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Abstract: Many generating functions of combinatorial systems have palindromic coefficients. A notable
example is the nth Eulerian polynomial An(x). It is known that a palindromic polynomial f(x) of degree 2n
can be expressed as xnQ(x + 1

x ) for some polynomial Q(x) of degree n. By exploring the real-rootedness of
Q(x), we are able to infer the corresponding property of f(x). By representing An(x) in the said form, we give
new proof of the real-rootedness and interlacing property of An(x). This same approach applied to the nth

alternating Eulerian polynomial Ân(x) allows us to infer the interlacing/alternating property of the real and
imaginary parts of its non-real zeros. The analogous type B results are also presented.
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1. Introduction

Let n be a positive integer. Denote by An(x) the nth Eulerian polynomial. Two remarkable properties of
An(x) are the simple (−∞, 0)-rootedness and An(x) interlacing An+1(x). The latter interlacing property is a
strengthening of the real-rootedness, which in turn implies the unimodality and log-concavity of coefficients.

Variants of Eulerian polynomials are available in the literature. Chebikin [1] considered Ân(x), the alternat-

ing analogue of An(x). Researchers studied properties of Ân(x) that parallel those of An(x). Ma and Yeh [4]
showed that all the zeros of Ãn(x) are non-real of moduli 1 with their real and imaginary parts exhibiting
certain interlacing/alternating properties.

Although Ân(x)’s are not real-rooted, they are closely related to some real-rooted polynomials Ran(x) by

Ân(x) = (1 + x)χ(n even)xd
a
nRan(x+ 1

x ), (1)

where 2dan := n− 1−χ(n even). The key to this connection with Ran(x) is the palindromicity of the coefficients

of Ân(x). The real-rootedness and interlacing/alternating property of Ran(x), however, allow us to deduce the

interlacing/alternating property of the real, and imaginary, parts of zeros of Ân(x). See Theorem 4.2.
Analogous representations of the Eulerian polynomials An(x) allow us to approach their real-rootedness and

interlacing property from the palindromic perspective. The alternating Eulerian polynomial Ân(x), although
not being real-rooted, fits the present discussion because it falls within the regime of the equation x + 1

x = α
having non-real zeros; its Eulerian counterparts fall within the regime of having real zeros.

The same can be said about the type B Eulerian polynomial Bn(x) as well as its alternating analogue

B̂n(x). The organization of this paper is as follows. In Sections 2–3, we look at representations of An(x) and
Bn(x) similar to (1) and study properties of the concerned polynomials. In Section 4–5, we do the same to the

alternating Eulerian polynomial Ân(x) as well as its type B analogue B̂n(x).

2. The type A Eulerian case

We study in this section the An(x)-analogue of (1).
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Let n ∈ N. When n is even, the palindromicity of An(x) implies that x + 1 is a factor of An(x). Thus, we

let An(x) = (1 + x)χ(n even)Ãn(x) for some polynomial Ãn(x). The first few members of Ãn(x) are:

Ã1(x) = Ã2(x) = 1, Ã3(x) = 1 + 4x+ x2, Ã4(x) = 1 + 10x+ x2,

Ã5(x) = 1 + 26x+ 66x2 + 26x3 + x4, Ã6(x) = 1 + 56x+ 246x2 + 56x3 + x4.

Observe that 2dAn := deg Ãn(x) = n− 1− χ(n even).

Lemma 2.1. For n > 1, Ãn(x) satisfies the following recurrence relations:

Ã2n+1(x) =
(
1 + (2 + 2n)x+ (2n− 1)x2

)
Ã2n(x) + x(1− x2)Ã′2n(x), (2)

(1 + x)Ã2n(x) =
(
(2n− 1)x+ 1

)
Ã2n−1(x) + x(1− x)Ã′2n−1(x). (3)

Proof. Substituting A2n+1(x) = Ã2n+1(x) and A2n(x) = (1 + x)Ã2n(x) into the recurrence

An+1(x) = (nx+ 1)An(x) + x(1− x)A′n(x), n = 1, 2, . . . ,

and simplifying, (2) follows. The proof of (3), being similar, is omitted.

