Enumerative Combinatorics and Applications

New Proofs of Interlacing of Zeros of Eulerian Polynomials. III

Chak-On Chow
28A, Block 2, Banyan Garden, Cheung Sha Wan, Hong Kong
Email: cchow@alum.mit.edu

Received: August 8, 2023, Accepted: November 26, 2023, Published: December 15, 2023
The authors: Released under the CC BY-ND license (International 4.0)

Abstract

Many generating functions of combinatorial systems have palindromic coefficients. A notable example is the nth Eulerian polynomial $A_{n}(x)$. It is known that a palindromic polynomial $f(x)$ of degree $2 n$ can be expressed as $x^{n} Q\left(x+\frac{1}{x}\right)$ for some polynomial $Q(x)$ of degree n. By exploring the real-rootedness of $Q(x)$, we are able to infer the corresponding property of $f(x)$. By representing $A_{n}(x)$ in the said form, we give new proof of the real-rootedness and interlacing property of $A_{n}(x)$. This same approach applied to the nth alternating Eulerian polynomial $\widehat{A}_{n}(x)$ allows us to infer the interlacing/alternating property of the real and imaginary parts of its non-real zeros. The analogous type B results are also presented.

Keywords: Alternating; Alternating descent; Eulerian polynomial; Interlacing; Real-rootedness
2020 Mathematics Subject Classification: 05A05; 05A15; 26C10

1. Introduction

Let n be a positive integer. Denote by $A_{n}(x)$ the nth Eulerian polynomial. Two remarkable properties of $A_{n}(x)$ are the simple $(-\infty, 0)$-rootedness and $A_{n}(x)$ interlacing $A_{n+1}(x)$. The latter interlacing property is a strengthening of the real-rootedness, which in turn implies the unimodality and log-concavity of coefficients.

Variants of Eulerian polynomials are available in the literature. Chebikin [1] considered $\widehat{A}_{n}(x)$, the alternating analogue of $A_{n}(x)$. Researchers studied properties of $\widehat{A}_{n}(x)$ that parallel those of $A_{n}(x)$. Ma and Yeh [4] showed that all the zeros of $\tilde{A}_{n}(x)$ are non-real of moduli 1 with their real and imaginary parts exhibiting certain interlacing/alternating properties.

Although $\widehat{A}_{n}(x)$'s are not real-rooted, they are closely related to some real-rooted polynomials $R_{n}^{a}(x)$ by

$$
\begin{equation*}
\widehat{A}_{n}(x)=(1+x)^{\chi(n \text { even })} x^{d_{n}^{a}} R_{n}^{a}\left(x+\frac{1}{x}\right), \tag{1}
\end{equation*}
$$

where $2 d_{n}^{a}:=n-1-\chi\left(n\right.$ even). The key to this connection with $R_{n}^{a}(x)$ is the palindromicity of the coefficients of $\widehat{A}_{n}(x)$. The real-rootedness and interlacing/alternating property of $R_{n}^{a}(x)$, however, allow us to deduce the interlacing/alternating property of the real, and imaginary, parts of zeros of $\widehat{A}_{n}(x)$. See Theorem 4.2.

Analogous representations of the Eulerian polynomials $A_{n}(x)$ allow us to approach their real-rootedness and interlacing property from the palindromic perspective. The alternating Eulerian polynomial $\widehat{A}_{n}(x)$, although not being real-rooted, fits the present discussion because it falls within the regime of the equation $x+\frac{1}{x}=\alpha$ having non-real zeros; its Eulerian counterparts fall within the regime of having real zeros.

The same can be said about the type B Eulerian polynomial $B_{n}(x)$ as well as its alternating analogue $\widehat{B}_{n}(x)$. The organization of this paper is as follows. In Sections $2-3$, we look at representations of $A_{n}(x)$ and $B_{n}(x)$ similar to (1) and study properties of the concerned polynomials. In Section $4-5$, we do the same to the alternating Eulerian polynomial $\widehat{A}_{n}(x)$ as well as its type B analogue $\widehat{B}_{n}(x)$.

2. The type A Eulerian case

We study in this section the $A_{n}(x)$-analogue of (1).

Let $n \in \mathbb{N}$. When n is even, the palindromicity of $A_{n}(x)$ implies that $x+1$ is a factor of $A_{n}(x)$. Thus, we let $A_{n}(x)=(1+x)^{\chi(n \text { even })} \widetilde{A}_{n}(x)$ for some polynomial $\widetilde{A}_{n}(x)$. The first few members of $\widetilde{A}_{n}(x)$ are:

$$
\begin{aligned}
& \widetilde{A}_{1}(x)=\widetilde{A}_{2}(x)=1, \quad \widetilde{A}_{3}(x)=1+4 x+x^{2}, \quad \widetilde{A}_{4}(x)=1+10 x+x^{2} \\
& \widetilde{A}_{5}(x)=1+26 x+66 x^{2}+26 x^{3}+x^{4}, \quad \widetilde{A}_{6}(x)=1+56 x+246 x^{2}+56 x^{3}+x^{4}
\end{aligned}
$$

Observe that $2 d_{n}^{A}:=\operatorname{deg} \widetilde{A}_{n}(x)=n-1-\chi(n$ even $)$.
Lemma 2.1. For $n \geqslant 1, \widetilde{A}_{n}(x)$ satisfies the following recurrence relations:

$$
\begin{align*}
\widetilde{A}_{2 n+1}(x) & =\left(1+(2+2 n) x+(2 n-1) x^{2}\right) \widetilde{A}_{2 n}(x)+x\left(1-x^{2}\right) \widetilde{A}_{2 n}^{\prime}(x), \tag{2}\\
(1+x) \widetilde{A}_{2 n}(x) & =((2 n-1) x+1) \widetilde{A}_{2 n-1}(x)+x(1-x) \widetilde{A}_{2 n-1}^{\prime}(x) \tag{3}
\end{align*}
$$

