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Abstract: Parking sequences (a generalization of parking functions) are defined by specifying car lengths and
requiring that a car attempts to park in the first available spot after its preference. If it does not fit there,
then a collision occurs and the car fails to park. In contrast, parking assortments generalize parking sequences
(and parking functions) by allowing cars (also of assorted lengths) to seek forward from their preference to
identify a set of contiguous unoccupied spots in which they fit. We consider both parking sequences and
parking assortments and establish that the number of preferences resulting in a fixed parking order σ is related
to the lengths of cars indexed by certain subsequences in σ. The sum of these numbers over all parking
orders (i.e. permutations of [n]) yields new formulas for the total number of parking sequences and of parking
assortments.
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1. Introduction

Throughout, we let N = {1, 2, 3, . . .} and for n ∈ N, [n] = {1, 2, 3, . . . , n}. Parking sequences, as introduced by
Ehrenborg and Happ [5], are defined as follows. Suppose there are n cars 1, 2, . . . , n of lengths y1, y2, . . . , yn ∈ N,
respectively. Let m =

∑n
i=1 yi be the number of parking spots on a one-way street. Sequentially label parking

spots 1, 2, 3, . . . ,m increasingly along the direction of a one-way street. We let xi ∈ [m] denote the preferred
spot of car i, for all i ∈ [n], and we say x = (x1, x2, . . . , xn) is the preference list for the cars with lengths
y = (y1, y2, . . . , yn). The cars enter the one-way street from the left in the order 1, 2, . . . , n; and car i seeks the
first empty spot j ≥ xi. If all of the spots j, j + 1, . . . , j + yi − 1 are empty, then car i parks there. If spot j is
empty and at least one of the spots j+ 1, j+ 2, . . . , j+yi−1 is occupied, then there is a collision; and car i fails
to park. If all cars park successfully under the preference list x, then x is a parking sequence for y. We denote
the set of parking sequences for y by PSn(y). Figure 1 illustrates examples x which are and are not parking
sequences for y = (1, 2, 1).

x = (3, 1, 4)

12 3

1 2 3 4

x = (2, 1, 1)

1

2

1 2 3 4

Figure 1: Note x = (3, 1, 4) is a parking sequence for y = (1, 2, 1) in which car 1 of length 1 parks in spot 3,
car 2 of length 2 parks in spots 1 and 2, and car 3 of length 1 parks in spot 4. On the other hand, x = (2, 1, 1)
is not a parking sequence for y, since car 2 collides with car 1 when attempting to park.

We remark that the set of parking sequences for n cars each with unit length (the case where y =
(1, 1, . . . , 1) ∈ Nn) is precisely the set of (classical) parking functions, which we denote by PFn. Thus, parking
sequences are a generalization of parking functions, which have received a lot of attention in the literature,
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for example [1, 2, 7]. Ehrenborg and Happ established the following [5, Theorem 1.3]: The number of parking
sequences for cars with lengths y = (y1, y2, . . . , yn) is given by the product

|PSn(y)| = (y1 + n)(y1 + y2 + n− 1) · · · (y1 + · · ·+ yn−1 + 2). (1)

Ehrenborg and Happ’s proof of (1) constructed a “circular street” on which the cars park, an argument used
by Pollack (see, [6]) to establish that |PFn| = (n+ 1)n−1.

Given a parking sequence x for y, the result of the parking experiment yields a permutation σ = σ1σ2 · · ·σn
of [n], written in one-line notation, which denotes the order in which the cars park on the street. For example,
note that the parking order in Figure 1 yields the permutation σ = 213. Note that σ corresponds to the order
in which the cars park, not the order in which they arrive. Namely, for each j ∈ [n], σj = i denotes that
car i is the jth car parked on the street. In this work, we are interested in determining an alternative way of
counting the number of parking sequences for y, by keeping track of those that park the cars in the order σ.
To this effect, we let Sn denote the set of permutations on [n] and for a fixed y we define the outcome map
OPSn(y) : PSn(y)→ Sn by OPSn(y)(x) = σ = σ1σ2 · · ·σn; and given σ ∈ Sn, we study the fibers of the outcome
map:

O−1PSn(y)
(σ) = {x ∈ PSn(y) : OPSn(y)(x) = σ}.