Example 2.1. Consider Ã7(x). We have

Ã7(x) = x3
(
(x+ 1

x )3 + 120(x+ 1
x )2 + 1118(x+ 1

x ) + 2176
)

so that Ã7(x) = x3QA7 (x+ 1
x ), where QA7 (x) = x3 + 120x2 + 1118x+ 2176.

Supported by the preceding example, we postulate that

Ãn(x) = xd
A
nQAn (x+

1

x
) (4)

for some polynomial QAn (x). The first few members of QAn (x) are:

QA1 (x) = QA2 (x) = 1, QA3 (x) = x+ 4, QA4 (x) = x+ 10, QA5 (x) = x2 + 26x+ 64,

QA6 (x) = x2 + 56x+ 244, QA7 (x) = x3 + 120x2 + 1118x+ 2176.

The above list suggests that QAn (x) ∈ N[x] is of degree dAn .

Proposition 2.1. For n > 1, the polynomial QAn (x) satisfies the following recurrence relations:

QA2n+1(x) = (2 + 2n+ nx)QA2n(x) + (4− x2)(QA2n)′(x), (5)

QA2n(x) = nQA2n−1(x) + (2− x)(QA2n−1)′(x), (6)

with initial condition QA1 (x) = 1.

Proof. Substituting Ã2n+1(x) = xnQA2n+1(x + 1
x ) and Ã2n(x) = xn−1QA2n(x + 1

x ) into (2), canceling xn from
both sides, followed by replacing x+ 1

x by x, (5) follows. The recurrence (6) follows similarly and whose proof
is omitted.

Proposition 2.2. For n > 1, we have QAn (x), Ãn(x) ∈ N[x].

Proof. Write QAn (x) =
∑dAn
k=0 c

A
n,kx

k. By extracting the coefficients of xk in (5)–(6), we have the following
recurrences:

cA2n+1,k = (2 + 2n)cA2n,k + (n− k + 1)cA2n,k−1 + 4(k + 1)cA2n,k+1,

cA2n,k = (n− k)cA2n−1,k + 2(k + 1)cA2n−1,k+1,

whose coefficients are all positive. It then follows by induction that cAn,k ∈ N, i.e., QAn (x) ∈ N[x]. By virtue of

(4), Ãn(x) ∈ N[x] follows.

Theorem 2.1. For n > 3, QAn (x) is simply (−∞,−2)-rooted and QAn+1(x) strictly alternates left of QAn (x) or
QAn (x) strictly interlaces QAn+1(x) depending on whether n is odd or even.
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Proof. Induction on n. It is clear that QA4 (x) alternates left of QA3 (x). Since QA5 (x) = 0 ⇐⇒ x = −13±
√

105
and −13−

√
105 < −10 < −13 +

√
105 < −2, it follows that QA4 (x) interlaces QA5 (x). Thus, cases n = 3, 4 hold.

Assume that the result holds for n > 3.
If n is odd, then dAn = dAn+1 = (n − 1)/2. Let xAn,1 < xAn,2 < · · · < xAn,(n−1)/2 < −2 be the zeros of QAn (x).

Define also xAn,0 := −∞ so that sgnQn+1(xAn,0) = (−1)(n−1)/2. As

sgnQAn+1(xAn,j) = sgn
(
(2− xAn,j)(QAn )′(xAn,j)

)
= (−1)(n−1)/2−j , j = 1, 2, . . . , n−12 ,

there exist xAn+1,j ∈ (xAn,j−1, x
A
n,j) such that QAn+1(xAn+1,j) = 0. This proves QAn+1(x) alternating left of QAn (x).