Proof. Substituting $A_{2 n+1}(x)=\widetilde{A}_{2 n+1}(x)$ and $A_{2 n}(x)=(1+x) \widetilde{A}_{2 n}(x)$ into the recurrence

$$
A_{n+1}(x)=(n x+1) A_{n}(x)+x(1-x) A_{n}^{\prime}(x), \quad n=1,2, \ldots,
$$

and simplifying, (2) follows. The proof of (3), being similar, is omitted.
Example 2.1. Consider $\widetilde{A}_{7}(x)$. We have

$$
\widetilde{A}_{7}(x)=x^{3}\left(\left(x+\frac{1}{x}\right)^{3}+120\left(x+\frac{1}{x}\right)^{2}+1118\left(x+\frac{1}{x}\right)+2176\right)
$$

so that $\widetilde{A}_{7}(x)=x^{3} Q_{7}^{A}\left(x+\frac{1}{x}\right)$, where $Q_{7}^{A}(x)=x^{3}+120 x^{2}+1118 x+2176$.
Supported by the preceding example, we postulate that

$$
\begin{equation*}
\widetilde{A}_{n}(x)=x^{d_{n}^{A}} Q_{n}^{A}\left(x+\frac{1}{x}\right) \tag{4}
\end{equation*}
$$

for some polynomial $Q_{n}^{A}(x)$. The first few members of $Q_{n}^{A}(x)$ are:

$$
\begin{aligned}
& Q_{1}^{A}(x)=Q_{2}^{A}(x)=1, \quad Q_{3}^{A}(x)=x+4, \quad Q_{4}^{A}(x)=x+10, \quad Q_{5}^{A}(x)=x^{2}+26 x+64, \\
& Q_{6}^{A}(x)=x^{2}+56 x+244, \quad Q_{7}^{A}(x)=x^{3}+120 x^{2}+1118 x+2176 .
\end{aligned}
$$

The above list suggests that $Q_{n}^{A}(x) \in \mathbb{N}[x]$ is of degree d_{n}^{A}.
Proposition 2.1. For $n \geqslant 1$, the polynomial $Q_{n}^{A}(x)$ satisfies the following recurrence relations:

$$
\begin{align*}
Q_{2 n+1}^{A}(x) & =(2+2 n+n x) Q_{2 n}^{A}(x)+\left(4-x^{2}\right)\left(Q_{2 n}^{A}\right)^{\prime}(x) \tag{5}\\
Q_{2 n}^{A}(x) & =n Q_{2 n-1}^{A}(x)+(2-x)\left(Q_{2 n-1}^{A}\right)^{\prime}(x) \tag{6}
\end{align*}
$$

with initial condition $Q_{1}^{A}(x)=1$.
Proof. Substituting $\widetilde{A}_{2 n+1}(x)=x^{n} Q_{2 n+1}^{A}\left(x+\frac{1}{x}\right)$ and $\widetilde{A}_{2 n}(x)=x^{n-1} Q_{2 n}^{A}\left(x+\frac{1}{x}\right)$ into (2), canceling x^{n} from both sides, followed by replacing $x+\frac{1}{x}$ by x,(5) follows. The recurrence (6) follows similarly and whose proof is omitted.

Proposition 2.2. For $n \geqslant 1$, we have $Q_{n}^{A}(x), \widetilde{A}_{n}(x) \in \mathbb{N}[x]$.
Proof. Write $Q_{n}^{A}(x)=\sum_{k=0}^{d_{n}^{A}} c_{n, k}^{A} x^{k}$. By extracting the coefficients of x^{k} in (5)-(6), we have the following recurrences:

$$
\begin{aligned}
c_{2 n+1, k}^{A} & =(2+2 n) c_{2 n, k}^{A}+(n-k+1) c_{2 n, k-1}^{A}+4(k+1) c_{2 n, k+1}^{A} \\
c_{2 n, k}^{A} & =(n-k) c_{2 n-1, k}^{A}+2(k+1) c_{2 n-1, k+1}^{A}
\end{aligned}
$$

whose coefficients are all positive. It then follows by induction that $c_{n, k}^{A} \in \mathbb{N}$, i.e., $Q_{n}^{A}(x) \in \mathbb{N}[x]$. By virtue of (4), $\widetilde{A}_{n}(x) \in \mathbb{N}[x]$ follows.

Theorem 2.1. For $n \geqslant 3, Q_{n}^{A}(x)$ is simply $(-\infty,-2)$-rooted and $Q_{n+1}^{A}(x)$ strictly alternates left of $Q_{n}^{A}(x)$ or $Q_{n}^{A}(x)$ strictly interlaces $Q_{n+1}^{A}(x)$ depending on whether n is odd or even.

Proof. Induction on n. It is clear that $Q_{4}^{A}(x)$ alternates left of $Q_{3}^{A}(x)$. Since $Q_{5}^{A}(x)=0 \Longleftrightarrow x=-13 \pm \sqrt{105}$ and $-13-\sqrt{105}<-10<-13+\sqrt{105}<-2$, it follows that $Q_{4}^{A}(x)$ interlaces $Q_{5}^{A}(x)$. Thus, cases $n=3,4$ hold. Assume that the result holds for $n \geqslant 3$.

If n is odd, then $d_{n}^{A}=d_{n+1}^{A}=(n-1) / 2$. Let $x_{n, 1}^{A}<x_{n, 2}^{A}<\cdots<x_{n,(n-1) / 2}^{A}<-2$ be the zeros of $Q_{n}^{A}(x)$. Define also $x_{n, 0}^{A}:=-\infty$ so that $\operatorname{sgn} Q_{n+1}\left(x_{n, 0}^{A}\right)=(-1)^{(n-1) / 2}$. As

$$
\operatorname{sgn} Q_{n+1}^{A}\left(x_{n, j}^{A}\right)=\operatorname{sgn}\left(\left(2-x_{n, j}^{A}\right)\left(Q_{n}^{A}\right)^{\prime}\left(x_{n, j}^{A}\right)\right)=(-1)^{(n-1) / 2-j}, \quad j=1,2, \ldots, \frac{n-1}{2}
$$

there exist $x_{n+1, j}^{A} \in\left(x_{n, j-1}^{A}, x_{n, j}^{A}\right)$ such that $Q_{n+1}^{A}\left(x_{n+1, j}^{A}\right)=0$. This proves $Q_{n+1}^{A}(x)$ alternating left of $Q_{n}^{A}(x)$.
If n is even, then $d_{n}^{A}=n / 2-1$ and $d_{n+1}^{A}=n / 2$. Let $x_{n, 1}^{A}<x_{n, 2}^{A}<\cdots<x_{n, n / 2-1}^{A}<-2$ be the zeros of $Q_{n}^{A}(x)$. Define also $x_{n, 0}^{A}:=-\infty$ and $x_{n, n / 2}^{A}:=-2$ so that $\operatorname{sgn} Q_{n+1}^{A}\left(x_{n, 0}\right)=(-1)^{n / 2}$. As