Our first main result, proved in Section 2, establishes the following.

Theorem 1.1. Fix y = (y1, y2, . . . , yn) ∈ Nn and σ = σ1σ2 · · ·σn ∈ Sn. Then

|O−1PSn(y)
(σ)| =

n∏
i=1

1 +
∑

k∈L(y,σi)

yk

 ,

where L(y, σi) = ∅ if i = 1 or if σi−1 > σi, otherwise L(y, σi) = {σt, σt+1, . . . , σi−1} with σtσt+1 . . . σi being the
longest subsequence of σ such that σk < σi for all t ≤ k < i.

The specialization of y = (1, 1, . . . , 1) ∈ Nn in Theorem 1.1 recovers [4, Proposition 3.1]: Let σ = σ1σ2 . . . σn
be a permutation in Sn. Then |O−1PFn

(σ)| =
∏n
i=1 `(i;σ), where `(i;σ) is the length of the longest subsequence

σj · · ·σi of σ such that σt ≤ σi for all j ≤ t ≤ i.
The following result gives an alternate new formula for the number of parking sequences for a fixed y as a

sum over permutations.

Corollary 1.1. Fix y = (y1, y2, . . . , yn) ∈ Nn and let L(y, σi) be defined as in Theorem 3.2. Then

|PSn(y)| =
∑
σ∈Sn

|O−1PSn(y)
(σ)| =

∑
σ∈Sn

 n∏
i=1

1 +
∑

k∈L(y,σi)

yk

 .

Next, we consider a generalization of parking sequences, known as parking assortments, for which we provide
analogous results to those in Theorem 1.1 and Corollary 1.1.

Parking assortments, as introduced by Chen, Harris, Mart́ınez Mori, Pabón-Cancel, and Sargent [3], are
defined as follows. As before, we fix y = (y1, y2, . . . , yn) ∈ Nn to denote the car lengths and we suppose the cars
have preferences x = (x1, x2, . . . , xn) ∈ [m]n, where m =

∑n
i=1 yi. For i ∈ [n], car i enters the one-way street

from the left and drives to its preferred spot xi. If spots xi, xi + 1, . . . , xi + yi− 1 are unoccupied, then it parks.
Otherwise, car i proceeds down the one-way street, parking in the first contiguous unoccupied yi parking spots it
encounters. Throughout the paper, we refer to the spot(s) car i parks in simply by the leftmost spot it occupies.
If no such parking spot(s) are found, then we say parking fails. If x is a preference list allowing all cars to park
on the m spots on the street, then we say that x is a parking assortment for y. We let PAn(y) denote the set
of all parking assortments for y. Observe that all parking sequences are assortments, i.e. PSn(y) ⊆ PAn(y). If
n = 2, then PS2(y) = PA2(y) (Lemma 3.1). This result relies on the fact that in either a parking sequence or
parking assortment, there exists at least one car preferring the first spot. Otherwise, by pigeonhole principle,
the cars are unable to park. However, we have ample evidence that for n ≥ 3 there are parking assortments
that are not parking sequences. We illustrate such an example in Figure 2.

We also consider the analogous study of the set of parking assortments resulting in a particular parking
order. To make this precise, we fix y and define the outcome map OPAn(y) : PAn(y) → Sn by OPAn(y)(x) =
σ = σ1σ2 · · ·σn, where σj = i denotes that car i is the jth car parked on the street. For a fixed σ ∈ Sn we
study the fibers of the outcome map:

O−1PAn(y)
(σ) = {x ∈ PAn(y) : OPAn(y)(x) = σ}.

In Section 3, we fix y ∈ Nn and give the cardinality of O−1PAn(y)
(σ) for any σ ∈ Sn (Theorem 3.2). Using this

result, we establish a formula for the cardinality of PAn(y) as a sum over permutations (Corollary 3.1). Note
that Theorem 3.2 and Corollary 3.1 are generalizations of Theorem 1.1 and Corollary 1.1, respectively.
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x = (2, 1, 1) /∈ PS3(y)

1

2

1 2 3 4

x = (2, 1, 1) ∈ PA3(y)

1 23

1 2 3 4

Figure 2: Let y = (1, 2, 1). In Figure 1 we showed (2, 1, 1) /∈ PS3(y). However, under the parking assortment
rule: car 1 parks in spot 2. Car 2 attempts to park in spot 1, unable to fit there, it continues down the street,
parking in spot 3 (occupying spots 3 and 4). Car 3 finds spot 1 available; able to fit, it parks there. Thus,
x ∈ PA3(y).

