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1. Introduction

Bijections between Catalan objects are well understood. For instance, see [11]. There are many generalizations

of these objects and the bijections between them. In [10], Stanley provides a bijection between certain standard

Young tableaux and dissections of a polygon. In [6, Proposition 2.3], the authors provide a bijection between

the same tableaux and certain Dyck paths. Meanwhile, various papers consider a certain collection of skew

standard Young tableaux—which may be seen as a generalization of the aforementioned tableaux—which are

used to compute formulas for the ordinary and equivariant Kazhdan–Lusztig polynomial for uniform, sparse

paving, and paving matroids [2, 3, 7–9].∗

The primary goal of this paper is to generalize the bijection in [6, Proposition 2.3], so that it involves the

skew tableaux mentioned above, while simultaneously including bijections involving certain triangulations. As

a result of these bijections, properties of the skew tableaux will have implications for the Dyck paths and

triangulation objects of interest. Motivated by our findings, we then find a combinatorial bijection between the

dissections in [10] and our triangulations.

In the next section, we will define relevant terminology for skew standard Young tableaux in Subsection

2.1, Dyck paths in Subsection 2.2, and then both dissections and triangulations in Subsection 2.3. Then in

Subsection 2.4, we discuss the main results and findings of this paper in detail. In Sections 3 and 4, we

provide the definitions for the maps involved in the main results. Finally, in the Appendix, we give some tables

enumerating the objects in this paper.

∗Kazhdan-Lusztig polynomials for matroids were first defined in [1].
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2. Background and Main Results

2.1 skew standard Young tableaux

Definition 2.1. Let λ1 ≥ λ2 ≥ · · · ≥ λk be positive integers. We say that λ = [λ1, λ2, . . . , λk] is a partition of

n if λ1 + · · ·+ λk = n. The Young diagram of shape λ is represented by boxes that are left justified so that the

ith row has λi boxes. A standard Young tableau is achieved by filling the boxes with the numbers so that

• each row strictly increases from left to right;

• each column increases from top to bottom; and

• if there are n boxes, the numbers 1 through n are used exactly once.

See Figure 1 below for an example of a Young diagram and a standard Young tableau.

1 3 7 11 12 14 15

2 5 13 16

4 8

6 10

9

Figure 1: The Young diagram and a standard Young tableau of shape [7, 4, 2, 2, 1].

Definition 2.2. Given partitions µ = [µ1, . . . , µ`] and λ = [λ1, . . . , λk] so that µi ≤ λi for all i, the skew Young

diagram λ \ µ is the set of squares from the diagram for λ that are not in the diagram for µ. As before, we

define a skew standard Young tableau to be a skew Young diagram filled with numbers following the same rules

described for standard Young tableau.

See Figure 2 for an example of a skew standard Young tableaux.

1 2 3 9 11

4 6 7

5

8 10

12

Figure 2: A skew standard Young tableaux of shape λ \ µ where λ = [7, 4, 2, 2, 1] and µ = [2, 1, 1].

The authors in [9] introduce the notation Skyt(a, i, b) to denote the skew standard Young tableaux of shape

[(i + 1)b, 1a−2]/[ib−2], where we write xt to denote x, x, . . . , x, where x is written t times. These are precisely

the skew tableaux we discussed in the introduction. The diagram for the tableaux in Skyt(a, i, b) is shown in

Figure 3.

In [9], the authors provide the following enumeration for # Skyt(a, i, b).

Lemma 2.1. [9, Lemma 5]

# Skyt(a, i, b) =

(
a+ i− 2

i

)(
a+ b+ 2i− 2

b+ i− 1

) b−2∑
k=0

(
b+i−k−3

i−1
)(

a+i+k
k+1

)
This, in turn, gives a formula for the other objects in this paper which we show are in bijection with

Skyt(a, i, b).
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a i

b

Figure 3: The diagram for Skyt(a, i, b).

2.2 Dyck Paths

Definition 2.3. A Dyck path of semi-length n is a string in {U,D}2n so that

1. the string has the same number of U’s and D’s (that is, n of each); and

2. the number of U’s is at least the number of D’s in any initial segment of the word.

We will also often represent such a path visually using (1, 1) segments for U and (−1, 1) segments for D, as

in Figure 4.

Figure 4: The visual representation of the path corresponding to UDU3DUD2UDU2D3.

Definition 2.4. A long ascent is a maximal ascent of length at least 2. A singleton is a maximal ascent of

length 1. Let Dyck(n, `, s) be the Dyck paths of semi-length n with ` long ascents and s singletons so that no

singleton appears after the last long ascent.

Thus, the Dyck path in Figure 4 is an element of Dyck(8, 2, 3).

2.3 Dissections and Triangulations

Throughout this section, we assume polygons with n vertices have their vertices labeled 1 through n in counter-

clockwise order.

Definition 2.5. A dissection of a polygon P is a way of adding chords between non-adjacent vertices so that

no two chords intersect in the interior of the polygon. Throughout, we let Dis(n, i) be the set of all dissections

of an n-gon with i chords. Note that i in Dis(n, i) is at most n − 3. The elements of Dis(n, n − 3) are the

triangulations of an n-gon.