$$
\operatorname{sgn} Q_{n+1}^{A}\left(x_{n, j}^{A}\right)=\operatorname{sgn}\left(\left(4-\left(x_{n, j}^{A}\right)^{2}\right)\left(Q_{n}^{A}\right)^{\prime}\left(x_{n, j}^{A}\right)\right)=(-1)^{n / 2-j+2}, \quad j=1,2, \ldots, \frac{n}{2}-1
$$

and $\operatorname{sgn} Q_{n+1}^{A}\left(x_{n, n / 2}^{A}\right)=\operatorname{sgn} 2 Q_{n}^{A}\left(x_{n, n / 2}^{A}\right)=1$. Thus, there exist $x_{n+1, j}^{A} \in\left(x_{n, j-1}^{A}, x_{n, j}^{A}\right)$ such that $Q_{n+1}^{A}\left(x_{n+1, j}^{A}\right)=$ $0, j=1,2, \ldots, \frac{n}{2}$. This proves $Q_{n}^{A}(x)$ interlacing $Q_{n+1}^{A}(x)$.

This finishes the induction and the proof of the theorem.
Since $Q_{n}^{A}(x) \in \mathbb{N}[x]$, in principal, its coefficients are amenable to a combinatorial interpretation so that it is natural to ask the next question.

Question 2.1. For $n \geqslant 1$, what do the coefficients of $Q_{n}^{A}(x)$ count?
Lemma 2.2. Let $\alpha \in(-\infty,-2)$. Then the equation $x+\frac{1}{x}=\alpha$ has distinct negative real roots.
Proof. We have $x+\frac{1}{x}=\alpha \Longleftrightarrow x^{2}-\alpha x+1=0$, whose roots are $\frac{\alpha \pm \sqrt{\alpha^{2}-4}}{2}$. Since $0<\sqrt{\alpha^{2}-4}<|\alpha|=-\alpha$, $\frac{\alpha \pm \sqrt{\alpha^{2}-4}}{2} \in(-\infty, 0)$ follows.

Lemma 2.3. The mapping $\Phi:(-\infty,-2) \rightarrow(-\infty,-1)$ defined by $\Phi(x)=\frac{x-\sqrt{x^{2}-4}}{2}$ for all $x \in(-\infty,-2)$ is an order preserving bijection.

Proof. Let $x \in(-\infty,-2)$. Since $\Phi^{\prime}(x)=\frac{-x+\sqrt{x^{2}-4}}{2 \sqrt{x^{2}-4}}>0, \lim _{x \rightarrow-2^{-}} \Phi(x)=-1$ and $\lim _{x \rightarrow-\infty} \Phi(x)=-\infty, \Phi(x)$ being an order preserving bijection follows.

Since the zeros of $\widetilde{A}_{n}(x)$ satisfy $x+\frac{1}{x}=\alpha^{A}$, where $\alpha^{A} \in(-\infty,-2)$ satisfies $Q_{n}^{A}\left(\alpha^{A}\right)=0$, we conclude from Theorem 2.1 and Lemmas 2.2-2.3 that all zeros of $\widetilde{A}_{n}(x)$ are simple and negative. More specifically, let $\alpha_{n, 1}^{A}<\alpha_{n, 2}^{A}<\cdots<\alpha_{n, d_{n}^{A}}^{A}$ be the zeros of $Q_{n}^{A}(\alpha)$. Then $x_{n, j}^{A}:=\Phi\left(\alpha_{n, j}^{A}\right), j=1,2, \ldots, d_{n}^{A}$, are the zeros of $\widetilde{A}_{n}(x)$ in $(-\infty,-1)$ in ascending order.

That $Q_{n+1}^{A}(x)$ strictly alternating left of $Q_{n}^{A}(x)$ or $Q_{n}^{A}(x)$ strictly interlacing $Q_{n+1}^{A}(x)$ depending on whether n is odd or even then translates to become $\widetilde{A}_{n+1}(x)$ strictly alternates left of $\widetilde{A}_{n}(x)$ or $\widetilde{A}_{n}(x)$ strictly interlaces $\widetilde{A}_{n+1}(x)$ in $(-\infty,-1)$ depending on whether n is odd or even.

Since $\Phi\left(\alpha^{A}\right)^{-1}=\frac{2}{\alpha^{A}-\sqrt{\left(\alpha^{A}\right)^{2}-4}}=\frac{\alpha^{A}+\sqrt{\left(\alpha^{A}\right)^{2}-4}}{2}$ is the other root of the equation $x+\frac{1}{x}=\alpha^{A}$, it follows that $\left(x_{n, 1}^{A}\right)^{-1}, \ldots,\left(x_{n, d_{n}^{A}}^{A}\right)^{-1}$ are the zeros of $\widetilde{A}_{n}(x)$ in $(-1,0)$ in descending order. Together with the zero $x=-1$ when n is even, $A_{n}(x)$ interlacing $A_{n+1}(x)$ follows.

3. The type B Eulerian case

Let $n \in \mathbb{N}$. Denote by $B_{n}(x)$ the nth type B Eulerian polynomial. When n is odd, the palindromicity of $B_{n}(x)$ implies that $1+x$ is a factor of $B_{n}(x)$. So, we write $B_{n}(x)=(1+x)^{\chi(n \text { odd })} \widetilde{B}_{n}(x)$ for some polynomial $\widetilde{B}_{n}(x)$. The first few members of $\widetilde{B}_{n}(x)$ are:

$$
\begin{aligned}
& \widetilde{B}_{1}(x)=1, \quad \widetilde{B}_{2}(x)=1+6 x+x^{2}, \quad \widetilde{B}_{3}(x)=1+22 x+x^{2} \\
& \widetilde{B}_{4}(x)=1+76 x+230 x^{2}+76 x^{3}+x^{4}, \quad \widetilde{B}_{5}(x)=1+236 x+1446 x^{2}+236 x^{3}+x^{4}
\end{aligned}
$$