We conclude with some applications of our enumerative results. In particular, for certain car lengths y ∈ Nn,
we give the cardinality of the sets O−1PAn(y)

(123 · · ·n) as n increases, where 123 · · ·n is the identity permutation

in Sn. Note that in this case O−1PSn(y)
(123 · · ·n) = O−1PAn(y)

(123 · · ·n).

1. Lemma 3.2: If y = (1, 2, 3, . . . , n), then the cardinality of O−1PAn(y)
(123 · · ·n) as n increases is

1, 2, 8, 56, 616, 9856, 216832, 6288128, . . . .

This sequence agrees with OEIS A128814: the partial products of the Lazy Caterer’s Sequence. We recall
that the Lazy Caterer’s sequence (OEIS A00124) gives the “maximal number of pieces formed when slicing
a pancake with n cuts.”

2. Lemma 3.3: If y = (1, 1, 2, 3, 5, 8, . . .) consists of the first n Fibonacci numbers, then the cardinality of
O−1PAn(y)

(123 · · ·n) as n increases is

1, 2, 6, 30, 240, 3120, 65520, 2227680, . . . .

This sequence agrees with OEIS A003266: The product of the first n+ 1 nonzero Fibonacci numbers.

3. Lemma 3.4: If y = (1, 3, 9, 28, 90, . . .), consists of the first n terms of the sequence enumerating standard

tableaux of shape (n+1, n−1) (starting at index 2, OEIS A071724), namely yi = 3
i+3

(
2(i+1)
i

)
for i ∈ [n+1],

then the cardinality of O−1PAn(y)
(123 · · ·n) as n increases is

1, 2, 10, 140, 5880, 776160, . . . .

This sequence agrees with OEIS A003046: The partial products of the first n Catalan numbers.

2. Enumerating parking sequences

In this section, we prove Theorem 1.1. We begin by stating the following definition.

Definition 2.1. Fix a length vector y ∈ Nn. For each i ∈ [n] and σ = σ1σ2 · · ·σn ∈ Sn, we let PrefPSn(y)(σi)
be the set of possible preferences for car σi so that it is the ith car to park on the street when using the parking
sequence parking rule. We let |PrefPSn(y)(σi)| denote the cardinality of the set.

Note that, for all i ∈ [n], the elements in the set PrefPSn(y)(σi) are highly dependent on y. Additionally,
given a permutation σ ∈ Sn, any element p = (p1, p2, . . . , pn) ∈ O−1(σ) satisfies pi ∈ PrefPSn(y)(σi), for all
i ∈ [n]. In other words, the set PrefPSn(y)(σi) gives the possible values for all pi so that OPSn(y)(p) = σ.

To begin, we present an example in which we compute the set of preferences for cars (of certain lengths)
parking in a predetermined order.

Example 2.1. Let y = (1, 6, 5, 5, 3, 2, 2) and consider the parking order described by the permutation σ =
2457361. We consider cars as they parked on the street from left to right in order to determine the preferences
for each car so that the parking process results in the cars parking in the order σ:

• Car 2 is parked first in the sequence of cars. Since there are no cars parked to the left of car 2, there is
only 1 spot car 2 could have preferred, precisely where it is parked. Hence, PrefPS7(σ1) = {1}.
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• Car 4 is parked second in the sequence of cars. Since car 2 parked to the left of and earlier than car 4,
car 4 could have preferred the spot it parked in or any of the spots occupied by car 2. Thus, PrefPS7

(σ2) =
{1, 2, 3, 4, 5, 6, 7}.

• Car 5 is parked third in the sequence of cars. Since car 2 and car 4 parked to the left of and earlier than
car 5, car 5 could have preferred the spot it parked in or any of the spots occupied by cars 2 or 4. Thus,
PrefPS7(σ3) = {1, 2, . . . , 11, 12}.