If n is even, then dAn = n/2 − 1 and dAn+1 = n/2. Let xAn,1 < xAn,2 < · · · < xAn,n/2−1 < −2 be the zeros of

QAn (x). Define also xAn,0 := −∞ and xAn,n/2 := −2 so that sgnQAn+1(xn,0) = (−1)n/2. As

sgnQAn+1(xAn,j) = sgn
(
(4− (xAn,j)

2)(QAn )′(xAn,j)
)

= (−1)n/2−j+2, j = 1, 2, . . . , n2 − 1,

and sgnQAn+1(xAn,n/2) = sgn 2QAn (xAn,n/2) = 1. Thus, there exist xAn+1,j ∈ (xAn,j−1, x
A
n,j) such thatQAn+1(xAn+1,j) =

0, j = 1, 2, . . . , n2 . This proves QAn (x) interlacing QAn+1(x).
This finishes the induction and the proof of the theorem.

Since QAn (x) ∈ N[x], in principal, its coefficients are amenable to a combinatorial interpretation so that it is
natural to ask the next question.

Question 2.1. For n > 1, what do the coefficients of QAn (x) count?

Lemma 2.2. Let α ∈ (−∞,−2). Then the equation x+ 1
x = α has distinct negative real roots.

Proof. We have x + 1
x = α ⇐⇒ x2 − αx + 1 = 0, whose roots are α±

√
α2−4
2 . Since 0 <

√
α2 − 4 < |α| = −α,

α±
√
α2−4
2 ∈ (−∞, 0) follows.

Lemma 2.3. The mapping Φ: (−∞,−2)→ (−∞,−1) defined by Φ(x) = x−
√
x2−4
2 for all x ∈ (−∞,−2) is an

order preserving bijection.

Proof. Let x ∈ (−∞,−2). Since Φ′(x) = −x+
√
x2−4

2
√
x2−4 > 0, lim

x→−2−
Φ(x) = −1 and lim

x→−∞
Φ(x) = −∞, Φ(x) being

an order preserving bijection follows.

Since the zeros of Ãn(x) satisfy x + 1
x = αA, where αA ∈ (−∞,−2) satisfies QAn (αA) = 0, we conclude

from Theorem 2.1 and Lemmas 2.2–2.3 that all zeros of Ãn(x) are simple and negative. More specifically, let

αAn,1 < αAn,2 < · · · < αAn,dAn
be the zeros of QAn (α). Then xAn,j := Φ(αAn,j), j = 1, 2, . . . , dAn , are the zeros of Ãn(x)

in (−∞,−1) in ascending order.
That QAn+1(x) strictly alternating left of QAn (x) or QAn (x) strictly interlacing QAn+1(x) depending on whether

n is odd or even then translates to become Ãn+1(x) strictly alternates left of Ãn(x) or Ãn(x) strictly interlaces

Ãn+1(x) in (−∞,−1) depending on whether n is odd or even.

Since Φ(αA)−1 = 2

αA−
√

(αA)2−4
=

αA+
√

(αA)2−4
2 is the other root of the equation x+ 1

x = αA, it follows that

(xAn,1)−1, . . . , (xAn,dAn
)−1 are the zeros of Ãn(x) in (−1, 0) in descending order. Together with the zero x = −1

when n is even, An(x) interlacing An+1(x) follows.

3. The type B Eulerian case

Let n ∈ N. Denote by Bn(x) the nth type B Eulerian polynomial. When n is odd, the palindromicity of Bn(x)

implies that 1 + x is a factor of Bn(x). So, we write Bn(x) = (1 + x)χ(n odd)B̃n(x) for some polynomial B̃n(x).

The first few members of B̃n(x) are:

B̃1(x) = 1, B̃2(x) = 1 + 6x+ x2, B̃3(x) = 1 + 22x+ x2,

B̃4(x) = 1 + 76x+ 230x2 + 76x3 + x4, B̃5(x) = 1 + 236x+ 1446x2 + 236x3 + x4.