Given a vertex x in a triangulated polygon, a fan at x is a maximal collection of triangles all containing x.

In this case, we call x the origin of the fan. A singular fan is a fan with only one triangle. Let e be a boundary

edge of a fan F at x.

We are interested in being able to uniquely partition a triangulation into a collection of fans. This leads to

the following definition.

Definition 2.6. Let T be a triangulation. A fan decomposition is the pair of sequences (F(T ), δ(T )), where

F(T ) and δ(T ) are defined as follows:

ECA 4:3 (2024) Article #S2R19 3
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• We let F(T ) be a sequence of fans defined recursively as follows. Let F1 be the fan at the vertex with the

smallest label. Delete this vertex and all edges incident with it in T to obtain a sequence of triangulations

T1, . . . , Tk, arranged in counter clock-wise order so that Ti ∩ Ti+1 consists of a single vertex. If T is just

an edge, then F(T ) is the empty sequence, and otherwise F(T ) := (F1, F2, . . . ,Fk) where Fi = F (Ti−1).

• Let xj be the label of the origin of Fj. We let δ(T ) := (d1, . . . , dk−1), where di := xi+1 − xi and k is the

number of fans in F(T ).

• Given a fan Fi, let the size of Fi be the number of triangles in Fi.

Remark 2.1. Let T = ((F1, F2, ..., F`), (d1, d2, ..., d`)) be a triangulation. For every k ≤ `, there is a relationship

between
∑k

j=1 di and
k∑

j=1

number of triangles in Fj

that will be useful later. One can think of di as the number of edges between the origins of Fi and Fi+1

when traveling along the boundary of T counter-clockwise. Note that
∑k

j=1 dj is the distance between the

origins of F1 and Fk i.e., the distance between x1 and xk. Now, let Tk be the triangulation obtained by

((F1, F2, . . . , Fk), (d1, . . . , dk−1)), that is, Tk is the part of T built from the first k fans in T . Let nk be the

number of triangles in Tk, i.e, Tk is a triangulation of nk + 2-gon. Note that if Fk+1 is attached to the vertex

nk +2 in order to get Tk+1, then that fan is attached to the edge (1, nk +2) and triangle from Fk+1 with vertices

1, nk + 2, and nk+1 + 2 will become part of F1. Thus xk cannot be the vertex labeled with nk + 2. Thus, since

x1 = 1 and xk ≤ nk + 1,

k∑
j=1

di = xk − x1 ≤ nk =

k∑
j=1

number of triangles in Fj .

Example 2.1. Consider the triangulation T in Figure 5. Observe that F(T ) = (F1, F2, F3, F4, F5) where F1

is the size 1 fan at vertex 1, F2 is the size 3 fan at vertex 2, F3 is the size 1 fan at vertex 4, F4 is the size 1

fan at vertex 5, and F5 is the size 4 fan at vertex 7. Thus, δ(T ) = (1, 2, 1, 2). Figure 5 shows the five fans,

distinguishing them by thick boundary edges and different shades of orange in their interior. The white vertices

correspond to the origins of the fans.

1
2

3

4

5
6 7

8

9

10

11
12

Figure 5: A triangulation and its partition into fans.

Remark 2.2. Observe that a fan decomposition uniquely determines T . That is, knowing the order and size of

each fan along with the distance between the origins of consecutive fans uniquely determines a triangulation.

Let Tri(n, t, s) be the triangulations T of an n-gon so that F(T ) has s+ t fans so that precisely s are singular

and so that the last fan is not singular. Thus, the triangulation in Figure 5 is an element of Tri(12, 2, 3).

2.4 Main Results

We now may state the main results of this paper. First, let us state [6, Proposition 2.3], the result which we

plan to generalize. We state the result by referencing the object Skyt(a, i, b) we defined above.

ECA 4:3 (2024) Article #S2R19 4
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Proposition 2.1 ( [6]). The tableaux in Skyt(a, i, 2) are in bijection with Dyck paths of length 2(a + 2i) with

i+ 1 peaks and no singletons.

In Section 3, we will provide explicit combinatorial maps which give us the following Theorem.

Theorem 2.1. The following objects are in bijection:

1. Skyt(a, i, b);

2. Dyck(a+ b+ 2i− 2, i+ 1, b− 2); and

3. Tri(a+ b+ 2i, i+ 1, b− 2).

Proof. The maps between the three objects are defined in section 3. For convenience, we identify maps according

to where the map is from and to by using S for skew standard Young tableaux, T for Triangulations, and D for

Dyck paths. For instance, ST represents the map from skew standard Young tableaux to triangulations, and TD

represents a map from triangulations to Dyck paths. The following pairs of maps are mutual inverses:

• maps SD and DS;

• maps ST and TS; and

• maps TD and DT.

Note that this generalizes the result stated in Proposition 2.1, in addition to adding a triangulation inter-

pretation.

With the original motivation for this paper in mind, we specialize Theorem 2.1 to b = 2. After incorporating

the work of [10] which provides a combinatorial bijection between Dis(n+ 2, i) and Skyt(n− i+ 1, i, 2), we have

the following.†

Corollary 2.1. The following objects are in bijection.