• Car 7 is parked fourth in the sequence of cars. Since cars 2, 4, and 5 parked to the left of and earlier than
car 7, car 7 could have preferred the spot it parked in or any of the spots occupied by cars 2, 4, or 5. Thus,
PrefPS7

(σ4) = {1, 2, . . . , 14, 15}.

• Car 3 is parked fifth in the sequence of cars. Since car 7 parked to the left of car 3 but entered the street after
car 3, car 3 could not have preferred any spots to the left of where car 3 parked. Thus, PrefPS7

(σ5) = {17}.

• Car 6 is parked sixth in the sequence of cars. Since car 3 parked to the left of and earlier than car 6, car
6 could have preferred the spot it parked in or any of the spots occupied by car 3. Moreover, as the next
car to the left of car 3 is car 7, which arrived after car 6, then car 6 could not have preferred any of the
spots car 7 parks in or those before car 7. Thus, PrefPS7(σ6) = {17, 18, . . . , 22}.

• Car 1 is parked seventh in the sequence of cars. Since car 6 parked to the left of car 1 but entered the
street after car 1, car 1 could not have preferred any spots to the left of where car 1 parked. Thus,
PrefPS7

(σ7) = {24}.

These computations show that

O−1PS7(y)
(σ) = PrefPS7

(σ1)× PrefPS7
(σ2)× PrefPS7

(σ3)× PrefPS7
(σ4)× PrefPS7

(σ5)× PrefPS7
(σ6)× PrefPS7

(σ7)

and hence

|O−1PS7(y)
(σ)| =

7∏
i=1

|PrefPS7(σi)| = 1 · 7 · 12 · 15 · 1 · 6 · 1 = 7560. (2)

As Example 2.1 illustrates, in computing |PrefPSn(y)(σi)|, it is important to know which cars parked to the
left of car σi and when they arrived in the queue, as this affects the possible preferences car σi can have. This
motivates the following.

Definition 2.2. Fix y ∈ Nn and σ = σ1σ2 · · ·σn ∈ Sn. For i ∈ [n], let σtσt+1 . . . σi be the longest subsequence
of σ such that σk < σi for all t ≤ k < i.

1. If i = 1, then define L(y, σi) = ∅,

2. if σi−1 > σi, then define L(y, σi) = ∅, and

3. otherwise define L(y, σi) = {σt, σt+1, . . . , σi−1}.

Note that albeit technical, the definition of L(y, σi) simply keeps track of the cars parked consecutively left
of σi which arrived before σi.

Lemma 2.1. Fix y ∈ Nn and σ = σ1σ2 · · ·σn ∈ Sn. If i ∈ [n], then

|PrefPSn(y)(σi)| = 1 +
∑

k∈L(y,σi)

yk.

Proof. For any j ∈ [n], recall that σj = i denotes that car i is the jth car parked on the street. The only
possible preferences for car i is the initial spot it parks in or any of the spots contiguously occupied by cars
parked to the left of car i which arrived before it. Such cars are those in the set L(y, σj). Note that if car i
preferred any earlier spot, then there would be a collision or it would park elsewhere on the street, contradicting
that car i was the jth car on the street. Therefore, this establishes that |PrefPSn(y)(σj)| = 1 +

∑
k∈L(y,σj)

yk,
as claimed.

Using Lemma 2.1, we confirm the computation in (2) next.

Example 2.2. As in Example 2.1, let y = (1, 6, 5, 5, 3, 2, 2) ∈ N7 and and σ = 2457361 ∈ S7. Then

• L(y, σ1) = ∅ and |PrefPS7(σ1)| = 1 + 0 = 1,
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• L(y, σ2) = {2} and |PrefPS7(σ2)| = 1 + y2 = 1 + 6 = 7,

• L(y, σ3) = {2, 4} and |PrefPS7(σ3)| = 1 + y2 + y4 = 1 + 6 + 5 = 12,

• L(y, σ4) = {2, 4, 5} and |PrefPS7
(σ4)| = 1 + y2 + y4 + y5 = 1 + 6 + 5 + 3 = 15,

• L(y, σ5) = ∅ and |PrefPS7
(σ5)| = 1 + 0 = 1,

• L(y, σ6) = {3} and |PrefPS7
(σ6)| = 1 + y3 = 1 + 5 = 6, and

• L(y, σ7) = ∅ and |PrefPS7
(σ7)| = 1 + 0 = 1.

