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Abstract: Inspired by the grammatical calculus of William Chen, we derive an expression for the exponen-
tial generating function for the cd-indices of the n-dimensional simplices and the n-dimensional cubes. This
expression for simplices differs from a similar expression obtained by Stanley.
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1. Introduction

William Chen introduced the grammatical calculus, where derivative operators played an important role in order
to obtain identities [4]. As an example, Dumont introduced the derivative G on (commutative) polynomials in
the variables x and y such that G(x) = G(y) = xy and used this derivative to generate the Eulerian polynomials
An(x); see [7] and [5, Section 1]. Recall that the Eulerian polynomials enumerate permutations, taking into
account the number of descents of the permutation.

The ab-index of a graded poset is a non-commutative polynomial encoding the flag h-vector of the poset.
In the special case when the poset is the Boolean algebra, this information is exactly the descent set statistic
of permutations. This fact is straightforward to observe using the classical R-labeling of the Boolean algebra.
Hence we may view the ab-index of the Boolean algebra as a non-commutative extension of the Eulerian
polynomial. Since the Boolean lattice is the face lattice of the simplex ∆n, we denote this polynomial by Ψ(∆n)
in the non-commutative variables a and b.

What is more striking is that Dumont’s derivation appears independently in the non-commutative world in
order to understand the geometric operation of taking the pyramid of a polytope [9]. There the derivation is
G(a) = ba and G(b) = ab, which is a non-commutative analogue of the Dumont derivative. By considering the
operator Pyr(w) = w · (a + b) + G(w), called the pyramid operator, the paper [9] proved that the ab-index of
the pyramid of a polytope P is the pyramid of the ab-index of the original polytope P . In particular, iterating
the pyramid operator yields the ab-index of the simplex. There is a similar operator Prism whose iteration
yields ab-indices of the cubes.

The purpose of this note is to lift techniques from the field of grammatical calculus of Chen, Dumont,
Fu, and others to the non-commutative setting and obtain new results for the ab- and cd-indices of simplices
and cubes. The main step is to obtain how powers of the pyramid and prism operators behave on a product;
see Proposition 3.1. From these identities it is straightforward to obtain the desired generating functions for
simplices and cubes.

The reader might object that we use generating functions without a variable. However, since our coefficients
are homogenous polynomials, an extra variable of the generating function does not add any extra information.
We end this note with open questions.

2. Preliminaries

Given a graded poset P of rank n+1. The ab-index is a non-commutative polynomial, homogenous of degree n,
in two variables a and b. It encodes the flag f -vector of the poset, equivalently, the flag h-vector. When the
poset is Eulerian, the ab-index can be written in terms of c = a + b and d = ab + ba; see [1]. In particular, for
an n-dimensional polytope P , its face lattice is Eulerian and we write Ψ(P ) for the associated cd-index. For
more details; see [10].
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Define the two derivations G and D on R〈a,b〉 by G(a) = ba, G(b) = ab and D(a) = D(b) = ab + ba.
Observe that these two derivations restrict to the subalgebra R〈c,d〉 by G(c) = d, G(d) = cd, D(c) = 2d
and D(d) = cd + dc. It is also common to let e denote the difference a − b. Observe that e2 = c2 − 2d and
D(e) = 0. The pyramid and prism operators Pyr and Prism are defined by

Pyr(w) = w · c + G(w) =
1

2
· (w · c + D(w) + c · w),

Prism(w) = w · c + D(w).

The name of these operators comes from that they correspond to the same operators on polytopes. That is,
for a polytope P , let Pyr(P ) be the cone of P and let Prism(P ) be the Cartesian product with a line segment.
Then the following two relations hold:

Ψ(Pyr(P )) = Pyr(Ψ(P )), Ψ(Prism(P )) = Prism(Ψ(P ));

see [9, Theorems 4.4 and 5.2]. Especially, for the n-dimensional simplex ∆n and the n-dimensional cube 2n we
have

Ψ(∆n) = Pyrn(1), Ψ(2n) = Prismn(1),

since the cd-index of the 0-dimensional polytope, that is, a point, is 1.
Define the cd-polynomials An by A0 = 1,

A2k =
1

2
·
(
(c2 − 2d)k + c · (c2 − 2d)k−1 · c

)
,

A2k+1 = −1

2
·
(
(c2 − 2d)k · c + c · (c2 − 2d)k

)
.