1. Dis(n+ 2, i).

2. Skyt(n− i+ 1, i, 2).

3. Dyck(n+ i+ 1, i+ 1, 0).

4. Tri(n+ i+ 3, i+ 1, 0).

By specializing the maps involved in Theorem 2.1, we already have combinatorial bijections between the

standard Young tableaux, Dyck paths, and triangulations in this theorem. Note that the bijection between

Skyt(n− i+ 1, i, 2) and Dyck(n+ i+ 1, i+ 1, 0) is precisely the proof of Proposition 2.1.

This leaves two pairs of objects with missing combinatorial bijections. In section 4 we demonstrate a bijection

between the dissections and triangulations given in this corollary. Using our bijection between Dyck paths and

Triangulations, one can extend our work in section 4 to give a bijection between the dissections and Dyck paths

in Corollary 2.1, but we omit this interpretation from this paper.

After some rewriting, with Lemma 2.1 in mind, we have the following.

Corollary 2.2.

# Dyck(n, `, s) =

(
s+ 3`− n− 1

`− 1

)(
n

s+ `

) s∑
k=0

(
s+`−k−2

`−2
)(

s+3`−n+k+1
k+1

)
Corollary 2.3.

# Tri(n, t, s) =

(
s+ 3t− n− 3

t− 1

)(
n

s+ t

) s∑
k=0

(
s+t−k−2

t−2
)(

s+3t−n+k−1
k+1

)
†It is worth noting that this connection between Skyt(a, i, b) and dissections of polygons has resurfaced recently in the work

of Kazhdan-Lusztig polynomials for Matroids [1]. Compare the comments in [5, Remark 5.3] with the representation theoretic

result [4, Theorem 3.1] after setting m = 1 and considering dimensions.
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Using these formulas, one can attain enumeration for each of these objects. We provide tables for some cases

in the Appendix.

For our final result, we recall the following lemma in terms of Dyck paths and triangulations.

Lemma 2.2. [8, Lemma 5] Let a, i, and b be nonnegative integers. Then

# Skyt(a, i, b) = # Skyt(b, i, a).

One may apply Theorem 2.1 to this Lemma in order to get the following.

Corollary 2.4.

1. Let n, `, s be nonnegative integers. Then

# Dyck(n, `, s) = # Dyck(n, `, n− s− 2`).

2. Let n, t, s be nonnegative integers. Then

# Tri(n, t, s) = # Tri(n, t, n− t− 2`− 2).

Although these equalities are naturally obtained with Theorem 2.1 and Lemma 2.2, there is no known direct

combinatorial bijection describing these equalities. Hence we pose the following.

Problem 2.1. Find a direct combinatorial proof of Corollary 2.4 which does not rely on using the skew tableaux

or bijections given in this paper.

3. Combinatorial Bijections

The following subsections describe maps going between any two of the objects given in Theorem 2.1. Recall

that, we identify maps according to where they map from and to by using S for skew standard Young tableaux,

T for Triangulations, and D for Dyck paths. Examples are used to alleviate any ambiguity with our maps.

Before proceeding, however, we will point out a handy reinterpretation of the tableaux in Skyt(a, i, b). Let

λ ∈ Skyt(a, i, b). Let X = {x1, x2, . . . , xi+b−1} be the set of values in the top b− 1 rows so that x1 < x2 < · · · <
xi+b−1. If xj is in row b−1, define yj to be the entry in the tableau directly below xj . Then for 1 ≤ j < i+b−1

let

Aj :=

{xj} if xj is in the first b− 2 rows;

{xj} ∪ ([yj , yk − 1] \X) if xj is in row b− 1 and yk is to the right of yj ,

where [yj , yk − 1] = {yj , yj + 1, yj + 2, . . . , yk − 1}. Let Ai+b−1 := {xj}∪
(
[xj + 1, a+ b+ 2i− 2] \X

)
. Note that

xj is always the minimum of Aj . When |Aj | > 1, note the elements of Aj are precisely the entries in row b− 1

and b in column j along with all entries of column 1 which are between yj and yk. See Figure 6.

The sequence (A1, . . . , Ai+b−1) has enough information to reconstruct λ. Starting with j = 1, do the

following.

1. If Aj = {x}, then place x in the highest possible position in the last column.

2. If |Aj | > 1, then let xj = minAj and yj = min(Aj \ {xj}). Place xj in row b− 1 column j and place yj in

row b column `, where j is the `-th number such that |Aj | > 1. Place all remaining entries from Aj—in

increasing order—at the top most available position(s) in the first column.

3. Increase the value of j by 1. If j < i+ b− 1, repeat these steps. Otherwise, λ is filled and we are done.

Let xj and yj be defined in step (2) of the preceding procedure. Pick an integer j′ minimally so that j < j′

and |Aj′ | > 1. Note that (A1, . . . , Ai+b−1) is an ordered partition of [a + b + 2i − 2] so that xj < xj+1 and

yj < yj′ , whenever yj and yj′ exist. These conditions guarantee that the rows of λ increase left-to-right. In

fact, these give rise to a particular type of partition defined in [6], which we restate here in our own notation.