It is clear that $2 d_{n}^{B}:=\operatorname{deg} \widetilde{B}_{n}(x)=n-\chi(n$ odd $)$. From the recurrence for $B_{n}(x)$, namely,

$$
B_{n+1}(x)=((2 n+1) x+1) B_{n}(x)+2 x(1-x) B_{n}^{\prime}(x), \quad n=1,2, \ldots,
$$

we have

$$
\begin{aligned}
\widetilde{B}_{2 n}(x) & =\left(1+(2+4 n) x+(-3+4 n) x^{2}\right) \tilde{B}_{2 n-1}(x)+2 x\left(1-x^{2}\right) \tilde{B}_{2 n-1}^{\prime}(x) \\
(1+x) \widetilde{B}_{2 n+1}(x) & =((4 n+1) x+1) \widetilde{B}_{2 n}(x)+2 x(1-x) \widetilde{B}_{2 n}^{\prime}(x)
\end{aligned}
$$

We next postulate that

$$
\widetilde{B}_{n}(x)=x^{d_{n}^{B}} Q_{n}^{B}\left(x+\frac{1}{x}\right)
$$

for some polynomial $Q_{n}^{B}(x)$. The first few members of $Q_{n}^{B}(x)$ are as follows:

$$
\begin{aligned}
& Q_{1}^{B}(x)=1, \quad Q_{2}^{B}(x)=x+6, \quad Q_{3}^{B}(x)=x+22, \quad Q_{4}^{B}(x)=x^{2}+76 x+228, \\
& Q_{5}^{B}(x)=x^{2}+236 x+1444, \quad Q_{6}^{B}(x)=x^{3}+722 x^{2}+10540 x+22104,
\end{aligned}
$$

which suggest that $Q_{n}^{B}(x) \in \mathbb{N}[x]$ is of degree d_{n}^{B}.
Proposition 3.1. For $n \geqslant 1$, the polynomial $Q_{n}^{B}(x)$ satisfies the following recurrence relations:

$$
\begin{align*}
Q_{2 n+1}^{B}(x) & =(2 n+1) Q_{2 n}^{B}(x)+2(2-x)\left(Q_{2 n}^{B}\right)^{\prime}(x), \tag{7}\\
Q_{2 n}^{B}(x) & =(2+4 n+(-1+2 n) x) Q_{2 n-1}^{B}(x)+2\left(4-x^{2}\right)\left(Q_{2 n-1}^{B}\right)^{\prime}(x) \tag{8}
\end{align*}
$$

From the recurrences (7)-(8), the coefficients of $Q_{n}^{B}(x)=\sum_{k=0}^{d_{n}^{B}} c_{n, k}^{B} x^{k}$ satisfy

$$
\begin{aligned}
c_{2 n+1, k}^{B} & =(2 n-2 k+1) c_{2 n, k}^{B}+4(k+1) c_{2 n, k+1}^{B} \\
c_{2 n, k}^{B} & =(4 n+2) c_{2 n-1, k}^{B}+(2 n-2 k+1) c_{2 n-1, k-1}^{B}+8(k+1) c_{2 n-1, k+1}^{B}
\end{aligned}
$$

It then follows by induction that $Q_{n}^{B}(x) \in \mathbb{N}[x]$. Hence, $\widetilde{B}_{n}(x) \in \mathbb{N}[x]$.
Since $Q_{n}^{B}(x) \in \mathbb{N}[x]$, it is natural to ask the next question.
Question 3.1. For $n \geqslant 1$, what do the coefficients of $Q_{n}^{B}(x)$ count?
The proof of the next theorem, being similar to that of Theorem 2.1, is omitted.
Theorem 3.1. For $n \geqslant 2, Q_{n}^{B}(x)$ is simply $(-\infty,-2)$-rooted and $Q_{n+1}^{B}(x)$ strictly alternates left of $Q_{n}^{B}(x)$ or $Q_{n}^{B}(x)$ strictly interlaces $Q_{n+1}^{B}(x)$ depending on whether n is even or odd.

Since the zeros of $\widetilde{B}_{n}(x)$ satisfy $x+\frac{1}{x}=\alpha^{B}$, where $\alpha^{B} \in(-\infty,-2)$ satisfies $Q_{n}^{B}\left(\alpha^{B}\right)=0$, we conclude from Theorem 3.1 and Lemmas 2.2-2.3 that all zeros of $\widetilde{B}_{n}(x)$ are simple and negative. Let $\alpha_{n, 1}^{B}<\alpha_{n, 2}^{B}<\cdots<\alpha_{n, d_{n}^{B}}^{B}$ be the zeros of $Q_{n}^{B}\left(\alpha^{B}\right)=0$. Then $x_{n, j}^{B}:=\Phi\left(\alpha_{n, j}^{B}\right), j=1,2, \ldots, d_{n}^{B}$, are the zeros of $\widetilde{B}_{n}(x)$ in $(-\infty,-1)$ in ascending order.

The interlacing/alternating conditions on $Q_{n}^{B}(x)$ then translates to become $\widetilde{B}_{n+1}(x)$ strictly alternates left of $\widetilde{B}_{n}(x)$ or $\widetilde{B}_{n}(x)$ strictly interlaces $\widetilde{B}_{n+1}(x)$ in $(-\infty,-1)$ depending on whether n is even or odd.

Since $\Phi\left(\alpha^{B}\right)^{-1}=\frac{2}{\alpha^{B}-\sqrt{\left(\alpha^{B}\right)^{2}-4}}=\frac{\alpha^{B}+\sqrt{\left(\alpha^{B}\right)^{2}-4}}{2}$ is the other root of the equation $x+\frac{1}{x}=\alpha^{B}$, where Φ is the order preserving bijection in Lemma 2.3, it follows that $\left(x_{n, 1}^{B}\right)^{-1}, \ldots,\left(x_{n, d_{n}^{B}}^{B}\right)^{-1}$ are the zeros of $\widetilde{B}_{n}(x)$ in $(-1,0)$ in descending order. Together with the zero $x=-1$ when n is odd, $B_{n}(x)$ interlacing $B_{n+1}(x)$ follows.

