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1. Introduction

Let T be a rooted tree with a vertex set V of size s. We will draw rooted trees with the root on top. For v ∈ V ,
let p(v) denote the parent of v. A labeling of T is a bijection w : V → [s]. The descent set of a labeling w is

Des(w) = {v ∈ V : w(v) > w(p(v))}.

In particular, the root is never included in the descent set. The set of natural labelings of T is

NT = {w : w is a labeling of T,Des(w) = ∅}.

It is well-known that the number of natural labelings of T is given by the following hook-length formula [10]

nT =
s!∏

v∈V (T ) hv
,

where hv is the size of the subtree Tv of T rooted at the vertex v.
For an integer n ≥ s, let G(T, n) be the tree with n vertices obtained by adding a chain of size n− s above

the root of T . Let VD ⊆ V . Let

D(T ;n) = {w : w is a labeling of G(T ;n),Des(w) = VD}

and

d(T ;n) = |D(T ;n)|.

Note that D(T ;n) and d(T ;n) depend on VD but, since in what follows VD will be fixed, we keep the notation
simpler by not making this dependence explicit. One can readily see that d(T ; s) = 0 if and only if VD contains
the root of T . Moreover, d(T ;n) > 0 for n > s. This can be seen by the following construction of a labeling in
D(T ;n): label the vertices of G(T ;n) in VD by the numbers n, n− 1, . . . , starting from the lowest generation
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and moving up, and then label the remaining vertices by 1, 2, . . . , again starting at the lowest generation and
moving up.

From now on, when we refer to a tree T , we mean T with the distinguished set of vertices VD. The vertices
in VD are called descent vertices and will be represented in the figures as black nodes. All other vertices in
G(T ;n) are called ascent vertices and are colored white. See Figure 1 for an example.

When T is a chain, the labelings in D(T ;n) correspond to permutations of n with a fixed descent set. The
function d(T ;n) was shown to be a polynomial in n by MacMahan [11] in 1915. However, there appears to not
have been any study of this polynomial until recently, when Diaz-Lopez, Harris, Insko, Omar, Sagan [5] initiated
a study of d(T ;n), motivated by the properties of the analogous peak polynomial for permutations [2,4]. After
that, q-analogues of the peak and descent polynomials were studied in [6]. A generalization of the descent
polynomials to permutations of multisets was studied in [12].

Labeled trees are a natural extension of permutations. A lot of classical permutation statistics, including
descents, have analogues in labeled trees and share many of the properties [7, 8]. We will show that some of
the established properties of the descent polynomials for permutations also hold in the tree setting. First, in
Section 2, we prove that d(T ;n) is a polynomial and we find its degree. We give both a recursion and an explicit
formula for computing d(T ;n). Then, in Section 3, we consider expansions of d(T ;n) in certain binomial bases
and prove results about the coefficients in those expansions. Finally, Section 4 is devoted to understanding the
roots of d(T ;n).
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Figure 1: An example of a tree T with the corresponding extended tree G(T, n)

2. Computing d(T ;n)

Let VA = V \ VD. For v ∈ V , let Tv denote the subtree of T rooted at v. Let hv be the number of vertices in
Tv; this is also known as the hook length of v. For v ∈ VD, let T ↑v denote T with v changed from a descent to
an ascent. For v ∈ VA, let T ↓v be T with v changed from an ascent to a descent. We use T \ Tv to denote the
tree obtained from T by deleting the subtree Tv, with distinguished descent vertices inherited from T . For a
tree T ′ derived from T with one of these operations, we will generally use VD(T ′) to denote the set of descent
vertices of T ′ inherited from VD. We first give a recursive formula for computing d(T ;n).

Proposition 2.1. Let T be a rooted tree of size s with a distinguished subset of vertices VD and let n ≥ s. For
v ∈ VD, we have

d(T ;n) =

(
n

hv

)
· d(T ↑vv ;hv) · d(T \ Tv;n− hv)− d(T ↑v;n), (1)

where, by convention, d(∅; k) = 1 for k ≥ 0.

Proof. Consider the set

P = {w : w is a labeling of G(T, n),Des(w) = VD or Des(w) = VD \ {v}}.

Then, clearly, |P | = d(T ;n) + d(T ↑v;n). On the other hand, a labeling w ∈ P can be obtained uniquely by:
(1) labeling the subtree Tv by hv of the n available labels so that the vertices in (VD \ {v}) ∩ Tv are descents
and (2) labeling the remaining part of the tree T \ Tv with the remaining n− hv labels so that the vertices in
VD ∩ (T \ Tv) are descents. This yields |P | =

(
n
hv

)
· d(T ↑vv ;hv) · d(T \ Tv;n− hv) and the recurrence follows.

A descent vertex v ∈ VD is maximal if none of its ancestors is in VD. For example, v4 is the only maximal
vertex in the tree in Figure 1a.
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Corollary 2.1. Let T be a rooted tree, let {v1, . . . , vm} be the set of its maximal descent vertices, and let
h = hv1 + hv2 + · · ·+ hvm . Then d(T ;n) is a polynomial of degree h.