It is clear that 2dBn := deg B̃n(x) = n− χ(n odd). From the recurrence for Bn(x), namely,

Bn+1(x) = ((2n+ 1)x+ 1)Bn(x) + 2x(1− x)B′n(x), n = 1, 2, . . . ,
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we have

B̃2n(x) =
(
1 + (2 + 4n)x+ (−3 + 4n)x2

)
B̃2n−1(x) + 2x(1− x2)B̃′2n−1(x),

(1 + x)B̃2n+1(x) = ((4n+ 1)x+ 1)B̃2n(x) + 2x(1− x)B̃′2n(x).

We next postulate that

B̃n(x) = xd
B
nQBn (x+

1

x
)

for some polynomial QBn (x). The first few members of QBn (x) are as follows:

QB1 (x) = 1, QB2 (x) = x+ 6, QB3 (x) = x+ 22, QB4 (x) = x2 + 76x+ 228,

QB5 (x) = x2 + 236x+ 1444, QB6 (x) = x3 + 722x2 + 10540x+ 22104,

which suggest that QBn (x) ∈ N[x] is of degree dBn .

Proposition 3.1. For n > 1, the polynomial QBn (x) satisfies the following recurrence relations:

QB2n+1(x) = (2n+ 1)QB2n(x) + 2(2− x)(QB2n)′(x), (7)

QB2n(x) =
(
2 + 4n+ (−1 + 2n)x

)
QB2n−1(x) + 2(4− x2)(QB2n−1)′(x). (8)

From the recurrences (7)–(8), the coefficients of QBn (x) =
∑dBn
k=0 c

B
n,kx

k satisfy

cB2n+1,k = (2n− 2k + 1)cB2n,k + 4(k + 1)cB2n,k+1,

cB2n,k = (4n+ 2)cB2n−1,k + (2n− 2k + 1)cB2n−1,k−1 + 8(k + 1)cB2n−1,k+1.

It then follows by induction that QBn (x) ∈ N[x]. Hence, B̃n(x) ∈ N[x].
Since QBn (x) ∈ N[x], it is natural to ask the next question.

Question 3.1. For n > 1, what do the coefficients of QBn (x) count?

The proof of the next theorem, being similar to that of Theorem 2.1, is omitted.

Theorem 3.1. For n > 2, QBn (x) is simply (−∞,−2)-rooted and QBn+1(x) strictly alternates left of QBn (x) or
QBn (x) strictly interlaces QBn+1(x) depending on whether n is even or odd.

Since the zeros of B̃n(x) satisfy x+ 1
x = αB , where αB ∈ (−∞,−2) satisfies QBn (αB) = 0, we conclude from

Theorem 3.1 and Lemmas 2.2–2.3 that all zeros of B̃n(x) are simple and negative. Let αBn,1 < αBn,2 < · · · < αBn,dBn
be the zeros of QBn (αB) = 0. Then xBn,j := Φ(αBn,j), j = 1, 2, . . . , dBn , are the zeros of B̃n(x) in (−∞,−1) in
ascending order.

The interlacing/alternating conditions on QBn (x) then translates to become B̃n+1(x) strictly alternates left

of B̃n(x) or B̃n(x) strictly interlaces B̃n+1(x) in (−∞,−1) depending on whether n is even or odd.

Since Φ(αB)−1 = 2

αB−
√

(αB)2−4
=

αB+
√

(αB)2−4
2 is the other root of the equation x + 1

x = αB , where Φ is

the order preserving bijection in Lemma 2.3, it follows that (xBn,1)−1, . . . , (xBn,dBn
)−1 are the zeros of B̃n(x) in

(−1, 0) in descending order. Together with the zero x = −1 when n is odd, Bn(x) interlacing Bn+1(x) follows.

