{n,1}^b < \alpha_{n,2}^b < \cdots < \alpha_{n,d_n}^b < 0$ are the simple zeros of $R_n^b(x)$. Moreover, $p_n^b(x)$ alternates left of or interlaces $p_{n+1}^b(x)$, and $q_{n+1}^b(x)$ alternates left of $q_n^b(x)$ or $q_n^b(x)$ interlaces $q_{n+1}^b(x)$, depending on whether n is even or odd.

Ma and Yeh [4] approached the rootedness of $\widehat{A}_n(x)$ by connection with the derivative polynomials $P_n(x)$:

$$2^{n}(1+x^{2})\widehat{A}_{n}(x) = (1-x)^{n+1}P_{n}\left(\frac{1+x}{1-x}\right), \quad n = 1, 2, \dots,$$

where $P_n(x)$'s are generated by $P_{n+1}(x) = (1 + x^2)P'_n(x), n = 0, 1, ...,$ with $P_0(x) = x$.

Denote by $\{Q_n(x)\}$ the other family of derivative polynomials generated by $Q_{n+1}(x) = xQ_n(x) + (1 + x^2)Q'_n(x), n = 1, 2, ...,$ with $Q_1(x) = x$.

Ma and Yeh [4] conjectured that

$$\widehat{B}_n(x) = (1-x)^n Q_n\left(\frac{1+x}{1-x}\right),$$

which was later given a generating function proof by Ma *et al.* [3]. A combinatorial proof was given recently by Pan [5]. It would be interesting to approach the interlacing/alternating properties of the real and imaginary parts of zeros of $\hat{B}_n(x)$ based on this connection with $Q_n(x)$.

References

- D. Chebikin, Variations on descents and inversions in permutations, Electron. J. Combin. 15 (2008), #R132.
- [2] Z. Lin, S.-M. Ma, D. G. L. Wang, and L. Wang, Positivity and divisibility of enumerators of alternating descents, Ramanujan J. 58 (2022), 203–228.
- S.-M. Ma, Q. Fang, T. Mansour, and Y.-N. Yeh, Alternating Eulerian polynomials and left peak polynomials, Discrete Math. 345 (2022), 112714.
- [4] S.-M. Ma and Y.-N. Yeh, Enumeration of permutations by number of alternating descents, Discrete Math. 339 (2016), 1362–1367.
- [5] Q. Pan, A new combinatorial formula for alternating descent polynomials, arXiv:2207.06212.