Proof. We proceed by induction on h. First, we check the case h = 0, i.e., when T has no descents. Note
that in this case, the top chain of n − s vertices in G(T, n) must be labeled from top to bottom by the labels
n, n− 1, . . . , n− s, so d(T ;n) = nT , a constant.

Now, let h ≥ 1. Let v be one of the maximal vertices of T . Consider the terms in (1). Note the following:

•
(
n
hv

)
is a polynomial of degree hv.

• d(T ↑vv ;hv) is a constant since it is not dependent on n.

• The set of maximal descents of T \ Tv is the set of maximal descents of T with v removed. So, by the
inductive hypothesis, d(T \ Tv;n), and therefore, d(T \ Tv;n − hv) as well, are a polynomials of degree
h− hv.

• The maximal descent vertices of T ↑v that are not maximal descents in T are in the subtree Tv, so by the
inductive hypothesis, d(T ↑v;n) is a polynomial of degree < h.

Thus, by Proposition 2.1,

d(T ;n) = (poly. of degree hv) · (constant) · (poly. of degree h− hv)− (poly. of degree < h)

= (poly. of degree h)

as desired.

For this reason, we also refer to d(T ;n) as the descent polynomial of T . Note that instead of applying a
recursion at descent vertices as in Proposition 2.1, one can do it at the ascent vertices, as illustrated by the
following corollary.

Corollary 2.2. Let T be a rooted tree of size s with a distinguished set of vertices VD and let n ≥ s. Let
v ∈ VA. Then

d(T ;n) =

(
n

hv

)
· d(T ↑vv ;hv) · d(T \ Tv;n− hv)− d(T ↓v;n) (2)

Proof. If we apply Proposition 2.1 to the tree T ↓v and the vertex v, we get an equality which is equivalent
to (2).

Our next result gives an explicit formula for d(T ;n) but we introduce some notation first. Let N ⊆ VD.
Suppose we delete from T the edges between the vertices in N and their parents. This procedure yields |N |+ 1
smaller trees rooted at the vertices of N and the root of T : T0, . . . , T|N |, with descent sets inherited from VD.
Let V (Ti) denote the set of vertices of Ti, 0 ≤ i ≤ |N |.

Proposition 2.2. Let T be a rooted tree with descent set VD, then

d(T ;n) = n! ·
∑
N⊆VD

(−1)|VD|−|N | ·
|N |∏
i=0

1∏
v∈V (Ti)

hv
, (3)

where the hook length hv of the vertex v ∈ V (Ti) is calculated within the tree Ti.

Proof. We proceed by induction on |VD|. If VD = ∅, then d(T ;n) = nT , the right-hand side of (3) has only one
term and we get the well-known hook length formula for nT . Assume that the statement holds for |VD| ≤ k.

Let |VD| = k + 1 and v ∈ VD. Using Proposition 2.1 and the inductive hypothesis, we get

d(T ;n) =hv! ·
(
n

hv

) ∑
L⊆VD(T↑v

v )

(−1)|VD(T↑v
v )|−|L| ·

|L|∏
i=0

1∏
u∈V (Ti)

hu

· (n− hv)! ·
∑

J⊆VD(TrTv)

(−1)|VD(TrTv)|−|J| ·
|J|∏
i=0

1∏
u∈V (Ti)

hu
(4)

− n! ·
∑

R⊆VD(T↑v)

(−1)|VD(T↑v)|−|R| ·
|R|∏
i=0

1∏
u∈V (Ti)

hu
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There is a common factor in front of all terms, n!. Multiplying a term from the first sum by a term of the
second sum results in a term of the following form, for some L ⊆ VD(T ↑vv ) and J ⊆ VD(T r Tv):

(−1)|VD(T↑v
v )|−|L| ·

|L|∏
i=0

1∏
u∈V (Ti)

hu
· (−1)|VD(TrTv)|−|J| ·

|J|∏
i=0

1∏
u∈V (Ti)

hu
. (5)

Note that
|VD(T ↑vv )|+ |VD(T\Tv)| = |VD(T ↑v)| = |VD(T )| − 1 = k.

Moreover, the set L ∪ J varies over all subsets of VD(T ↑v). The tree T ↑v is obtained by connecting T ↑vv and
T \Tv by an edge adjacent to v. Therefore, the collection of subtrees obtained by subdividing T ↑vv as prescribed
by L and T \ Tv as prescribed by J is the same as the one obtained by subdividing T at the vertices in
R = L ∪ J ∪ {v} ⊆ VD(T ). So, the product (5) can be rewritten as

(−1)k+1−|R|
|R|∏
i=0

1∏
v∈V (Ti)

hv
. (6)

Using this in (4), we get

d(T ;n) =n! ·
∑

R⊆VD(T )
v∈R

(−1)k+1−|R|
|R|∏
i=0

1∏
u∈V (Ti)

hu
− n! ·

∑
R⊆VD(T↑v)

(−1)k−|R| ·
|R|∏
i=0

1∏
u∈V (Ti)

hu

=n! ·
∑

R⊆VD(T )
v∈R

(−1)k+1−|R| ·
|R|∏
i=0

1∏
u∈V (Ti)

hu
+ n! ·

∑
R⊆VD(T )
v/∈R

(−1)k+1−|R| ·
|R|∏
i=0

1∏
u∈V (Ti)

hu

=n! ·
∑

R⊆VD(T )

(−1)|VD(T )|−|R| ·
|R|∏
i=0

1∏
u∈V (Ti)

hu

as desired.