4. The (type A) alternating Eulerian polynomials

In this section, we study the representation (1) of $\widehat{A}_{n}(x)$.
Let $n \in \mathbb{N},[n-1]:=\{1,2, \ldots, n-1\}$ and \mathfrak{S}_{n} denotes the symmetric group of degree n. Chebikin [1] defined the alternating descent set of $\sigma \in \mathfrak{S}_{n}$ by

$$
\operatorname{Altdes}(\sigma):=(\{2 i: \sigma(2 i)<\sigma(2 i+1)\} \cup\{2 i-1: \sigma(2 i-1)>\sigma(2 i)\}) \cap[n-1]
$$

the nth alternating Eulerian polynomial by

$$
\widehat{A}_{n}(x):=\sum_{\sigma \in \mathfrak{S}_{n}} x^{\operatorname{altdes}(\sigma)}
$$

where $\operatorname{altdes}(\sigma):=\# \operatorname{Altdes}(\sigma)$ is the number of alternating descents of σ, and showed the following recurrence holds:

$$
\begin{equation*}
2 \widehat{A}_{n+1}(x)=\left(1+n+2 x+(n-1) x^{2}\right) \widehat{A}_{n}(x)+(1-x)\left(1+x^{2}\right) \widehat{A}_{n}^{\prime}(x), \quad n=1,2, \ldots \tag{9}
\end{equation*}
$$

The first few members of $\widehat{A}_{n}(x)$ are:

$$
\begin{aligned}
& \widehat{A}_{1}(x)=1, \quad \widehat{A}_{2}(x)=1+x, \quad \widehat{A}_{3}(x)=2+2 x+2 x^{2}, \quad \widehat{A}_{4}(x)=5+7 x+7 x^{2}+5 x^{3} \\
& \widehat{A}_{5}(x)=16+26 x+36 x^{2}+26 x^{3}+16 x^{4}, \quad \widehat{A}_{6}(x)=61+117 x+182 x^{2}+182 x^{3}+117 x^{4}+61 x^{5}
\end{aligned}
$$

The palindromicity of $\widehat{A}_{n}(x)$ implies that $x+1$ is a factor when n is even. So, we let $\widehat{A}_{n}(x)=(1+$ $x)^{\chi(n \text { even })} \tilde{A}_{n}(x)$ for some polynomial $\tilde{A}_{n}(x)$. It is known that $\widehat{A}_{n}(x)$ has unimodal coefficients [2, Theorem 1.1].

Proposition 4.1. For $n \geqslant 1, \tilde{A}_{n}(x)$ satisfies the following recurrence relations:

$$
\begin{align*}
2 \tilde{A}_{2 n+1}(x) & =2\left((1+n)\left(1+x+x^{2}\right)+(n-1) x^{3}\right) \tilde{A}_{2 n}(x)+\left(1-x^{4}\right) \tilde{A}_{2 n}^{\prime}(x), \tag{10}\\
2(1+x) \tilde{A}_{2 n}(x) & =2\left(n+x+(n-1) x^{2}\right) \tilde{A}_{2 n-1}(x)+(1-x)\left(1+x^{2}\right) \tilde{A}_{2 n-1}^{\prime}(x) . \tag{11}
\end{align*}
$$

Proof. The recurrence (10) readily follows by substituting $\widehat{A}_{2 n+1}(x)=\tilde{A}_{2 n+1}(x)$ and $\widehat{A}_{2 n}(x)=(1+x) \tilde{A}_{2 n}(x)$ into (9). The proof of (11), being similar, is omitted.

The first few members of $\tilde{A}_{n}(x)$ are:

$$
\begin{aligned}
& \tilde{A}_{1}(x)=\tilde{A}_{2}(x)=1, \quad \tilde{A}_{3}(x)=2+2 x+2 x^{2}, \quad \tilde{A}_{4}(x)=5+2 x+5 x^{2} \\
& \tilde{A}_{5}(x)=16+26 x+36 x^{2}+26 x^{3}+16 x^{4}, \quad \tilde{A}_{6}(x)=61+56 x+126 x^{2}+56 x^{3}+61 x^{4}
\end{aligned}
$$

Observe that $2 d_{n}^{a}:=\operatorname{deg} \tilde{A}_{n}(x)=n-1-\chi(n$ even $)$. We postulate that

$$
\tilde{A}_{n}(x)=x^{d_{n}^{a}} R_{n}^{a}\left(x+\frac{1}{x}\right)
$$

for some polynomial $R_{n}^{a}(x)$. The first few members of $R_{n}^{a}(x)$ are:

$$
\begin{aligned}
& R_{1}^{a}(x)=R_{2}^{a}(x)=1, \quad R_{3}^{a}(x)=2 x+2, \quad R_{4}^{a}(x)=5 x+2, \\
& R_{5}^{a}(x)=16 x^{2}+26 x+4, \quad R_{6}^{a}(x)=61 x^{2}+56 x+4 .
\end{aligned}
$$

The above list suggests that $R_{n}^{a}(x) \in \mathbb{N}[x]$ is of degree d_{n}^{a}.
Proposition 4.2. For $n \geqslant 1$, the polynomial $R_{n}^{a}(x)$ satisfies the following recurrence relations:

$$
\begin{align*}
2 R_{2 n+1}^{a}(x) & =\left((n-1) x^{2}+(2 n+2) x+4\right) R_{2 n}^{a}(x)+x\left(4-x^{2}\right)\left(R_{2 n}^{a}\right)^{\prime}(x), \tag{12}\\
2 R_{2 n}^{a}(x) & =(2+(n-1) x) R_{2 n-1}^{a}(x)+x(2-x)\left(R_{2 n-1}^{a}\right)^{\prime}(x) \tag{13}
\end{align*}
$$

Proof. Substituting $\tilde{A}_{2 n+1}(x)=x^{n} R_{2 n+1}^{a}\left(x+\frac{1}{x}\right)$ and $\tilde{A}_{2 n}(x)=x^{n-1} R_{2 n}^{a}\left(x+\frac{1}{x}\right)$ into (10), canceling x^{n} from both sides, followed by replacing $x+\frac{1}{x}$ by x, (12) follows. The recurrence (13) follows similarly and whose proof is omitted.

Write $R_{n}^{a}(x)=\sum_{k=0}^{d_{n}^{a}} c_{n, k}^{a} x^{k}$. By equating coefficients of x^{k} on both sides of (12)-(13), we obtain the following recurrences:

$$
\begin{aligned}
2 c_{2 n+1, k}^{a} & =(4 k+4) c_{2 n, k}^{a}+(2 n+2) c_{2 n, k-1}^{a}+(n-k+1) c_{2 n, k-2}^{a}, \\
2 c_{2 n, k}^{a} & =(2 k+2) c_{2 n-1, k}^{a}+(n-k) c_{2 n-1, k-1}^{a} .
\end{aligned}
$$

Unlike those cases in Sections 2-3, the integrality of $c_{n, k}^{a}$'s does not follow immediately due to the presence of the factor 2 on the left sides of these recurrences. The most natural way to establish $R_{n}^{a}(x) \in \mathbb{N}[x]$ is the following:

Problem 4.1. Show that $R_{n}^{a}(x)$ is the generating function of a certain combinatorial system.
Theorem 4.1. For $n \geqslant 3, R_{n}^{a}(x)$ is simply $(-2,0)$-rooted and $R_{n}^{a}(x)$ strictly alternates left of, or strictly interlaces, $R_{n+1}^{a}(x)$, depending on whether n is odd or even.