4. The (type A) alternating Eulerian polynomials

In this section, we study the representation (1) of Ân(x).
Let n ∈ N, [n−1] := {1, 2, . . . , n−1} and Sn denotes the symmetric group of degree n. Chebikin [1] defined

the alternating descent set of σ ∈ Sn by

Altdes(σ) := ({2i : σ(2i) < σ(2i+ 1)} ∪ {2i− 1: σ(2i− 1) > σ(2i)}) ∩ [n− 1],

the nth alternating Eulerian polynomial by

Ân(x) :=
∑
σ∈Sn

xaltdes(σ),
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where altdes(σ) := # Altdes(σ) is the number of alternating descents of σ, and showed the following recurrence
holds:

2Ân+1(x) = (1 + n+ 2x+ (n− 1)x2)Ân(x) + (1− x)(1 + x2)Â′n(x), n = 1, 2, . . . . (9)

The first few members of Ân(x) are:

Â1(x) = 1, Â2(x) = 1 + x, Â3(x) = 2 + 2x+ 2x2, Â4(x) = 5 + 7x+ 7x2 + 5x3,

Â5(x) = 16 + 26x+ 36x2 + 26x3 + 16x4, Â6(x) = 61 + 117x+ 182x2 + 182x3 + 117x4 + 61x5.

The palindromicity of Ân(x) implies that x + 1 is a factor when n is even. So, we let Ân(x) = (1 +

x)χ(n even)Ãn(x) for some polynomial Ãn(x). It is known that Ân(x) has unimodal coefficients [2, Theorem 1.1].

Proposition 4.1. For n > 1, Ãn(x) satisfies the following recurrence relations:

2Ã2n+1(x) = 2
(
(1 + n)(1 + x+ x2) + (n− 1)x3

)
Ã2n(x) + (1− x4)Ã′2n(x), (10)

2(1 + x)Ã2n(x) = 2(n+ x+ (n− 1)x2)Ã2n−1(x) + (1− x)(1 + x2)Ã′2n−1(x). (11)

Proof. The recurrence (10) readily follows by substituting Â2n+1(x) = Ã2n+1(x) and Â2n(x) = (1 + x)Ã2n(x)
into (9). The proof of (11), being similar, is omitted.

The first few members of Ãn(x) are:

Ã1(x) = Ã2(x) = 1, Ã3(x) = 2 + 2x+ 2x2, Ã4(x) = 5 + 2x+ 5x2,

Ã5(x) = 16 + 26x+ 36x2 + 26x3 + 16x4, Ã6(x) = 61 + 56x+ 126x2 + 56x3 + 61x4.

Observe that 2dan := deg Ãn(x) = n− 1− χ(n even). We postulate that

Ãn(x) = xd
a
nRan(x+

1

x
)

for some polynomial Ran(x). The first few members of Ran(x) are:

Ra1(x) = Ra2(x) = 1, Ra3(x) = 2x+ 2, Ra4(x) = 5x+ 2,

Ra5(x) = 16x2 + 26x+ 4, Ra6(x) = 61x2 + 56x+ 4.

The above list suggests that Ran(x) ∈ N[x] is of degree dan.

Proposition 4.2. For n > 1, the polynomial Ran(x) satisfies the following recurrence relations:

2Ra2n+1(x) =
(
(n− 1)x2 + (2n+ 2)x+ 4

)
Ra2n(x) + x(4− x2)(Ra2n)′(x), (12)

2Ra2n(x) =
(
2 + (n− 1)x

)
Ra2n−1(x) + x(2− x)(Ra2n−1)′(x). (13)

Proof. Substituting Ã2n+1(x) = xnRa2n+1(x + 1
x ) and Ã2n(x) = xn−1Ra2n(x + 1

x ) into (10), canceling xn from
both sides, followed by replacing x+ 1

x by x, (12) follows. The recurrence (13) follows similarly and whose proof
is omitted.

Write Ran(x) =
∑dan
k=0 c

a
n,kx

k. By equating coefficients of xk on both sides of (12)–(13), we obtain the
following recurrences:

2ca2n+1,k = (4k + 4)ca2n,k + (2n+ 2)ca2n,k−1 + (n− k + 1)ca2n,k−2,

2ca2n,k = (2k + 2)ca2n−1,k + (n− k)ca2n−1,k−1.