Our last result in this section is a formula for d(T ;n + 1) in terms of d(T ;n) which will be used later in
Section 4. To see the relation, we consider which vertices of G(T ;n+ 1) can be labeled n+ 1. Since n+ 1 is the
largest label, a vertex v with this label must be either the root of G(T ;n+ 1) or in VD and none of its children,
if any, is in VD. So, there are three cases: v is the root of G(T, n + 1), v is a descent leaf, or v is a non-leaf
descent with ascent children. With this in mind, we define the following subsets of VD:

V ′ = {v ∈ VD : v is a leaf}

and
V ′′ = {v ∈ VD : v is not a leaf and the children of v are not in VD}.

We also define the following notation. T/v is the tree T with the vertex v deleted and the edge between the
vertex v and its parent contracted so that the children of v become the children of the parent of v. In particular,
if v is a leaf, then T/v = T \ v. The vertices in T/v that are not the original children of v inherit the property
of being/not being descent vertices from T . Furthermore, if v has c(v) children, then there are 2c(v) ways to
specify which of them is in VD. We will denote all these 2c(v) possibilities by (T/v)r, 1 ≤ r ≤ 2c(v). An example
of this is shown in Figure 2.
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Figure 2: (T/v3)r for a tree T
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Theorem 2.1. Let T be a rooted tree with descent set VD, then

d(T ;n+ 1) = d(T ;n) +
∑
v∈V ′

d(T/v;n) +
∑
v∈V ′′

2c(v)∑
r=1

d((T/v)r;n).

Proof. As we started in the discussion above, we split D(T ;n + 1) into three subsets based on the location of
the vertex v labeled n+ 1: (1) v is the top vertex of G(T ;n+ 1), (2) v ∈ V ′, and (3) v ∈ V ′′.

In the first case, by deleting v we get a correspondence with D(T ;n). In the second case, by deleting the
leaf v we get a one-to-one correspondence with the labelings of G(T \ v;n) = G(T/v;n). In the third case, by
contracting the edge between v and its parent, and deleting the label n + 1, we get a labeling of one of the
trees G((T/v)r;n). Conversely, given a labeling w ∈ G((T/v)r;n), one can produce a labeling of G(T ;n + 1)
by adding the label n+ 1 on v. In this larger labeling, all descent positions are the same as in w except for the
children of v, which are never descents. Therefore, the number of labelings of G(T ;n + 1) in which v ∈ V ′′ is∑2c(v)

r=1 d((T/v)r;n).

3. Expanding d(T ;n) into binomial bases

In this section we discuss some properties of the expansions of d(T ;n) in a couple of binomial bases. Let
deg(d(T ;n)) = h. First consider the following basis:

a =

{(
n− h

0

)
,

(
n− h

1

)
, . . . ,

(
n− h
h

)}
.

When T is a chain, it was shown in [5] that the expansion of d(T ;n) in this basis has non-negative coefficients.
It was further conjectured in [5] and later proved by Bencs [1] that the coefficients in such an expansion form
a log-concave sequence. We prove that such results also hold for d(T ;n), when T is a tree that satisfies certain
conditions.

Theorem 3.1. Let T be a tree of size s such that its root r is not in VD but all of its children are in VD and
let h = deg(d(T ;n)). Then

d(T ;n) =

h∑
k=1

ak(T )

(
n− h
k

)
where the coefficient ak(T ) is the number of labelings w in D(T ; 2h) such that {w1, . . . , wh} ∩ [h + 1, 2h] =
[h+ 1, h+ k], where w1, . . . , wh are the labels of the vertices of T in V \ {r}.

Proof. By Corollary 2.1, d(T ;n) is a polynomial of degree h = s−1. Therefore, d(T ;n) can be written uniquely
as a linear combination of the basis vectors{(

n− h
0

)
,

(
n− h

1

)
, . . . ,

(
n− h
h

)}
.

For a labeling w of G(T ;n) which is in D(T ;n), we define

w[h] = {w1, . . . , wh} ∩ [h+ 1, n],

where w1, . . . , wh are the labels of V \ {r}. Further, we use this to define, for 0 ≤ k ≤ h,

Dk(T ;n) = {w ∈ D(T ;n) : |w[h]| = k}.

Since D(T ;n) is the disjoint union of Dk(T ;n) for k ≥ 0, to prove our statement, it suffices to show
|Dk(T ;n)| = ak(T )

(
n−h
k

)
. Note that D0(T ;n) = ∅ for the condition {w1, ..., wh} ∩ [h + 1, n] = ∅ implies that

the labels of the children of r are at most h, while the label of the root is at least h + 1. But this contradicts
the fact that the children of r are descents.