ECA 4:3 (2024) Article #S2R19 6
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1

4

5

10

2 7 12

3 8 13

6

9

11

14

15

1

4

5

10

2 7 12

3 8 13

6 9 14

11 15

Figure 6: We “push” entries below row b as far right as possible while maintaining the property that columns

increase from top to bottom. We have A1 = {1}, A2 = {2, 3, 6}, A3 = {4}, A4 = {5}, A5 = {7, 8, 9, 11},
A6 = {10}, A7 = {12, 13, 14, 15}.

Definition 3.1. Let A1, A2, ..., Ak be a partition of [n] so that x1 < x2 < · · · < xk, where xi = minAi. We

say this partition is nomincreasing if the max(Ai) < min(Ai+1\{xi+1}), provided both |Ai| and |Ai+1| are larger

than 1.

We leave it to the reader to verify our sequence (A1, A2, . . . , Ai+b−1) is indeed nomincreasing. In light of

that, we define the following.

Definition 3.2. Let λ ∈ Skyt(a, i, b) and define A1, . . . , Ai+b−1 for λ as above. We define Nom(λ) to be the

nomincreasing partition Nom(λ) := (A1, A2, . . . , Ai+b−1).

Remark 3.1. One thing that will be useful to note for future reference is that for Nom(λ) = (A1, . . . , Ai+b−1),

we always have |Ai+b−1| > 1. This is preceisely because with the aforementioned choice of x1 < · · · < xi+b−1,

we always have that xi+b−1 is the entry in row b − 1 column i + 1 of λ. In particular, this means given a

nomincreasing sequence (A1, . . . , Ai+b−1), even if i + 1 of the Aj satisfy |Aj | > 1 and the remaining satisfy

|Aj | = 1, there does not necessarily exists a λ ∈ Skyt(a, i, b) so that Nom(λ) = (A1, . . . , Ai+b−1). Additionally,

we need to have |Ai+b−1| > 1. Given this, though, such a λ must exist.

3.1 Map SD

In this section, we define the map SD from Skyt(a, i, b) to Dyck(a + b + 2i − 2, i + 1, b − 2). For simplicity, let

n := a + b + 2i − 2. Note that given λ ∈ Skyt(a, i, b), n is the number of entries in λ and t is the number of

entries in the first b− 1 rows of λ.

Definition 3.3. Let λ ∈ Skyt(a, i, b). We define SD(λ), a certain lattice path, as follows.

Let Nom(λ) = (A1, . . . , Ai+b−1). Let xj denote the minimum of Aj. Let aj := |Aj |. Then let SD(λ) be the

lattice path given by the following string in {U,D}2n:

Ua1Dx2−x1Ua2Dx3−x2 · · ·Uat−1Dxt−xt−1UatDn−xt+x1 . (1)

Lemma 3.1. Given λ be a tableau in Skyt(a, i, b), SD(λ) is a Dyck path. In particular, the lattice path SD(λ) is

an element of Dyck(n, i+ 1, b− 2).

Proof. Recall that given λ ∈ Skyt(a, i, b), we can have Nom(λ) = (A1, . . . , Ai+b−1) where |Ai+b−1| > 1. Recall

that xj = minAj is an entry in the top b− 1 rows of λ.

In the string given in (1), U corresponds to an up step and D corresponds to a down step. Note that for any

k, we have [x1, xk] ⊆ A1 ∪ · · · ∪Ak. Otherwise, there exists a w ∈ [x1, xk] so that w ∈ Aj for some j > k. Then

we have w ≥ xj > xk ≥ w, a contradiction.

ECA 4:3 (2024) Article #S2R19 7
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Thus, for k < t
k∑

j=1

(xj+1 − xj) = xk+1 − x1 ≤
k∑

j=1

aj .

Also,  t∑
j=1

(xj+1 − xj)

+ (n− xt + x1) = xt − x1 + n− xt + x1 = n.

Moreover, there are precisely b − 2 of the aj so that aj = 1, and there are i + 1 of the aj so that aj > 1.

Also, observe that ai+b−1 > 1, so the last ascent in SD(λ) is not a singleton. Consequently, the constructed

Dyck path is an element of Dyck(n, i+ 1, b− 2).

Example 3.1. Recall the skew standard Young tableau from figure 6. Note that, x1 = 1, x2 = 2, x3 = 4, x4 =

5, x5 = 7, x6 = 10, and x7 = 12. As x2, x5 and x7 are the entries in row 5, yi is defined for i = 2, 5, 7. We have

y2 = 3, y5 = 11, and y7 = 13. Thus, A1 = {1}, A2 = {2, 3, 6}, A3 = {4}, A4 = {5}, A5 = {7, 8, 9, 11}, A6 = {10},
and A7 = {12, 13, 14, 15}.

2
3
6

9
11

7
8

14
15

12
13

1
4
5
10

Thus SD(λ) is the Dyck path given by UDU3D2UDUDDU4D3UDDU4D4.