Unlike those cases in Sections 2–3, the integrality of can,k’s does not follow immediately due to the presence
of the factor 2 on the left sides of these recurrences. The most natural way to establish Ran(x) ∈ N[x] is the
following:

Problem 4.1. Show that Ran(x) is the generating function of a certain combinatorial system.

Theorem 4.1. For n > 3, Ran(x) is simply (−2, 0)-rooted and Ran(x) strictly alternates left of, or strictly
interlaces, Ran+1(x), depending on whether n is odd or even.
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Proof. Induction on n. Since Ra3(x) = 0 ⇐⇒ x = −1 and Ra4(x) = 0 ⇐⇒ x = − 2
5 , Ra3(x) alternating left

of Ra4(x) in (−2, 0) follows. Since Ra5(x) = 0 ⇐⇒ x = −13±
√
105

16 and −2 < −13−
√
105

16 < − 2
5 <

−13+
√
105

16 < 0
holds, Ra4(x) interlacing Ra5(x) in (−2, 0) follows. Assume that the result holds for n > 3.

When n is odd, dan = dan+1 = (n− 1)/2. Let −2 < xan,1 < xan,2 < · · · < xan,(n−1)/2 < 0 be the zeros of Ran(x).

Define also xan,(n+1)/2 := 0 so that sgnRan+1(xan,(n+1)/2) = 1. As

sgn 2Ran+1(xan,j) = sgn
(
xan,j(2− xan,j)(Ran)′(xan,j)

)
= (−1)(n−1)/2−j+1, j = 1, 2, . . . , n−12 ,

there exist xan+1,j ∈ (xan,j , x
a
n,j+1) such that Ran+1(xan+1,j) = 0 for j = 1, 2, . . . , n−12 , i.e., Ran(x) alternates left

of Ran+1(x) in (−2, 0).
When n is even, dan = (n− 2)/2 and dan+1 = n/2. Let −2 < xan,1 < xan,2 < · · · < xan,(n−2)/2 < 0 be the zeros

of Ran(x). Define also xan,0 := −2 and xan,n/2 := 0 so that sgnRan+1(xan,0) = (−1)n/2 and sgnRan+1(xan,n/2) = 1.
As

sgn 2Ran+1(xn,j) = sgn
(
xan,j(4− (xan,j)

2)(Ran)′(xan,j)
)

= (−1)n/2−j+1, j = 1, 2, . . . , n−22 ,

there exist xan+1,j ∈ (xan,j−1, x
a
n,j) such that Ran+1(xan+1,j) = 0 for j = 1, 2, . . . , n2 , i.e, Ran(x) interlaces Ran+1(x)

in (−2, 0).
This finishes the induction and the proof of the theorem.

Lemma 4.1. Let α ∈ (−2, 0). Then all roots of x+ 1
x = α are non-real and of moduli 1.

Proof. We have x+ 1
x = α ⇐⇒ x2 − αx+ 1 = 0, whose roots α±i

√
4−α2

2 have moduli

√
α2+(4−α2)

2 = 1.

Since the zeros of Ãn(x) satisfy x + 1
x = αa, where αa ∈ (−2, 0) satisfies Ran(αa) = 0, we conclude from

Lemma 4.1 that all zeros of Ãn(x) are non-real and of moduli 1.

Lemma 4.2. The mappings Φ1,Φ2 : (−2, 0) → (−1, 0) defined by Φ1(x) = x
2 and Φ2(x) = −

√
4−x2

2 , for all
x ∈ (−2, 0), are bijections with Φ1 order preserving and Φ2 order reversing.

Proof. The mapping Φ1 being an order-preserving bijection is obvious. Since Φ′2(x) = x
2
√
4−x2

< 0 for all

x ∈ (−2, 0), lim
x→−2+

Φ2(x) = 0−, and lim
x→0−

Φ2(x) = −1+, Φ2 being an order reversing bijection follows.