Now, we assume n ≥ 2h, since, if we show the equality holds for an infinite number of values, then it must
hold for every value. For k ≥ 1, consider w ∈ Dk(T ;n). There are

(
n−h
k

)
ways of choosing the k elements of

w[h]. We claim that for two k-element sets X,Y ⊆ [h+ 1, n],

|{w ∈ Dk(T ;n) : w[h] = X}| = |{w ∈ Dk(T ;n) : w[h] = Y }|.

To show this, let f : X → Y f be the order-preserving bijection between the sets X and Y . The map f induces
a bijection g : {w ∈ Dk(T ;n) : w[h] = X} → {w ∈ Dk(T ;n) : w[h] = Y }. For w ∈ {w ∈ Dk(T ;n) : w[h] = X},

ECA 4:2 (2024) Article #S2R16 5
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we construct u = g(w) by applying f to the elements of w[h] leaving the labels of V \ {r} unchanged, and
labeling the root r of T and the chain above it in ascending order using the remaining elements. This map
clearly preserves the descent points everywhere except possibly at the children of the root of T .

Consider a child c of r. First, notice w(r) ∈ [h] since the vertices above the children of r are labeled in
increasing order and our assumption that k ≥ 1 implies there is at least one element of [h] not used in the labeling
of V \{r}. Note also, that w(r) = u(r) since the map g does not affect any labels in [h]. If u(c) ∈ [h+ 1, n] then
c is clearly a descent in u; alternatively if u(c) ∈ [h], then w(c) = u(c) > u(r) = w(r) and c is a descent in u.

It is not hard to see that the map g is a bijection. Therefore, we have shown that for any k-element
X ⊆ [h+ 1, n],

|Dk(T ;n)| = |{w ∈ Dk(T ;n) : w[h] = X}|
(
n− h
k

)
.

One can take X = [h+1, h+k]. Also, note that the labels greater than 2h are associated with the same vertices
of G(T ;n) for all labelings in Dk(T ;n), independent of the value k ≤ h. So,

ak(T ) = |{w ∈ Dk(T ;n) : w[h] = X}| = |{w ∈ Dk(T ; 2h) : w[h] = [h+ 1, h+ k]}|.

Lemma 3.1. Let T be a rooted tree and let T ′ be T with an ascent vertex added as a parent to the root of T .
Then,

d(T ;n) = d(T ′;n)

Proof. This follows from the fact that G(T ;n) = G(T ′;n) for all n > s, the size of T .

Corollary 3.1. Let T be a tree of size s such that the root r ∈ VD. Then

d(T ;n) =

s∑
k=1

ak(T )

(
n− s
k

)
where the coefficient ak(T ) is the number of labelings w in D(T ; 2s) such that {w1, . . . , ws} ∩ [s + 1, 2s] =
[s+ 1, s+ k], where w1, . . . , ws are the labels of the vertices of T .

Proof. Let T ′ be the tree T with an ascent vertex attached on top of the root. Then the result follows by
Lemma 3.1 and application of Theorem 3.1 to T ′.

For the trees considered in Theorem 3.1 and Corollary 3.1, the description of the coefficients ak(T ) implies
that they are non-negative. This property does not hold for general trees. For example, for the tree T in
Figure 3a we have d(T ;n) = 560

(
n−7
7

)
+ 3800

(
n−7
6

)
+ 10120

(
n−7
5

)
+ 12160

(
n−7
4

)
+ 3150

(
n−7
3

)
− 3150

(
n−7
2

)
+

3150
(
n−7
1

)
− 3150

(
n−7
0

)
.

(a) a-coefficient non-negativity (b) alternating c-coefficients

Figure 3: In (a) we present a tree whose polynomial d(T ;n) has some negative coefficients in the expansion of
the a-basis. In (b) we present a tree whose polynomial d(T ;n) when expanded in the c-basis has coefficients
which do not alternate in sign.

However, generalizing the result about permutations, we prove that the sequence ak(T ) is log-concave in the
cases covered by Theorem 3.1 and Corollary 3.1. We follow the approach in [1] and temporarily shift our focus
to expansions in another binomial basis. Namely, the set

ā =

{(
n− h− 1

0

)
,

(
n− h

1

)
, . . . ,

(
n− 1

h

)}
is another basis for the polynomials of degree up to h and, therefore, d(T ;n) can be uniquely expanded as

d(T ;n) = ā−1(T )

(
n− h− 1

0

)
+ ā0(T )

(
n− h

1

)
+ · · ·+ āh−1(T )

(
n− 1

h

)
.
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Figure 4: The poset PT associated to a tree T with a marked descent set VD

Although any polynomial can be written in this basis, we restrict our following discussion to the classes of trees
for which we have proven the nonnegativity of ak(T ). For the remainder of this section, T is a tree in which
the root is not a descent vertex but all of its children are. Note that

d(T ;h) = ā−1(T )

(
−1

0

)
+

h∑
k=1

(
k

k + 1

)
= ā−1(T ).

As we prove in Section 4, where we discuss the roots of d(T ;n), for these trees we have d(T ;h) = 0 and,
therefore ā−1(T ) = 0. We will show that the sequence {āk(T )}hk=0 counts certain linear extensions of a poset
PT associated to the tree T . Before we define PT , we introduce some poset terminology we will need.