3.2 Map DS

This subsection gives the map DS from Dyck(n, `, s) to Skyt(n− s− 2`− 2, `− 1, s+ 2), which is the inverse of

SD . The reader can verify that they are indeed inverses.

Definition 3.4. Let P be a Dyck path in Dyck(n, `, s). We define DS(P ), a skew tableau, as follows.

Given P , label the down-steps, left to right, in increasing order, from 1 to n. Next, use the label on the down-

step at each peak as the label for the up-step at the same peak. Going through the ascents from left to right,

greedily label the unlabeled up-steps from top to bottom using the smallest possible numbers from [a+ 2i+ b− 2]

not already appearing on any up-step.

Let Aj be the labels appearing on the jth ascent. Now construct DS(P ) so that Nom
(
DS(P )

)
= (A1, . . . , A`+s).

Lemma 3.2. Given a Dyck path P in Dyck(n, `, s), the tableau DS(P ) is a skew standard Young tableau in

Skyt(n− s− 2`− 2, `− 1, s+ 2).

Proof. There are ` + s ascents in P . Thus, precisely ` of the Aj satisfy |Aj | > 1, and precisely s of the Aj

satisfy |Aj | = 1. Next, notice that (A1, . . . , A`+s) is a nomincreasing sequence due to the greedy labeling of up

steps of P . Also, note that |As+`| > 1 since the last ascent in P is not a singleton. Since there are n up steps

in P , we have DS(P ) ∈ Skyt(n− s− 2`− 2, `− 1, s+ 2).

Example 3.2. Given a Dyck path in Dyck(15, 3, 4), we first label the down-steps, left to right, in increasing

order.

1

2
3 4 5

6

7
8

9 10
11

12
13

14
15

ECA 4:3 (2024) Article #S2R19 8
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Then label the upstep of each peak:

1

2
4 5

7

10

12

Now greedily label remaining up-steps.

1

2
3

6
4 5

7
8

9
11

10

12
13

14
15

Thus, we have A1 = {1}, A2 = {2, 3, 6}, A3 = {4}, A4 = {5}, A5 = {7, 8, 9, 11}, A6 = {10}, and A7 =

{12, 13, 14, 15}. The map DT gives the tableau in Figure 7.

2
3
6

11
9

7
8

14
15

12
13

1
4
5
10

Figure 7: The construction of the skew tableaux in the final steps of the DS map.

3.3 Map DT

The inspiration for the following map DT, a map from Dyck(n, `, s) to Tri(n+2, `, s), comes from [11, Proposition

6.2.1].

Definition 3.5. Let P be a Dyck path in Dyck(n, `, s). We define DT(P ) as a certain type of triangulation, as

follows.

A Dyck path in Dyck(n, `, s) has the form

Uu1Dd1Uu2Dd2 · · ·Uus+`Dds+` ,

where s is the number of singletons, ` is the number of long ascents, and the ui and di are positive integers.

Recall that the triangulation is determined by its fan decomposition. Let Fj be a fan with uj triangles. Then

DT(P ) is given by the fan decomposition
(
(F1, . . . , Fs+`), (d1, . . . , ds+`−1)

)
. Lemma 3.3 proves that this pair of

sequences is indeed a valid fan decomposition.

Lemma 3.3. If P is a Dyck path in Dyck(n, `, s), then DT(P ) is a triangulation in Tri(n+ 2, `, s).

Proof. Given P ∈ Dyck(n, `, s), note that the number of triangles in DT(P ) is given by sum of sizes of Fj :

s+∑̀
j=1

uj = n.

As DT(P ) has n triangles, the boundary must have n + 2 edges. Also note that since there is no singleton

after the last long ascent in our Dyck path, the last fan F(T ) will not be a singleton fan. Since ` of the uj satisfy

uj > 1, our triangulation has ` non-singular fans. Similarly, since s of the uj satisfy uj = 1, our triangulation

has s singular fans. Thus, we have constructed a triangulation in Tri(n+ 2, `, s), where the vertices are labeled

as follows: label the origin of F1 as 1, and then label the remaining vertices from 2 to n in clock-wise order by

starting at 1 and traveling along the boundary of the triangulation.

ECA 4:3 (2024) Article #S2R19 9
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Example 3.3. Consider the path below.

Associated to this are five fans, given below. We shade these fans differently so we may more easily keep

track of them throughout.

F1 F2
F3 F4 F5

The sequence of the numbers of down steps in this Dyck path, omitting the last descent, is (1, 2, 1, 2). Thus

origins of F1 and F2 are one edge apart when attaching the fans. Below are the subsequent steps of attaching

Fj.

Redrawn with vertex labels, we have the following, where the vertex labeled 1 is the origin of F1, the vertex

labeled 2 is the origin of F2, and so on.

1
2

3

4

5
6 7

8

9

10

11
12

3.4 Map TD

In this section, we construct the map TD from Tri(n, t, s) to Dyck(n− 2, t, s), which is the inverse to DT.

Definition 3.6. Given T ∈ Tri(n, t, s), we define TD(T ), a certain lattice path, as follows.