The negatives of these polynomials were defined in [2, Section 3]. Similarly define the polynomial sequence Bn

by

B2k = (c2 − 2d)k, B2k+1 = −c · (c2 − 2d)k.

These polynomials appear in Stanley’s proof of the existence of the cd-index; see [10, Proof of Theorem 1.1].

Lemma 2.1. The polynomial sequences An and Bn satisfy the recursions:

An+1 = −c ·An + Pyr(An)−An · c, (2.1)

Bn+1 = −c ·Bn + Prism(Bn)−Bn · c. (2.2)

The recursion (2.1) is basically the third equation on page 428 in [2], but for completeness we include a
proof.

Proof of Lemma 2.1. The two relations in the lemma can be rewritten as

An+1 =
1

2
· (−c ·An + D(An)−An · c), (2.3)

Bn+1 = −c ·Bn + D(Bn). (2.4)

We prove these identities by considering the even versus odd cases. First note that D(e) = 0, hence

D(u · (c2 − 2d)k · v) = D(u) · (c2 − 2d)k · v + u · (c2 − 2d)k ·D(v).

To make expressions shorter let X = (c2−2d)k and Y = (c2−2d)k−1 such that X = (c2−2d)·Y = Y ·(c2−2d).
When n = 2k is even, the left-hand side of (2.3) and the left-hand side of (2.4) are:

−c ·An + D(An)−An · c
2

=
−c · (X + cY c) + D(X + cY c)− (X + cY c) · c

4

=
−cX + (2d− c2) · Y c−Xc + cY · (2d− c2)

4

=
−cX −Xc

2
= An+1,

−c ·Bn + D(Bn) = −c ·X + D(X) = −c ·X = Bn+1.
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When n = 2k + 1 is odd, the two left-hand sides are:

−c ·An + D(An)−An · c
2

=
c · (Xc + cX)−D(Xc + cX) + (Xc + cX) · c

4

=
(c2 − 2d) ·X + 2 · cXc + X · (c2 − 2d)

4

=
(c2 − 2d)k+1 + cXc

2
= An+1,

−c ·Bn + D(Bn) = c2X −D(cX) = (c2 − 2d) ·X = Bn+1.

Finally observe the n = 0 case for the first recursion is (−c · A0 + D(A0) − A0 · c)/2 = −(2c)/2 = −c = A1,
completing the lemma.

3. Results

We now explore the powers of the pyramid and prism operators. They satisfy a rule related to the Leibniz’
product rule for derivatives.

Proposition 3.1. For two ab-polynomials u and v the following two identities hold:

Pyrn(u · v) =
∑

i+j+k=n

(
n

i, j, k

)
· Pyri(u) ·Aj · Pyrk(v), (3.1)

Prismn(u · v) =
∑

i+j+k=n

(
n

i, j, k

)
· Prismi(u) ·Bj · Prismk(v). (3.2)

Proof. We begin by proving (3.1) for the pyramid operation. For n = 0 there is nothing to prove since A0 = 1.
For n = 1 we have

Pyr(u · v) = u · v · c + G(u · v)

= u · c · v + G(u) · v − u · c · v + u · v · c + u ·G(v)

= Pyr(u) · v − u · c · v + u · Pyr(v). (3.3)

Since A1 = −c this completes the case n = 1. By applying (3.3) twice we have

Pyr(u · v · w) = Pyr(u) · v · w − u · c · v · w + u · Pyr(v) · w − u · v · c · w + u · v · Pyr(w). (3.4)

We prove the identity by induction on n. The base case n = 1 is already done. For the induction step it is
enough to observe by equation (3.4) that

Pyr(Pyri(u) ·Aj · Pyrk(v))

= Pyri+1(u) ·Aj · Pyrk(v)

− Pyri(u) · c ·Aj · Pyrk(v) + Pyri(u) · Pyr(Aj) · Pyrk(v)− Pyri(u) ·Aj · c · Pyrk(v)

+ Pyri(u) ·Aj · Pyrk+1(v).