Proof. Induction on n. Since $R_{3}^{a}(x)=0 \Longleftrightarrow x=-1$ and $R_{4}^{a}(x)=0 \Longleftrightarrow x=-\frac{2}{5}, R_{3}^{a}(x)$ alternating left of $R_{4}^{a}(x)$ in $(-2,0)$ follows. Since $R_{5}^{a}(x)=0 \Longleftrightarrow x=\frac{-13 \pm \sqrt{105}}{16}$ and $-2<\frac{-13-\sqrt{105}}{16}<-\frac{2}{5}<\frac{-13+\sqrt{105}}{16}<0$ holds, $R_{4}^{a}(x)$ interlacing $R_{5}^{a}(x)$ in $(-2,0)$ follows. Assume that the result holds for $n \geqslant 3$.

When n is odd, $d_{n}^{a}=d_{n+1}^{a}=(n-1) / 2$. Let $-2<x_{n, 1}^{a}<x_{n, 2}^{a}<\cdots<x_{n,(n-1) / 2}^{a}<0$ be the zeros of $R_{n}^{a}(x)$. Define also $x_{n,(n+1) / 2}^{a}:=0$ so that $\operatorname{sgn} R_{n+1}^{a}\left(x_{n,(n+1) / 2}^{a}\right)=1$. As

$$
\operatorname{sgn} 2 R_{n+1}^{a}\left(x_{n, j}^{a}\right)=\operatorname{sgn}\left(x_{n, j}^{a}\left(2-x_{n, j}^{a}\right)\left(R_{n}^{a}\right)^{\prime}\left(x_{n, j}^{a}\right)\right)=(-1)^{(n-1) / 2-j+1}, \quad j=1,2, \ldots, \frac{n-1}{2}
$$

there exist $x_{n+1, j}^{a} \in\left(x_{n, j}^{a}, x_{n, j+1}^{a}\right)$ such that $R_{n+1}^{a}\left(x_{n+1, j}^{a}\right)=0$ for $j=1,2, \ldots, \frac{n-1}{2}$, i.e., $R_{n}^{a}(x)$ alternates left of $R_{n+1}^{a}(x)$ in $(-2,0)$.

When n is even, $d_{n}^{a}=(n-2) / 2$ and $d_{n+1}^{a}=n / 2$. Let $-2<x_{n, 1}^{a}<x_{n, 2}^{a}<\cdots<x_{n,(n-2) / 2}^{a}<0$ be the zeros of $R_{n}^{a}(x)$. Define also $x_{n, 0}^{a}:=-2$ and $x_{n, n / 2}^{a}:=0$ so that $\operatorname{sgn} R_{n+1}^{a}\left(x_{n, 0}^{a}\right)=(-1)^{n / 2}$ and $\operatorname{sgn} R_{n+1}^{a}\left(x_{n, n / 2}^{a}\right)=1$. As

$$
\operatorname{sgn} 2 R_{n+1}^{a}\left(x_{n, j}\right)=\operatorname{sgn}\left(x_{n, j}^{a}\left(4-\left(x_{n, j}^{a}\right)^{2}\right)\left(R_{n}^{a}\right)^{\prime}\left(x_{n, j}^{a}\right)\right)=(-1)^{n / 2-j+1}, \quad j=1,2, \ldots, \frac{n-2}{2}
$$

there exist $x_{n+1, j}^{a} \in\left(x_{n, j-1}^{a}, x_{n, j}^{a}\right)$ such that $R_{n+1}^{a}\left(x_{n+1, j}^{a}\right)=0$ for $j=1,2, \ldots, \frac{n}{2}$, i.e, $R_{n}^{a}(x)$ interlaces $R_{n+1}^{a}(x)$ in $(-2,0)$.

This finishes the induction and the proof of the theorem.
Lemma 4.1. Let $\alpha \in(-2,0)$. Then all roots of $x+\frac{1}{x}=\alpha$ are non-real and of moduli 1 .
Proof. We have $x+\frac{1}{x}=\alpha \Longleftrightarrow x^{2}-\alpha x+1=0$, whose roots $\frac{\alpha \pm i \sqrt{4-\alpha^{2}}}{2}$ have moduli $\frac{\sqrt{\alpha^{2}+\left(4-\alpha^{2}\right)}}{2}=1$.
Since the zeros of $\tilde{A}_{n}(x)$ satisfy $x+\frac{1}{x}=\alpha^{a}$, where $\alpha^{a} \in(-2,0)$ satisfies $R_{n}^{a}\left(\alpha^{a}\right)=0$, we conclude from Lemma 4.1 that all zeros of $\tilde{A}_{n}(x)$ are non-real and of moduli 1.

Lemma 4.2. The mappings $\Phi_{1}, \Phi_{2}:(-2,0) \rightarrow(-1,0)$ defined by $\Phi_{1}(x)=\frac{x}{2}$ and $\Phi_{2}(x)=-\frac{\sqrt{4-x^{2}}}{2}$, for all $x \in(-2,0)$, are bijections with Φ_{1} order preserving and Φ_{2} order reversing.

Proof. The mapping Φ_{1} being an order-preserving bijection is obvious. Since $\Phi_{2}^{\prime}(x)=\frac{x}{2 \sqrt{4-x^{2}}}<0$ for all $x \in(-2,0), \lim _{x \rightarrow-2^{+}} \Phi_{2}(x)=0^{-}$, and $\lim _{x \rightarrow 0^{-}} \Phi_{2}(x)=-1^{+}, \Phi_{2}$ being an order reversing bijection follows.