Consider the fan decomposition (F(T ), δ(T )) = ((F1, F2, . . . , Ft+s), (d1, . . . , dt+s−1). Let xj denote the label

of the origin of Fj in T and let dt+s be the number of boundary edges from xt+s to x1 minus 2. Letting uj be

the number of triangles in Fj, define TD(T ) to be

Uu1Dd1Uu2Dd2 . . .Uut+sDdt+s .

Lemma 3.4. If T ∈ Tri(n, t, s), then the string TD(T ) is a Dyck path in Dyck(n− 2, t, s).

Proof. We claim TD(T ) is a valid Dyck path. First, note that given any fan decomposition of a triangulation

on n vertices, the largest label for an origin is n − 1. Thus, the largest number of boundary edges between

the first and last origin (traveling counter-clockwise) is n− 2, which is precisely the number of triangles in the

triangulation. By Remark 2.1, we see that
k∑

j=1

dj ≤
k∑

j=1

uj .

Also, note that

t+s∑
j=1

uj = number of triangles in T = n− 2 = number of boundary edges of T minus 2 =

t+s∑
j=1

dj .
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Hence this path is a Dyck path with semi-length n − 2. Also, note that the number of singletons in TD(T ) is

precisely the number of uj which equals 1, which is the number of singleton fans in T , which is s. This also

means that TD(T ) has t long ascents. Finally, note that ut+s = #Ft+s ≥ 2 since Ft+s is the last fan in F(T ).

Hence, we have constructed a path in Dyck(n− 2, t, s).

Example 3.4. Suppose we start with the following triangulation.

1
2

3

4

5
6 7

8

9

10

11
12

Below, we identify the origins of the fans in F = (F1, F2, F3, F4, F5) by using white dots for such vertices.

1
2

3

4

5
6 7

8

9

10

11
12

Hence, F1, F3, and F4 are all fans of size 1, F2 is a fan of size 3, and F5 is a fan of size 4. The origins of

these fans are identified in the image below. Consequently, u1 = u3 = u4 = 1, u2 = 3, and u5 = 4. Also note

that d1 = d3 and d2 = d4 = 2. Hence we have the Dyck path UDU3D2UDUD2U4D4, which visualized gives the

following path.

3.5 Map ST

In this section, we construct the map ST from Skyt(a, i, b) to Tri(a+ b+ 2i, i+ 1, b− 2). This map is an explicit

interpretation of the map SD composed with DT without needing to bring up Dyck paths.

Definition 3.7. Given a tableau λ ∈ Skyt(a, i, b), we define ST(λ), a triangulation, as follows.

Let dj = xj+1 − xj, where x1, . . . , xi+b−1 are the entries in the top b− 1 rows of λ so that x1 < x2 < · · · <
xi+b−1. Let Nom(λ) = (A1, . . . , Ai+b−1). For 1 ≤ j ≤ i + b − 1, let fj = |Aj |. Let Fj be a fan of size fj.

Then we define ST(λ) to be the triangulation whose fan decomposition is (F , δ), where F = (F1, . . . , Fi+b−1)

and δ = (d1, . . . , di+b−2).

Lemma 3.5. Let λ ∈ Skyt(a, i, b). Then ST(λ) ∈ Tri(a+ b+ 2i, i+ 1, b− 2).

Proof. Recall triangulations are uniquely determined by their fan decomposition, and thus ST(λ) is guaranteed

to be a triangulation. Note that the number of triangles in this triangulation is precisely the number of entries

of λ, which is a+ b+ 2i− 2. Hence, the boundary of our constructed triangulation has a+ b+ 2i edges. Recall

that among A1, . . . , Ai+b−1, precisely i + 1 have cardinality larger than 1, and precisely b − 2 have cardinality

exactly 1. Thus, our proposed fan decomposition for ST(λ) has precisely i+1 nonsingular fans and b−2 singular
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fans. Finally, note that by construction, fi+b−1 > 1 since |Ai+b−1| > 1 by construction of Nom(λ). That is, the

last fan appearing in F is not singular. All together, this verifies that we have constructed a triangulation in

Tri(a+ b+ 2i, i+ 1, b− 2).

Example 3.5. Consider the following choice for λ.

1

4

2 5 7

3 6 9

8

10

Hence, A1 = {1}, A2 = {2, 3}, A3 = {4}, A4 = {5, 6, 8}, and A5 = {7, 9, 10}. We have x1 = 1, x2 = 2,

x3 = 4, x4 = 5, and x5 = 7. Thus, d1 = 1, d2 = 2, d3 = 1, and d4 = 2. Also f1 = 1, f2 = 2, f3 = 1, f4 = 3,

and f5 = 3. This constructs the following triangulation.

1
2

3

4

5
6 7

8

9

10

11
12

3.6 Map TS

In this section, we construct a map TD from Tri(n, t, s) to Skyt(n−2−s−2t, t−1, s+2), which is the inverse to

ST. This map is an explicit interpretation of the map TD composed with DS without needing to bring up Dyck

paths.