This confirms that |O−1PS7(y)
(σ)| = 7560 as computed in (2).

For convenience we restate our main result.

Theorem 1.1. Fix y = (y1, y2, . . . , yn) ∈ Nn and σ = σ1σ2 · · ·σn ∈ Sn. Then

|O−1PSn(y)
(σ)| =

n∏
i=1

1 +
∑

k∈L(y,σi)

yk

 ,

where L(y, σi) = ∅ if i = 1 or if σi−1 > σi, otherwise L(y, σi) = {σt, σt+1, . . . , σi−1} with σtσt+1 . . . σi being the
longest subsequence of σ such that σk < σi for all t ≤ k < i.

Proof. As the preferences for each car are independent, we know that |O−1PSn(y)
(σ)| =

∏n
i=1 |PrefPSn(y)(σi)|.

Then by Lemma 2.1, we know that for each i ∈ [n], |PrefPSn(y)(σi)| = 1 +
∑
k∈L(y,σi)

yk, from which the result
follows.

3. Enumerating parking assortments

In this section, we prove Theorem 3.2. We begin by establishing the following initial result.

Lemma 3.1. If y = (y1, y2) ∈ N2, then PS2(y) = PA2(y).

Proof. We know that PSn(y) ⊆ PAn(y) for all n. It suffices to show that if x ∈ PA2(y), then x ∈ PS2(y). We
establish this next.

Assume x = (x1, x2) ∈ [y1 + y2]2 ∈ PA2(y). Hence, at least one of the two cars must prefer parking spot 1.
Then there are two possibilities:

Case 1: x1 = 1 and x2 ≤ y1 + 1. In this case, car 1 parks in spot 1 and car 2 begins looking for an open
spot early enough so that car 2 fits on the street. Hence, x ∈ PS2(y).

Case 2: x1 = y2 + 1 and x2 = 1. In this case, car 1 does not park in spot 1.

In order for x to be a parking sequence, car 1 must park in the y1 rightmost spots on the street (i.e. prefers
spot y2 + 1); otherwise car 1 would break up the street, leaving open spots to the left and to the right of
car 1. Also, since car 1 does not prefer spot 1, car 2 must prefer spot 1. Hence, x ∈ PS2(y).

The following definitions set some needed notation for our enumerative results.

Definition 3.1. For each i ∈ [n] and σ = σ1σ2 · · ·σn ∈ Sn, we let PrefPAn(y)(σi) be the set of possible
preferences for car σi so that it is the ith car to park on the street when using the parking assortment parking
rule. We let |PrefPAn(y)(σi)| denote the cardinality of the set.

In the next technical definition, we fix a subword which ends at σi, and further partition it into smaller
subwords, so that in each smaller subword either all elements are smaller than or all are greater than σi.

Definition 3.2. Let σ = σ1σ2 · · ·σn ∈ Sn. For i ∈ [n] we define a partition T (σi) of the subword σ1σ2 · · ·σi−1
into subwords as follows:

1. If i = 1, then T (σi) = ∅.

2. If σi−1 > σi, then

T (σi) =

{
β`α` · · ·β2α2β1α1 if σ1 < σi

α`+1β`α` · · ·β2α2β1α1 if σ1 > σi

where
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• α1 is the longest contiguous subword σsσs+1 · · ·σi−1 where σj > σi for all s ≤ j ≤ i− 1;

• β1 is the longest contiguous subword σtσt+1 · · ·σs−1 where σj < σi for all t ≤ j ≤ s− 1.

We construct α2 and β2 in a similar fashion (from right to left) with the elements of σ1σ2 · · ·σt−1.
Continue constructing subwords βkαk, for 3 ≤ k ≤ `, in this way until σ1 is included in one of them. If
σ1 > σi, then the leftmost subword is α`+1, otherwise the leftmost subword is β`.