Let P be a finite poset and v ∈ P a fixed element. Let Ext(P ) be the set of order-preserving bijections from
P to the chain [1, 2, . . . , |P |]. The height polynomial of v in P is defined as

hP,v(x) =
∑

φ∈Ext(P )

xφ(v)−1 =

|P |−1∑
k=0

hk(P, v)xk.

So, hk(P, v) is the number of linear extensions of P in which v is labeled k + 1.
If the root of T is not in VD, but all of its children are, then deg(d(T ;n)) = h = |V | − 1. Let V =

{v1, . . . , vh+1}. Then PT is a poset on {u1, . . . , uh+1} defined in the following way. If vi is the child of vj ,
then ui > uj if ui ∈ VD and ui < uj if ui /∈ VD. An example of this construction is shown in Figure 4. The
connection between the poset PT and the coefficients āk is given in the following proposition.

Proposition 3.1. Let T be a tree with descent set VD such that the root of T is not in VD, but all of its children
are. Then for 0 ≤ k ≤ h− 1

āk+1(T ) = hh−k(PT , uh+1).

Proof. Since d(T ;n) is a polynomial of degree h, we can write it uniquely as a linear combination of the basis
vectors {(

n− h− 1

0

)
,

(
n− h

1

)
, . . . ,

(
n− 1

h

)}
.

So, it suffices to show that for n ≥ h we have

d(T ;n) =

h−1∑
k=0

hh−k(PT , uh+1)

(
n− h+ k − 1

k

)
.

Let vh+1 be the root of T . Let Bk(T ;n) = {w ∈ D(T ;n) : w(vh+1) = k + 1} for 0 ≤ k ≤ n − 1. By the
assumption on T , the children of vh+1 are descents and above vh+1 there is an ascending chain in G(T ;n).
There are n − h − 1 elements in the ascending chain and at least one child of vh+1 must have a label higher
than vh+1. Thus, w(vh+1) ≤ h and Bk(T ;n) = ∅ for h ≤ k ≤ n− 1. So, D(T, n) is a disjoint union of the sets
Bk(T ;n) for 0 ≤ k < h. Additionally, note |Bk(T ;h+ 1)| = hk(PT ;uh+1).

We claim

|Bk(T ;n)| = |Bk(T ;h+ 1)×
(

[k + 2, n]

h− k

)
| = |Bk(T ;h+ 1)|

(
n− k − 1

h− k

)
.

To prove the first equality, we establish a bijection. If w ∈ Bk(T ;n), then let Vw = {w(vi) : 1 ≤ i ≤
h and w(vi) > k+ 1}. Clearly, Vw ⊆ [k+ 2, n] and |Vw| = h−k. Let w′ be the standardization of the restriction
of w on the tree T . In other words, w′ uses the labels {1, . . . , h+ 1} and has the property that for v1, v2 ∈ V ,
w′(v1) < w′(v2) if and only if w(v1) < w(v2). Then w′ ∈ Bk(T ;h+ 1).
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Let f : Bk(T ;n)→ Bk(T ;h+ 1)×
(
[k+2,n]
h−k

)
be defined by

f(w) = (w′, Vw).

Checking whether f is a bijection is rather simple and left to the reader.
Then, we have

d(T ;n) = |D(T ;n)| = |
h−1⋃
k=0

Bk(T ;n)| =
h−1∑
k=0

|Bk(T ;n)|

=

h−1∑
k=0

|Bk(T ;h+ 1)×
(

[k + 2, n]

h− k

)
| =

h−1∑
k=0

|Bk(T ;h+ 1|
(
n− k − 1

h− k

)

=

h−1∑
k=0

hk(PT , uh+1)

(
n− k − 1

h− k

)
=

h∑
l=1

hh−l(PT , uh+1)

(
n− h+ l − 1

l

)
.

The following properties of the sequence {hk(P, v)}|P |k=1 follow from two results of Stanley [13,14].

Theorem 3.2. [1, Theorem 2.3] Let P be a finite poset, and v ∈ P be fixed. Then the coefficient se-

quence {hk(P, v)}|P |k=1 is log concave. Moreover if all comparable elements with v are bigger than v in P , then

{hk(P, v)}|P |k=1 is a decreasing, log-concave sequence.

Combining Theorem 3.2 and Proposition 3.1, we directly get the following corollary.

Corollary 3.2. Let T be a tree with descent set VD such that either its root is a descent or all the children
of its root are descents, then the sequence ā0(T ), ā1(T ), . . . , āh−1(T ) is an increasing, log-concave sequence of
nonnegative integers.

We are now ready to go back to the sequence a0(T ), a1(T ), . . . , ah(T ).

Theorem 3.3. Let T be a tree with descent set VD such that either its root is a descent or all the children of its
root are descents, then the sequence a0(T ), a1(T ), . . . , ah(T ) is a log-concave sequence of nonnegative integers.

Proof. Let

a(T, x) =

h∑
k=0

ak(T )xk, ā(T, x) =

h−1∑
k=0

āk(T )xk.