Definition 3.8. Let T ∈ Tri(n, t, s). We define TS(T ), a skew tableau, as follows. We label the triangles in the

triangulation in the following way: For each fan, label a triangle with the label of the fan’s origin. Then, greedily

label other triangles with the unused integers in [1, n − 2] in the order that fans appear in F(T ). (Triangles

within a single fan need not be labeled in any particular order.) Let Aj be the labels appearing in the fan Fj.

Let TS(T ) be the skew diagram so that Nom
(
TS(T )

)
= (A1, . . . , At+s).

Lemma 3.6. Given T ∈ Tri(n, t, s), we have TS(T ) ∈ Skyt(n− 2− s− 2t, t− 1, s+ 2).

Proof. Note that the number of Aj so that |Aj | = 1 is precisely the number of singleton fans in T , which is

s. Also, the number of Aj so that |Aj | > 1 is t. Next, notice that (A1, . . . , A`+s) is a nomincreasing sequence

due to the greedy labeling of the triangles in T , and we also have that |A`+s| > 1 since F`+s, the last fan

appearing in F(T ), must contain more than 1 triangle. Finally, the number of triangles in T is n − 2. Thus,

TS(T ) ∈ Skyt(n− 2− s− 2t, t− 1, s+ 2).

Example 3.6. For example, given the triangulation in Tri(12, 3, 2) below, label the vertices in counter-clockwise

order.

1

2

3

4

5

6 7

8

9

10

11

12
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We now label a single triangle in each fan with the label of the corresponding origin.

1 12

2

3

4

5

6 7

8

9

10

11

1

2

4

5 7

We now label the remaining triangles greedily in the order that fans appear in F(T ).

1 12

2

3

4

5

6 7

8

9

10

11

1

2

3

4

5

6

8

7

9

10

Hence, A1 = {1}, A2 = {2, 3}, A3 = {4}, A4 = {5, 6, 8}, and A5 = {7, 9, 10}. This gives the following

tableau.

1

4

2 5 7

3 6 9

8

10

4. Dissections and Triangulations

In this section, we construct a combinatorial bijection between Dis(n+2, i) and Tri(n+i+3, i+1, 0) as mentioned

in the discussion following Corollary 2.1.

First, we define the map from Tri(n+ i+ 3, i+ 1, 0) to Dis(n+ 2, i).

Definition 4.1. Let T be a triangulation of an (n+ i+3)-gon with i+1 non-singular fans and no singular fans.

We know F(T ) is of the form F(T ) = (F1, . . . , Fi+1). Remove the internal diagonals of Fj in T for each j,

leaving us with exactly i diagonals in T . Let xj be the origin of Fj. For each vertex xj, let yj be the immediate

vertex that follows xj counterclockwise. Note that it is possible to have yj = xj+1. Also, we always have that

the yj is a vertex in Fj, since (xj , yj) must bound a triangle, and by the definitions, this triangle is a part of

Fj. Contract each edge (xj , yj), creating an (n+ 2)-gon. Note that the vertex labeled 1 will always be the origin

of F1, so consequently we always contract (1, 2). Let 1 be the label of the new vertex after contracting this edge.

Relabel the vertices in increasing counterclockwise order, starting at the original vertex 1. Since no fan of T

was singular, it must be that the contractions preserved all i diagonals, giving us a dissection in Dis(n+ 2, i).

Now we define the map inverse to the one given above in Definition 4.1, which is a map from Dis(n + 2, i)

to Tri(n+ i+ 3, i+ 1, 0).
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Definition 4.2. For the inverse map, let D be a dissection of an (n + 2)-gon with i chords, say c1, c2, . . . , ci.

We assume, as with triangulations, that the vertices of D are already labeled with the numbers 1 through n+ 2.

We will describe a process that allows us to add new vertices and edges to D. Let 1′ be a new vertex so that

(1′, 1) is an edge and (1′, 2) is an edge. Delete the edge (1, 2). Thus the new polygon has n + 3 vertices. If 1

was incident to more than one chord, shift all chords that do not form a triangle with the edge (1, n+ 2) so that

they are incident with 1′ instead of 1. Now, let x be the next vertex counterclockwise to 1 incident to a chord.

(Note it may be that x = 1′.) Proceed with the following procedure.

1. Let cj1 , cj2 , . . . , cjk be the list of chords incident with x.

2. Let z be the vertex immediately counterclockwise of x. Remove the edge (x, z) and add a new vertex x′

along with edges (x, x′) and (x′, z).

3. If x is incident to exactly one chord, continue to step (5). Otherwise, let y be the vertex immediately

clockwise to x. The edge (y, x) bounds a closed region which contains exactly one chord cj` . For each cjm
with m 6= `, change its incidence with x to an incidence with x′. That is, if cjm was of the form (x,w),

for some vertex w, replace this chord with (x′, w).

4. If, after doing the prior step, (x, x′) becomes a boundary edge to a region that we have already added a

boundary edge to, undo the prior step and continue to the next step.

5. Move to the next vertex counterclockwise to x incident to some chord, calling this new vertex x. (Note this

new vertex may be the vertex x′ constructed in step (2).) If x is a vertex we have already visited before,

terminate the procedure. Otherwise, restart at step (1).