Although $\tilde{A}_{n}(x)$'s are not real-rooted, $R_{n}^{a}(x)$'s are. Let $-2<\alpha_{n, 1}^{a}<\alpha_{n, 2}^{a}<\cdots<\alpha_{n, d_{n}^{a}}^{a}<0$ be the zeros of $R_{n}^{a}(x)$. For $j \in\left[d_{n}^{a}\right]$, the zeros of $\tilde{A}_{n}(x)$ corresponding to $\alpha_{n, j}^{a}$ are $\frac{\alpha_{n, j}^{a}}{2}+ \pm i \frac{\sqrt{4-\left(\alpha_{n, j}^{a}\right)^{2}}}{2}=\Phi_{1}\left(\alpha_{n, j}^{a}\right) \pm i \Phi_{2}\left(\alpha_{n, j}^{a}\right)$. Define $p_{n}^{a}(x)=\prod_{j=1}^{d_{n}^{a} / 2}\left(x-\Phi_{1}\left(\alpha_{n, j}^{a}\right)\right)$ and $q_{n}^{a}(x)=\prod_{j=1}^{d_{n}^{a} / 2}\left(x-\Phi_{2}\left(\alpha_{n, j}^{a}\right)\right)$. The following is a restatement of [4, Theorem 4].
Theorem 4.2. For $n \geqslant 3, \tilde{A}_{n}(x)$ has non-real zeros $\Phi_{1}\left(\alpha_{n, j}^{a}\right) \pm i \Phi_{2}\left(\alpha_{n, j}^{a}\right)$ of moduli $1, j=1,2, \ldots, d_{n}^{a}$, where $-2<\alpha_{n, 1}^{a}<\alpha_{n, 2}^{a}<\cdots<\alpha_{n, d_{n}^{a}}^{a}<0$ are the simple zeros of $R_{n}^{a}(x)$. Moreover, $p_{n}^{a}(x)$ alternates left of or interlaces $p_{n+1}^{a}(x)$, and $q_{n+1}^{a}(x)$ alternates left of $q_{n}^{a}(x)$ or $q_{n}^{a}(x)$ interlaces $q_{n+1}^{a}(x)$, depending on whether n is odd or even.

5. The type B alternating Eulerian polynomials

In this section, we study the type B analogue of (1).
Let $n \in \mathbb{N},[0, n-1]:=\{0,1, \ldots, n-1\}$ and B_{n} denotes the nth hyperoctahedral group. Ma et al. [3] defined the type B alternating descent set of $\sigma \in B_{n}$ by

$$
\operatorname{Altdes}_{B}(\sigma):=(\{2 i: \sigma(2 i)<\sigma(2 i+1)\} \cup\{2 i-1: \sigma(2 i-1)>\sigma(2 i)\}) \cap[0, n-1]
$$

where $\sigma(0):=0$, the nth type B alternating Eulerian polynomial by

$$
\widehat{B}_{n}(x)=\sum_{\sigma \in B_{n}} x^{\operatorname{altdes}_{B}(\sigma)}
$$

where $\operatorname{altdes}_{B}(\sigma):=\# \operatorname{Altdes}_{B}(\sigma)$ is the number of type B alternating descents of σ, and showed the following recurrence holds:

$$
\widehat{B}_{n+1}(x)=\left(1+n+x+n x^{2}\right) \widehat{B}_{n}(x)+(1-x)\left(1+x^{2}\right) \widehat{B}_{n}^{\prime}(x), \quad n=1,2, \ldots
$$

with the initial conditions $\widehat{B}_{1}(x)=1+x$. The first few members of $\widehat{B}_{n}(x)$'s are as follows:

$$
\begin{aligned}
& \widehat{B}_{1}(x)=1+x, \quad \widehat{B}_{2}(x)=3+2 x+3 x^{2}, \quad \widehat{B}_{3}(x)=11+13 x+13 x^{2}+11 x^{3} \\
& \widehat{B}_{4}(x)=57+76 x+118 x^{2}+76 x^{3}+57 x^{4}
\end{aligned}
$$

By virtue of the palindromicity, $x+1$ is a factor of $B_{n}(x)$ when n is odd. So, we let $\widehat{B}_{n}(x)=(1+x)^{\chi(n \text { odd })} \check{B}_{n}(x)$ for some polynomial $\check{B}_{n}(x)$. The first few members of $\check{B}_{n}(x)$ are:

$$
\begin{aligned}
& \check{B}_{1}(x)=1, \quad \check{B}_{2}(x)=3+2 x+3 x^{2}, \quad \check{B}_{3}(x)=11+2 x+11 x^{2} \\
& \check{B}_{4}(x)=57+76 x+118 x^{2}+76 x^{3}+57 x^{4}, \quad \check{B}_{5}(x)=361+236 x+726 x^{2}+236 x^{3}+361 x^{4}
\end{aligned}
$$

Proofs in this section are similar to those in Section 5. We simply state the results, and leave their proofs to the interested readers.

Proposition 5.1. For $n \geqslant 1, \check{B}_{n}(x)$ satisfies the following recurrence relations:

$$
\begin{aligned}
(1+x) \check{B}_{2 n+1}(x) & =\left(1+2 n+x+2 n x^{2}\right) \check{B}_{2 n}(x)+(1-x)\left(1+x^{2}\right) \check{B}_{2 n}^{\prime}(x) \\
\check{B}_{2 n}(x) & =\left(1+2 n+2 n x+(1+2 n) x^{2}+(-2+2 n) x^{3}\right) \check{B}_{2 n-1}(x)+\left(1-x^{4}\right) \check{B}_{2 n-1}^{\prime}(x)
\end{aligned}
$$

Observe that $2 d_{n}^{b}:=\operatorname{deg} \check{B}_{n}(x)=n-\chi(n$ odd $)$. We postulate that

$$
\check{B}_{n}(x)=x^{d_{n}^{b}} R_{n}^{b}\left(x+\frac{1}{x}\right)
$$

for some polynomial $R_{n}^{b}(x)$. The first few members of $R_{n}^{b}(x)$ are:

$$
\begin{aligned}
& R_{1}^{b}(x)=1, \quad R_{2}^{b}(x)=3 x+2, \quad R_{3}^{b}(x)=11 x+2, \quad R_{4}^{b}(x)=57 x^{2}+76 x+4 \\
& R_{5}^{b}(x)=361 x^{2}+236 x+4, \quad R_{6}^{b}(x)=2763 x^{3}+5270 x^{2}+1444 x+8
\end{aligned}
$$