Although Ãn(x)’s are not real-rooted, Ran(x)’s are. Let −2 < αan,1 < αan,2 < · · · < αan,dan < 0 be the zeros of

Ran(x). For j ∈ [dan], the zeros of Ãn(x) corresponding to αan,j are
αa

n,j

2 +±i
√

4−(αa
n,j)

2

2 = Φ1(αan,j)± iΦ2(αan,j).

Define pan(x) =
∏dan/2
j=1 (x − Φ1(αan,j)) and qan(x) =

∏dan/2
j=1 (x − Φ2(αan,j)). The following is a restatement of [4,

Theorem 4].

Theorem 4.2. For n > 3, Ãn(x) has non-real zeros Φ1(αan,j) ± iΦ2(αan,j) of moduli 1, j = 1, 2, . . . , dan, where
−2 < αan,1 < αan,2 < · · · < αan,dan < 0 are the simple zeros of Ran(x). Moreover, pan(x) alternates left of or

interlaces pan+1(x), and qan+1(x) alternates left of qan(x) or qan(x) interlaces qan+1(x), depending on whether n is
odd or even.

5. The type B alternating Eulerian polynomials

In this section, we study the type B analogue of (1).
Let n ∈ N, [0, n−1] := {0, 1, . . . , n−1} and Bn denotes the nth hyperoctahedral group. Ma et al. [3] defined

the type B alternating descent set of σ ∈ Bn by

AltdesB(σ) := ({2i : σ(2i) < σ(2i+ 1)} ∪ {2i− 1: σ(2i− 1) > σ(2i)}) ∩ [0, n− 1],

where σ(0) := 0, the nth type B alternating Eulerian polynomial by

B̂n(x) =
∑
σ∈Bn

xaltdesB(σ),

where altdesB(σ) := # AltdesB(σ) is the number of type B alternating descents of σ, and showed the following
recurrence holds:

B̂n+1(x) = (1 + n+ x+ nx2)B̂n(x) + (1− x)(1 + x2)B̂′n(x), n = 1, 2, . . . ,
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with the initial conditions B̂1(x) = 1 + x. The first few members of B̂n(x)’s are as follows:

B̂1(x) = 1 + x, B̂2(x) = 3 + 2x+ 3x2, B̂3(x) = 11 + 13x+ 13x2 + 11x3,

B̂4(x) = 57 + 76x+ 118x2 + 76x3 + 57x4.

By virtue of the palindromicity, x+1 is a factor of Bn(x) when n is odd. So, we let B̂n(x) = (1+x)χ(n odd)B̌n(x)
for some polynomial B̌n(x). The first few members of B̌n(x) are:

B̌1(x) = 1, B̌2(x) = 3 + 2x+ 3x2, B̌3(x) = 11 + 2x+ 11x2,

B̌4(x) = 57 + 76x+ 118x2 + 76x3 + 57x4, B̌5(x) = 361 + 236x+ 726x2 + 236x3 + 361x4.

Proofs in this section are similar to those in Section 5. We simply state the results, and leave their proofs to
the interested readers.

Proposition 5.1. For n > 1, B̌n(x) satisfies the following recurrence relations:

(1 + x)B̌2n+1(x) = (1 + 2n+ x+ 2nx2)B̌2n(x) + (1− x)(1 + x2)B̌′2n(x),

B̌2n(x) = (1 + 2n+ 2nx+ (1 + 2n)x2 + (−2 + 2n)x3)B̌2n−1(x) + (1− x4)B̌′2n−1(x).

Observe that 2dbn := deg B̌n(x) = n− χ(n odd). We postulate that

B̌n(x) = xd
b
nRbn(x+

1

x
)

for some polynomial Rbn(x). The first few members of Rbn(x) are:

Rb1(x) = 1, Rb2(x) = 3x+ 2, Rb3(x) = 11x+ 2, Rb4(x) = 57x2 + 76x+ 4,

Rb5(x) = 361x2 + 236x+ 4, Rb6(x) = 2763x3 + 5270x2 + 1444x+ 8.