3. If σi−1 < σi, then

T (σi) =

{
α`β` · · ·α2β2α1β1 if σ1 > σi

β`+1α`β` · · ·α2β2α1β1 if σ1 < σi

where

• β1 is the longest contiguous subword σsσs+1 · · ·σi−1 where σj < σi for all s ≤ j ≤ i− 1;

• α1 is the longest contiguous subword σtσt+1 · · ·σs−1 where σj > σi for all t ≤ j ≤ s− 1.

We construct α2 and β2 in a similar fashion (from right to left) with the elements of σ1σ2 · · ·σt−1.
Continue constructing subwords αkβk, for 3 ≤ k ≤ `, in this way until σ1 is included in one of them. If
σ1 > σi, then the leftmost subword is β`+1, otherwise the leftmost subword is α`.

In Definition 3.2, we use the letters α (or β) to identify cars parked to the left of a particular car which
arrived “after” (or “before”) it. We illustrate Definition 3.2 next.

Example 3.1. If σ = 4123, then T (σ1) = ∅, T (σ2) = 4︸︷︷︸
α1

, T (σ3) = 4︸︷︷︸
α1

1︸︷︷︸
β1

, T (σ4) = 4︸︷︷︸
α1

12︸︷︷︸
β1

.

Example 3.2. If σ = 2457361, then

T (σ1) = ∅, T (σ2) = 2︸︷︷︸
β1

, T (σ3) = 24︸︷︷︸
β1

, T (σ4) = 245︸︷︷︸
β1

,

T (σ5) = 2︸︷︷︸
β1

457︸︷︷︸
α1

, T (σ6) = 245︸︷︷︸
β2

7︸︷︷︸
α1

3︸︷︷︸
β1

, T (σ7) = 245736︸ ︷︷ ︸
α1

.

We soon show that Definition 3.2 encapsulates all of the cases affecting the preferences for every car. More-
over, in what follows, we abuse notation by thinking of α’s and β’s both as subwords and as sets consisting of
the values making up each respective subword.

Theorem 3.1. Let σ = σ1σ2 · · ·σn ∈ Sn and y = (y1, y2, . . . , yn) ∈ Nn. Fix i ∈ [n] and partition T (σi) as in
Definition 3.2. Then PrefPAn(y)(σi) has the following cardinalities:

1. if i = 1 or σi−1 > σi, then |PrefPAn(y)(σi)| = 1;

2. if T (σi) = β1, then |PrefPAn(y)(σi)| = 1 +
∑
σk∈β1

yσk
;

3. otherwise

|PrefPAn(y)(σi)| =


1 +

i−1∑
k=1

yσk
if m(i) does not exist∑

σk∈βm(i)αm(i)−1βm(i)−1···α1β1σi

yσk
if m(i) exists

where

m(i) = min

1 ≤ j ≤ ` :
∑
σk∈αj

yσk
≥ yσi

 .

which denotes the closest gap to the left of σi in which σi could have parked.

Proof. We proceed by proving each case independently.

Case 1: If i = 1, then σi = σ1 is the first car parked on the street, which implies that it must have
preferred the first parking spot on the street. Hence |PrefPAn(y)(σ1)| = 1, as claimed. If σi−1 > σi, this
means that the car parked immediately to the left of σi arrived after σi. Hence car σi can only prefer
the spot it parked in, as otherwise it would have parked elsewhere. This implies |PrefPAn(y)(σi)| = 1, as
claimed.
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Case 2: If T (σi) = β1, then σj < σi for all j ∈ [i− 1]. Thus all of the cars parked left of σi arrived and
parked before σi. Hence σi could prefer all of the spots cars σ1, σ2, . . . , σi−1 occupy, as well as the spot in
which σi ultimately parks. This implies |PrefPAn(y)(σi)| = 1 +

∑
σj∈β1

yσj
.

Case 3: Note that σi−1 < σi (as otherwise this would be Case 1). Furthermore, we can assume that α1

exists (as otherwise this would be Case 2). Hence, by Definition 3.2, we have

T (σi) = σ1σ2 · · ·σi−2σi−1 =

{
α`β` · · ·α2β2α1β1 if σ1 > σi

β`+1α`β` · · ·α2β2α1β1 if σ1 < σi

where β1 is the longest contiguous subword consisting of σj < σi and α1 is the longest contiguous subword
consisting of σj > σi. In either case, we note that by definition, each αj denotes a set of cars parking
contiguously on the street, arriving in the queue after car σi and parking to the left of car σi. The cars
in the subwords αj (for 1 ≤ j ≤ `) create gaps in the street which σi could potentially park in if they
happen to be large enough.