The second through fourth terms in this expression combine to

Pyri(u) · (−c ·Aj + Pyr(Aj)−Aj · c) · Pyrk(v) = Pyri(u) ·Aj+1 · Pyrk(v),

using equation (2.1). Observe that applying the pyramid operator to the term indexed by (i, j, k) in the
expansion for n yields the terms indexed by (i + 1, j, k), (i, j + 1, k) and (i, j, k + 1) in the expansion for n + 1,
proving the identity (3.1). The proof for the identity (3.2) is parallel to the proof of the first identity with the
difference that we use the derivative D, B0 = 1, B1 = −c and the recursion in (2.2).

Let ePyr and ePrism denote the two operators

ePyr =
∑
n≥0

Pyrn

n!
, ePrism =

∑
n≥0

Prismn

n!
.
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Proposition 3.2. For two ab-polynomials u and v the following two identities hold:

ePyr(u · v) = ePyr(u) ·
∑
n≥0

An

n!
· ePyr(v), (3.5)

ePrism(u · v) = ePrism(u) ·
∑
n≥0

Bn

n!
· ePrism(v). (3.6)

Proof. Divide the two identities in Proposition 3.1 by n! and sum over all n.

Theorem 3.1. The exponential generating function for the cd-indices of the simplices is given by∑
n≥0

Ψ(∆n)

n!
=

2

1 + cosh(e) + ce−1(cosh(e)− 1)e−1c− sinh(e)e−1c− ce−1 sinh(e)
.

Proof. First observe that the sought-after generating function is ePyr(1). Next set u = 1 (or v = 1) in equa-
tion (3.5) and solve for ePyr(1). We obtain

1

ePyr(1)
=
∑
n≥0

An

n!
= 1 +

1

2
·
∑
k≥1

(c2 − 2d)k + c · (c2 − 2d)k−1 · c
(2k)!

− 1

2
·
∑
k≥0

(c2 − 2d)k · c + c · (c2 − 2d)k

(2k + 1)!
.

We now use that c2 − 2d = (a− b)2 = e2 and can thus express the above generating function in terms of the
hyperbolic functions:

1

ePyr(1)
=

2 + cosh(e)− 1 + ce−1(cosh(e)− 1)e−1c− sinh(e)e−1c− ce−1 sinh(e)

2
.

Note that (cosh(e) − 1)e−2 = e−1(cosh(e) − 1)e−1 = e−2(cosh(e) − 1) and sinh(e)e−1 = e−1 sinh(e). But
as a matter of taste we have picked the most palindromic expressions. Note also how our expression in the
theorem differs from [10, Corollary 1.4].

Theorem 3.2. The exponential generating function for the cd-indices of the cubes is given by∑
n≥0

Ψ(2n)

n!
=

1

cosh(e)− ce−1 sinh(e)
.

Proof. Our goal is to determine ePrism(1). Again set u = 1 (or v = 1) but now in equation (3.6) and solve for
ePrism(1). We obtain

1

ePrism(1)
=
∑
n≥0

Bn

n!
=
∑
k≥0

(c2 − 2d)k

(2k)!
−
∑
k≥0

c · (c2 − 2d)k

(2k + 1)!
= cosh(e)− ce−1 sinh(e).

4. Concluding remarks

Is there a poset theoretic approach to explain the two identities in Proposition 3.1? The polynomial (−1)j ·Aj

is the cd-index of the Whitney stratified space consisting of a j-dimensional ball whose boundary is a point and
a (j − 1)-dimensional ball; see [8, Example 6.15]. Could this interpretation help in giving a more combinatorial
proof of equation (3.1)? For equation (3.2) the polynomial (−1)j · Bj has a similar interpretation; see [8,
Example 6.14].

It is interesting to note that the generating function for the cubes is more compact than the corresponding
generating function for simplices. Is this fact related to that there is a straightforward expression for the
cd-index of the cube in terms of permutations? See [3, Proposition 8.1]. Furthermore, the ab-index of the
n-dimensional cube is a non-commutative extension of the Eulerian polynomial of type B.

Are there other examples of the grammatical calculus that can be lifted to the non-commutative world?
In the papers [5, 6] Chen and Fu also use the multiplicative inverses of the variables in their algebra to derive
identities. Can the multiplicative inverses of a and b be used in a similar manner? For instance, we have
Pyr(a−1) = Pyr(b−1) = 1.
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