The above list suggests that Rbn(x) ∈ N[x] is of degree dbn.

Proposition 5.2. For n > 1, the polynomial Rbn(x) satisfies the following recurrence relations:

Rb2n+1(x) = (nx+ 1)Rb2n(x) + x(2− x)(Rb2n)′(x),

Rb2n(x) =
(
2 + (2n+ 1)x+ (n− 1)x2

)
Rb2n−1(x) + x(4− x2)(Rb2n−1)′(x).

Write Rbn(x) =
∑dn
k=0 c

b
n,kx

k. From the preceding recurrences, cbn,k’s satisfy

cb2n+1,k = (2k + 1)cb2n,k + (n− k + 1)cb2n,k−1,

cb2n,k = (4k + 2)cb2n−1,k + (2n+ 1)cb2n−1,k−1 + (n− k + 1)cb2n−1,k−2.

It then follows by induction that Rbn(x) ∈ N[x]. Hence, B̌n(x) ∈ N[x].

Question 5.1. For n > 1, what do the coefficients of Rbn(x) count?

Theorem 5.1. For n > 2, Rbn(x) is simply (−2, 0)-rooted and Rbn(x) strictly alternates left of, or strictly
interlaces, Rbn+1(x), depending on whether n is even or odd.

Since the zeros of B̌n(x) satisfy x + 1
x = αb, where αb ∈ (−2, 0) satisfies Rbn(αb) = 0, we conclude from

Lemma 4.1 that all zeros of B̌n(x) are non-real and of moduli 1.
Let −2 < αbn,1 < αbn,2 < · · · < αbn,dbn

< 0 be the zeros of Rbn(x). For j ∈ [dbn], the zeros of B̌n(x) corresponding

to αbn,j are
αb

n,j

2 +±i
√

4−(αb
n,j)

2

2 = Φ1(αbn,j)± iΦ2(αbn,j), where Φ1,Φ2 are those bijections in Lemma 4.2. Define

pbn(x) =
∏dbn
j=1(x− Φ1(αbn,j)) and qbn(x) =

∏dbn
j=1(x− Φ2(αbn,j)). The type B analogue of Theorem 4.2 is

Theorem 5.2. For n > 2, B̌n(x) has non-real zeros Φ1(αbn,j) ± iΦ2(αbn,j) of moduli 1, j = 1, 2, . . . , dbn, where

−2 < αbn,1 < αbn,2 < · · · < αbn,dbn
< 0 are the simple zeros of Rbn(x). Moreover, pbn(x) alternates left of or

interlaces pbn+1(x), and qbn+1(x) alternates left of qbn(x) or qbn(x) interlaces qbn+1(x), depending on whether n is
even or odd.

ECA 4:2 (2024) Article #S2R14 7



Chak-On Chow

Ma and Yeh [4] approached the rootedness of Ân(x) by connection with the derivative polynomials Pn(x):

2n(1 + x2)Ân(x) = (1− x)n+1Pn

(
1 + x

1− x

)
, n = 1, 2, . . . ,

where Pn(x)’s are generated by Pn+1(x) = (1 + x2)P ′n(x), n = 0, 1, . . ., with P0(x) = x.
Denote by {Qn(x)} the other family of derivative polynomials generated by Qn+1(x) = xQn(x) + (1 +

x2)Q′n(x), n = 1, 2, . . ., with Q1(x) = x.
Ma and Yeh [4] conjectured that

B̂n(x) = (1− x)nQn

(
1 + x

1− x

)
,

which was later given a generating function proof by Ma et al. [3]. A combinatorial proof was given recently
by Pan [5]. It would be interesting to approach the interlacing/alternating properties of the real and imaginary

parts of zeros of B̂n(x) based on this connection with Qn(x).
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