The above list suggests that $R_{n}^{b}(x) \in \mathbb{N}[x]$ is of degree d_{n}^{b}.
Proposition 5.2. For $n \geqslant 1$, the polynomial $R_{n}^{b}(x)$ satisfies the following recurrence relations:

$$
\begin{aligned}
R_{2 n+1}^{b}(x) & =(n x+1) R_{2 n}^{b}(x)+x(2-x)\left(R_{2 n}^{b}\right)^{\prime}(x) \\
R_{2 n}^{b}(x) & =\left(2+(2 n+1) x+(n-1) x^{2}\right) R_{2 n-1}^{b}(x)+x\left(4-x^{2}\right)\left(R_{2 n-1}^{b}\right)^{\prime}(x)
\end{aligned}
$$

Write $R_{n}^{b}(x)=\sum_{k=0}^{d_{n}} c_{n, k}^{b} x^{k}$. From the preceding recurrences, $c_{n, k}^{b}$'s satisfy

$$
\begin{aligned}
c_{2 n+1, k}^{b} & =(2 k+1) c_{2 n, k}^{b}+(n-k+1) c_{2 n, k-1}^{b} \\
c_{2 n, k}^{b} & =(4 k+2) c_{2 n-1, k}^{b}+(2 n+1) c_{2 n-1, k-1}^{b}+(n-k+1) c_{2 n-1, k-2}^{b}
\end{aligned}
$$

It then follows by induction that $R_{n}^{b}(x) \in \mathbb{N}[x]$. Hence, $\check{B}_{n}(x) \in \mathbb{N}[x]$.
Question 5.1. For $n \geqslant 1$, what do the coefficients of $R_{n}^{b}(x)$ count?
Theorem 5.1. For $n \geqslant 2, R_{n}^{b}(x)$ is simply $(-2,0)$-rooted and $R_{n}^{b}(x)$ strictly alternates left of, or strictly interlaces, $R_{n+1}^{b}(x)$, depending on whether n is even or odd.

Since the zeros of $\check{B}_{n}(x)$ satisfy $x+\frac{1}{x}=\alpha^{b}$, where $\alpha^{b} \in(-2,0)$ satisfies $R_{n}^{b}\left(\alpha^{b}\right)=0$, we conclude from Lemma 4.1 that all zeros of $\check{B}_{n}(x)$ are non-real and of moduli 1.

Let $-2<\alpha_{n, 1}^{b}<\alpha_{n, 2}^{b}<\cdots<\alpha_{n, d_{n}^{b}}^{b}<0$ be the zeros of $R_{n}^{b}(x)$. For $j \in\left[d_{n}^{b}\right]$, the zeros of $\check{B}_{n}(x)$ corresponding to $\alpha_{n, j}^{b}$ are $\frac{\alpha_{n, j}^{b}}{2}+ \pm i \frac{\sqrt{4-\left(\alpha_{n, j}^{b}\right)^{2}}}{2}=\Phi_{1}\left(\alpha_{n, j}^{b}\right) \pm i \Phi_{2}\left(\alpha_{n, j}^{b}\right)$, where Φ_{1}, Φ_{2} are those bijections in Lemma 4.2. Define $p_{n}^{b}(x)=\prod_{j=1}^{d_{n}^{b}}\left(x-\Phi_{1}\left(\alpha_{n, j}^{b}\right)\right)$ and $q_{n}^{b}(x)=\prod_{j=1}^{d_{n}^{b}}\left(x-\Phi_{2}\left(\alpha_{n, j}^{b}\right)\right)$. The type B analogue of Theorem 4.2 is

Theorem 5.2. For $n \geqslant 2, \check{B}_{n}(x)$ has non-real zeros $\Phi_{1}\left(\alpha_{n, j}^{b}\right) \pm i \Phi_{2}\left(\alpha_{n, j}^{b}\right)$ of moduli $1, j=1,2, \ldots, d_{n}^{b}$, where $-2<\alpha_{n, 1}^{b}<\alpha_{n, 2}^{b}<\cdots<\alpha_{n, d_{n}^{b}}^{b}<0$ are the simple zeros of $R_{n}^{b}(x)$. Moreover, $p_{n}^{b}(x)$ alternates left of or interlaces $p_{n+1}^{b}(x)$, and $q_{n+1}^{b}(x)$ alternates left of $q_{n}^{b}(x)$ or $q_{n}^{b}(x)$ interlaces $q_{n+1}^{b}(x)$, depending on whether n is even or odd.

Ma and Yeh [4] approached the rootedness of $\widehat{A}_{n}(x)$ by connection with the derivative polynomials $P_{n}(x)$:

$$
2^{n}\left(1+x^{2}\right) \widehat{A}_{n}(x)=(1-x)^{n+1} P_{n}\left(\frac{1+x}{1-x}\right), \quad n=1,2, \ldots,
$$

where $P_{n}(x)$'s are generated by $P_{n+1}(x)=\left(1+x^{2}\right) P_{n}^{\prime}(x), n=0,1, \ldots$, with $P_{0}(x)=x$.
Denote by $\left\{Q_{n}(x)\right\}$ the other family of derivative polynomials generated by $Q_{n+1}(x)=x Q_{n}(x)+(1+$ $\left.x^{2}\right) Q_{n}^{\prime}(x), n=1,2, \ldots$, with $Q_{1}(x)=x$.

Ma and Yeh [4] conjectured that

$$
\widehat{B}_{n}(x)=(1-x)^{n} Q_{n}\left(\frac{1+x}{1-x}\right),
$$

which was later given a generating function proof by Ma et al. [3]. A combinatorial proof was given recently by Pan [5]. It would be interesting to approach the interlacing/alternating properties of the real and imaginary parts of zeros of $\widehat{B}_{n}(x)$ based on this connection with $Q_{n}(x)$.

References

[1] D. Chebikin, Variations on descents and inversions in permutations, Electron. J. Combin. 15 (2008), \#R132.
[2] Z. Lin, S.-M. Ma, D. G. L. Wang, and L. Wang, Positivity and divisibility of enumerators of alternating descents, Ramanujan J. 58 (2022), 203-228.
[3] S.-M. Ma, Q. Fang, T. Mansour, and Y.-N. Yeh, Alternating Eulerian polynomials and left peak polynomials, Discrete Math. 345 (2022), 112714.
[4] S.-M. Ma and Y.-N. Yeh, Enumeration of permutations by number of alternating descents, Discrete Math. 339 (2016), 1362-1367.
[5] Q. Pan, A new combinatorial formula for alternating descent polynomials, arXiv:2207.06212.