Proposition 3.3 of [1] states that
a(T, x) = xā(T, x+ 1) (7)

for a nonempty tree T which is a chain but the proof of this fact does not depend on the tree T . It only depends
on the fact that the coefficients of a(T, x) and ā(T, x) come from expansions of the same polynomial d(T ;n). By
Corollary 3.2 we know that the coefficient sequence of the polynomial a(T, x) is log-concave, and consequently
has no internal zeros. It is known that this implies that the coefficient sequence of the polynomial a(T, x+ 1) is
also log-concave [3]. Since multiplication with an x only shifts the coefficient sequence, the coefficient sequence
of xa(T, x+ 1) = a(T, x) is also log-concave.

In [5], the expansion d(T ;n) into the basis

c =

{(
n+ 1

0

)
,

(
n+ 1

1

)
, . . . ,

(
n+ 1

h

)}
when T is a chain is also considered. Let

d(T ;n) =

h∑
k=0

ck(T )

(
n+ 1

k

)
.

It was conjectured in [5] and later proved in [1], that for a chain T , the coefficients c0(T ), . . . , ch(T ) are integers
alternating in sign.
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That the coefficients are integers for general trees T can be deduced using induction on the degree of d(T ;n)
and the recursion in Theorem 2.1 . Namely, we have

d(T ;n+ 1)− d(T ;n) =
∑
v∈V ′

d(T/v;n) +
∑
v∈V ′′

2c(v)∑
r=1

d((T/v)r;n). (8)

The left-hand side of (8) is

d(T ;n+ 1)− d(T ;n) =

h∑
k=0

ck(T )

((
n+ 2

k

)
−
(
n+ 1

k

))
=

h∑
k=0

ck(T )

(
n+ 1

k + 1

)
.

The descent polynomials on the right-hand side of (8) are all of degree less than h, and therefore their coefficients
in the expansion in the basis c are integers, by the induction hypothesis.

However, the alternating sign property of c0(T ), . . . , ch(T ) does not extend to general trees, and not even
to the tree classes for which we have shown that the a-coefficients are nonnegative and log-concave. We show
a counterexample. Take the tree shown in Figure 3b; its descent polynomial is d(T ;n) = 60

(
n+1
7

)
− 60

(
n+1
6

)
+

20
(
n+1
5

)
+ 44

(
n+1
4

)
− 120

(
n+1
3

)
+ 200

(
n+1
2

)
− 280

(
n+1
1

)
+ 360

(
n+1
0

)
which does not have alternating coefficients.

4. The roots of d(T ;n)

It was conjectured in [5], and proved in [9] and [1] that when T is a chain, the degree of d(T ;n) is a bound on
the roots of the polynomial, i.e, if z ∈ C is a root of d(T ;n), then |z| ≤ h. In addition, that R(z) ≥ −1 was
conjectured in [5] and proved in [9].

It is natural to ask if the bounds extend to the roots of d(T ;n) for general trees T . The answer in general
is, no. For example, let T be the tree in Figure 5. Its descent polynomial d(T ;n) = 1

3n
3 − n2 − 58

3 n + 80 has
roots −8, 5, and 6.

Figure 5: A tree T for which the magnitudes of the roots of d(T ;n) exceed h

Proposition 4.1. Let T be a tree with descent set VD such that either the root of T is a descent or all the
children of the root are descents. Let z ∈ C such that d(T ; z) = 0, then |z| ≤ h.

Proof. Similarly as in Corollary 5.3 of [1], one can consider the polynomial p(z) = (z − 1)ā(T, z). Since, by
Corollary 3.2, the coefficients of ā(T, z) form an increasing sequence, one can readily see that the coefficients

pk, except for ph, of p(z) =
∑h
k=0 pkz

k, are all non-positive. Also, their sum is 0 and

h−1∑
k=0

|pk| = −
h−1∑
k=0

pk = ph > 0.

Therefore, by Lemma 5.2 from [1], if |z| > h, then

d(T, z) =

h∑
k=0

pk

(
z −m+ k

k

)
6= 0.

The integer roots of d(T ;n) are bounded for general trees as can be seen from the following result.

Proposition 4.2. If z ∈ Z and d(T ; z) = 0, then z ≤ s where s is the size of T .

Proof. As discussed in Section 1, for any integer z ≥ s, there is at least one labeling of G(T ; z) in D(T ; z) which
forces d(T ; z) > 0. Thus, any integer root of d(T ;n) must be less than or equal to s.

The remainder of this section is devoted to results about when certain integers are roots of d(T ;n). Recall
that nT denotes the number of natural labelings of T .
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Lemma 4.1. For any tree T , d(T ; 0) = (−1)|VD| · nT .

Proof. To see why this is true, consider the recursion from Proposition 2.1 fully expanded. The only term in
the expansion that is constant in n is equal to (−1)|VD| · nT .

Lemma 4.2. For a tree T of size s with VD = V , the roots of the polynomial d(T ;n) are 1, 2, 3, . . . , s.

Proof. We attempt to label such a tree with [n]. The label 1 cannot be placed at or below the root, because all
of these nodes must be larger than their parent. Therefore, it must be placed in the chain of ascents. Since the
chain is arranged in ascending order, the label 1 must be placed at the parent of the root. We can select the s
labels to be placed below the 1 from the remaining n−1 labels. The leftovers are fixed to the vertices above the
1 in ascending order. For any selection of s vertices, there is some constant number of ways to arrange them
in the tree such that they are all at descent points. This constant c does not depend on which s labels were
selected. Therefore,

d(T ;n) =

(
n− 1

s

)
· c

The roots of this polynomial are 1, 2, 3, . . . , s, as claimed.