After doing this, observe that no region is a triangle. Also, observe that we added a single edge to the boundary

for each region (hence the importance of step (4)), and so we now have an (n+ i+ 3)-gon. Relabel the vertices,

starting at the vertex labeled 1 and continuing counterclockwise. We can decompose our new polygon into i+ 1

regions, labeled P1, P2, . . . , Pi+1. Make each of these fans so that the origin of Pj is the vertex with the minimum

label of Pj. This gives us a triangulation of an (n+ i+ 3)-gon with i+ 1 non-singular fans and no singular fans.

(a)

1
2

3

4

5

6

7
8 9

10

11

12

13

14
15

16

(b)

1
2

3

4

5

6

7
8 9

10

11

12

13

14
15

16

(c)

1
2

3

4

5

6

7
8 9

10

11

12

13

14
15

16

(d)

1

2

3

4

5 6

7

8

9

10
11

Figure 8: The steps transforming an element of Tri(16, 5, 0), Figure 8(a), to a dissection of a 11-gon with 4

chords, Figure 8(d). The fans of (a) are colored different shades of gray, and we omit this shading after the fans

no longer become relevant in part (c). In (c), the red boundary edges (1,2), (5,6), (6,7), (7,8), and (12,13) are

the boundary edges that get contracted. The vertex labeled 1 in (d) is the vertex labeled 2 in the other parts.

Remark 4.1. There are a couple of things to keep in mind that may help justify why the maps given in

Definitions 4.1 to 4.2 are mutual inverses.

1. The edges we contract going from a triangulation to a dissection are exactly the edges we add back going

from a dissection to a triangulation. This is because the origins of fans in triangulations are always

chosen by the smallest vertex appearing in a fan, which appears sooner traveling counterclockwise around

the polygons than vertices with larger labels. The regions in a dissection are ultimately what become our
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fans for a triangulation, so we consequently always add an edge on the boundary of a dissection right after

the vertex that would end up being the origin for a fan.

2. The chords of a dissection should be viewed as the parts of the triangulation that ultimately form the

boundaries of the fans (along with the actual boundary of the polygon). Hence, we can not expect two such

chords to remain incident in the triangulation, as this would alter the number of fans.

See Figure 8 below to see an illustration of the map from a triangulation to a dissection and Figure 9 to see

an illustration of the map of the other direction.

(a)

1

2

3

4

5
6

7

8

9

10

11

(b)

1
1′

2

3

4

4′ 5
6

7

8

9

10
11

(c)

1
1′

2

3

4

4′

4′′
4′′′ 5

6

7

8

8′
9

10
11

(d)

1
2

3

4

5

6

7
8 9

10

11

12

13

14
15

16

Figure 9: The steps transforming a dissection of a 11-gon with 4 chords, Figure 9(a), to an element of Tri(16, 5, 0),

Figure 9(d). In (b), we see the initial step of adding vertex 1′ and an application of step (3) from the description

of the combinatorial bijection for Corollary 2.1 (1)-(4), requiring us to change an adjacency of a chord. In (c),

we then do this a second time to vertex 4′ (as it is still adjacent to multiple chords) and add the remaining

vertices as described in the map. Adding chords to the vertex with the minimum label in each part gives us the

triangulation in (d).
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Appendix

Here we provide some tables for the cardinalities of # Skyt(a, i, b), # Tri(n, t, s), and # Dyck(n, `, s) for various

values of inputs, made possible through computer computation and Lemma 2.1.

First, we give tables for # Skyt(a, i, b), where i = 1, i = 2, and i = 3.

a\b 2 3 4

2 2 5 9

3 5 14 28

4 9 28 62

5 14 48 117

6 20 75 200

7 27 110 319

a\b 2 3 4

2 5 21 56

3 21 98 288

4 56 288 927

5 120 675 2365

6 225 1375 5214

7 385 2541 10374

a\b 2 3 4

2 14 84 300

3 84 552 2145

4 300 2145 9020

5 825 6380 28886

6 1925 16016 77714

7 4004 35672 184730

Figure 10: Values for # Skyt(a, 1, b), # Skyt(a, 1, b), and # Skyt(a, 1, b), from left-to-right.

Next, we give similar tables for # Dyck(n, `, s), where s = 0, s = 1, and s = 2. We will not provide

the same tables for # Tri(n, t, s), since the translation between parameters is more direct: # Tri(n, t, s) =

# Dyck(n− 2, t, s).

n\` 2 3 4

5 5 0 0

6 14 0 0

7 28 21 0

8 48 98 0

9 75 288 84

10 110 675 552

11 154 1375 2145

n\` 2 3 4

6 9 0 0

7 28 0 0

8 62 56 0

9 117 288 0

10 200 927 300

11 319 2365 2145

12 483 5214 9020

n\` 2 3 4

7 14 0 0

8 48 0 0

9 117 120 0

10 242 675 0

11 451 2365 825

12 780 6534 6380

13 1274 15522 28886

Figure 11: Values for # Dyck(n, `, 1), # Dyck(n, `, 2), and # Dyck(n, `, 3), from left-to-right.
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