Lemma 4.3. For a tree T of size s, s is a root of d(T ;n) if and only if the root of T is in VD.

Proof. The tree G(T, n) is obtained by adding a chain of n − s vertices above the root of T and, therefore,
G(T, s) = T . By definition, the root of a labeled tree is never a descent of a labeling. Therefore, if the root of
T is in VD, we have d(T ; s) = 0. On the other hand, if the root of T is not in VD, one can construct a labeling
in D(T ; s) by labeling the vertices in VD by the numbers s, s − 1, . . . , starting from the lowest generation and
moving up, and then labeling the remaining vertices by 1, 2, . . . , again starting at the lowest generation and
moving up.

Theorem 4.1. For a tree T of size s, s − 1 is a root of d(T ;n) if and only if the root of T has at least one
child in VD.

Proof. Let T be a tree where the root is in VD and has at least one child in VD. Let T ′ be identical to T but
with an ascent root. Consider applying the recursion from Proposition 2.1 where v is the root of the tree and
n = s− 1:

d(T ; s− 1) =

(
s− 1

s

)
· d(T ↑vv ;hv) · d(T \ Tv; s− 1− hv)− d(T ↑v; s− 1)

= −d(T ↑v; s− 1).

From this, we see that s − 1 is a root of d(T ′;n) if and only if it is a root of d(T ;n). So, for the rest of this
proof, it is sufficient to consider only a tree T with its root in VD.

For such a tree T we consider the recursion from Theorem 2.1 evaluated at n = s− 1:

d(T ; s) = d(T ; s− 1) +
∑
v∈V ′

d(T/v; s− 1) +
∑
v∈V ′′

2c(v)∑
r=1

d((T/v)r; s− 1)

 .

Since T has a descent root, d(T ; s) = 0 by Lemma 4.3. Note that the root is not in V ′, which means that the
root is never removed in either summation. Therefore, every tree T/v in either summation has size s − 1 and
a descent root. By Lemma 4.3 once more, every term in both summations is therefore equal to 0. We are left
with

0 = d(T ; s− 1),

which is what we wanted to show.
We will prove the reverse statement through induction on s. For any tree T with s = 1, the root of the tree

has no descent children and s− 1 is not a root of d(T ;n). Now we assume that s− 1 is not a root of d(T ;n) for
all trees with s < k that have roots with no children in VD.

Now let T be a tree of size k whose root is in VD but has no children in VD. We apply the recursion from
Corollary 2.2 where v is a child of the root and n = k − 1:

d(T ; k − 1) =

(
k − 1

hv

)
· d(Tv;hv) · d(T \ Tv; k − 1− hv)− d(T ↓v; k − 1).

From the forwards direction of this proof, we know that d(T ↓v; k − 1) = 0. We know by construction that
hv ≤ k−1, so

(
k−1
hv

)
does not equal 0. By Lemma 4.3, we know that d(Tv;hv) does not equal 0. By construction,

T \ Tv is a tree with s < k whose root has no descent children and k − 1− hv is equal to the size of T \ Tv − 1,
which means that by our inductive hypothesis, d(T \ Tv; k − 1 − hv) does not equal 0. Therefore, d(T ; k − 1)
does not equal 0, which is what we wanted to show.
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Theorem 4.2. For a tree T with size s and whose root has k children that are in VD (where k > 0), s− 1, s−
2, . . . , s− k are roots of d(T ;n).

Proof. Let T be a tree whose root has k > 0 children that are in VD. We know from Theorem 4.1 that s− 1 is
a root of d(T ;n) for all trees with at least 1 child of the root in VD. Now we will assume that s−m is a root
of d(T ;n) for all trees with at least m children of the root in VD and show that s− (m+ 1) is a root of d(T ;n)
for m+ 1 ≤ k. We consider the recursion from Theorem 2.1 evaluated at n = s− (m+ 1):

d(T ; s−m) = d(T ; s− (m+ 1)) +
∑
v∈V ′

d(T/v; s− (m+ 1)) +
∑
v∈V ′′

2c(v)∑
r=1

d((T/v)r; s− (m+ 1))

 .

By our inductive hypothesis, the left-hand side of this equation is 0. Now, note that for every tree T ′ in the
summations, the root of T ′ has at least m descent children and the size of the tree is s− 1. So, by our inductive
hypothesis, all of the summation terms also evaluate to 0 (to see why this is true, think of s − (m + 1) as
(s− 1)−m). These observations leave us with

0 = d(T ; s− (m+ 1))

which is what we wanted to show.

Note that this is not a complete characterization of these roots. There are many examples of trees T where
d(T ;n) has s−m as a root while the root of the tree has fewer than m children in VD. For example, the tree
in Figure 2a has the polynomial

d(T ;n) =
n6

36
− 5n5

12
+

19n4

9
− 49n3

12
+

103n2

36
− n

2
− 10,

which has a root of 4 even though the root of the tree has less than two children in VD.

Theorem 4.3. For a tree T , 1 is a root of d(T ;n) if and only if all the leaves in T are in VD.

Proof. Let T be a tree with an arbitrary descent structure. We consider the equation from Proposition 2.1
evaluated at n = 1, where v is not a leaf:

d(T ; 1) =

(
1

hv

)
· d(T ↑vv ;hv) · d(T r Tv; 1− hv)− d(T ↑v; 1).

Since v is not a leaf, hv > 1. Therefore,
(

1
hv

)
= 0 and the equation simplifies to

d(T ; 1) = −d(T ↑v; 1).

Thus, for any tree, changing a non-leaf vertex from a descent point to an ascent point swaps the sign of d(T ; 1)
without affecting its magnitude.

First, we consider the forwards direction. Let T be a tree with descent points at all of its leaves. Let T ′

be a tree with the same vertex structure but where all the vertices are descents. Note that we can transform
T ′ into T by turning the appropriate non-leaf descent points into ascent points. Therefore, d(T ; 1) and d(T ′; 1)
have the same magnitude. From Lemma 4.2 we know that d(T ′; 1) = 0. Therefore, d(T ; 1) = 0, as desired.

Now, we consider the backwards direction. Let T be a tree with k non-descent leaves. Consider applying
the recursion from Corollary 2.2 at one such leaf. This produces the following equation:

d(T ; 1) = d(T1; 0)− d(T ′1; 1),

where Tn is a tree identical to T but with 1 leaf ascent removed and n− 1 leaf ascents turned to descents and
T ′n is identical to Tn except the first leaf is turned into a descent rather than removed.

We continue to apply the recursion on the right-hand term until we end up with the following:

d(T ; 1) = d(T1; 0)− [d(T2; 0)− [d(T3; 0)− · · · − [d(Tk; 0)− d(T ′k; 1)]]].

Taking into account the nested subtractions, this becomes

d(T ; 1) = (−1)k · d(T ′k; 1) +

k∑
n=1

(−1)n−1 · d(Tn; 0).

By construction, all of the leaves in T ′k are descents, which means that we can apply the forwards direction of
this proof and reduce d(T ′k; 1) to 0.
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Consider now that Tn has one fewer descent than Tn+1, so by Lemma 4.1, d(Tn; 0) and d(Tn+1; 0) are non-
zero numbers with opposite signs. In fact, we know that the sign of d(T1; 0) is (−1)|VD|, where VD is the set
of descents in the original tree T . Taking these three observations into account, the simplified expression for
d(T ; 1) is

d(T ; 1) =

k∑
n=1

(−1)n−1 · (−1)|VD|−n · (−1) · nTn

= (−1)|VD|
k∑

n=1

nTn

where nTn is the number of natural labelings of Tn. Since the summation is a series of strictly positive numbers,
d(T ; 1) does not equal 0, which is what we wanted to show.

Proposition 4.3. Let T be a tree of size s such that its only descent is at the root, then

d(T ;n) =

((
n

s

)
− 1

)
· nT

.
In particular, if T and T ′ are two trees of size s such that their only descent is their roots, then their descent

polynomials have the same roots.

Proof. To show this, we calculate d(T ;n) for some T as defined in our proposition using the recursion found in
Proposition 2.1. For r the root of T , we find,

d(T ;n) =

(
n

s

)
d(T ↑rr ; s)d(T r Tr;n− s)− d(T ↑r;n).

However d(T rTr;n− s) = 1 since it labels only a path with no descents. Note, also that nT = nG(T ;n). We
quickly prove this by calculating G(T ;n+ 1) for n ≥ s. Using the formula for nT from Section 1 we can write

nG(T ;n+1) =
(n+ 1)!∏

v∈V (G(T ;n+1)) hv
=

n! · (n+ 1)∏
v∈V (G(T ;n)) hv · (n+ 1)

= nG(T ;n).

Since r is the only descent, this implies d(T ↑rr ; s) = d(T ↑r;n) = nT . So, we get,

d(T ;n) =

((
n

s

)
− 1

)
· nT

as desired.

Corollary 4.1. Let T be a tree of size s such that T only has a descent at its root. Then, d(T ;−1) = 0 if and
only if s is even.

Proof. Take the formula for d(T ;n) we found in Proposition 4.3, and plug in −1, we get

d(T ;−1) =

((
−1

s

)
− 1

)
· nT =

(
(−1)(−2) · · · (−s)

s!
− 1

)
· nT = ((−1)s − 1) · nT .

Here, if s is even, then (−1)s − 1 = 0 and −1 is a root. But, if s is odd, (−1)s − 1 = −2 and −1 is not a
root.

Acknowledgments

S.P. was partially supported by grant NSF DMS 1815832.

References

[1] F. Bencs, Some coefficient sequences related to the descent polynomial, European J. Combin. 98 (2021),
Paper No. 103396.

[2] S. Billey, K. Burdzy, and B. E. Sagan, Permutations with given peak set, J. Integer Seq. 16 (2013), no. 6,
Article 13.6.1.

ECA 4:2 (2024) Article #S2R16 12
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