That is, for any j ∈ [`], if
∑
σk∈αj

yσk
≥ yσi

, then σi

– cannot prefer all of the spots occupied by the cars in αj and

– cannot prefer any spots to the left of the spots occupied by the cars in αj ,

since then σi would park either before or within the spots occupied by the cars in αj . Both cases contradict
the fact that σi is the ith car parked on the street.

In fact, the only parking spots car σi could prefer are

– the spots occupied by the cars in βm(i)αm(i)−1βm(i)−1 · · ·α1β1,

– the right-most yσi
− 1 spots occupied by the cars in αm(i), or

– the spot σi parks in.

Note that this exhausts all of the possible preferences for σi, as αm(i) (by definition) is the closest gap in
which σi could park. Thus, the number of spots that car σi can prefer is

|PrefPAn(y)(σi)| = 1 + (yσi
− 1) +

∑
σk∈βm(i)αm(i)−1βm(i)−1···α1β1

yσk
=

∑
σk∈βm(i)αm(i)−1βm(i)−1···α1β1σi

yσk

as claimed.

We can now formally state and prove the analogous result to Theorem 1.1 for parking assortments.

Theorem 3.2. Fix y = (y1, y2, . . . , yn) ∈ Nn and let σ = σ1σ2 · · ·σn ∈ Sn. Then

|O−1PAn(y)
(σ)| =

n∏
i=1

|PrefPAn(y)(σi)|,

where

|PrefPAn(y)(σi)| =



1 if i = 1 or σi−1 > σi

1 +
∑
σk∈β1

yσk
if T (σi) = β1

1 +

i−1∑
k=1

yσk
if m(i) does not exist∑

σk∈βm(i)αm(i)−1βm(i)−1···α1β1σi

yσk
if m(i) exists

(3)

with

m(i) = min

1 ≤ j ≤ ` :
∑
σk∈αj

yσk
≥ yσi

 .

again denoting the closest spot to the left of σi in which σi could have parked.

Proof. This follows directly from Theorem 3.1 and the fact that cars’ parking preferences are independent.

Theorem 3.2 immediately implies the following result.
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Corollary 3.1. Fix y = (y1, y2, . . . , yn) ∈ Nn and for any σ ∈ Sn, let |O−1PAn(y)
(σ)| be as given by Theorem 3.2.

Then
|PAn(y)| =

∑
σ∈Sn

|O−1PAn(y)
(σ)|.

Example 3.3. We conclude by applying the results in this section when σ = 4123 and y = (1, 2, 1, 2).

• Consider σ1 = 4 and σ2 = 1. By Theorem 3.1 case 1, we have |PrefPA4(y)(σ1)| = 1 = |PrefPA4(y)(σ2)|.

• Consider σ3 = 2. By Example 3.1, we find that m(3) = 1 since α1 has length 2 and car 2 could potentially
park there. By Theorem 3.1 case 3, we have |PrefPA4(y)(σ3)| =

∑
σk∈β1σ3

yσk
= y1 + y2 = 3.

• Consider σ4 = 3. By Example 3.1, we find that m(4) = 1 since α1 has length 2 and car 3 could potentially
park there. By Theorem 3.1 case 3, we have |PrefPA4(y)(σ4)| =

∑
σk∈β1σ4

yσk
= y1 + y2 + y3 = 4.

Theorem 3.2 yields |O−1PA4(y)
(4123)| = 1 · 1 · 3 · 4 = 12. In Table 1, we provide the cardinality of the sets

O−1PA4((1,2,1,2))
(σ) for all σ ∈ S4. From that data, we then use Corollary 3.1 to find that |PA4(y)| = 192.

σ |O−1PA4(y)
(σ)| σ |O−1PA4(y)

(σ)| σ |O−1PA4(y)
(σ)| σ |O−1PA4(y)

(σ)|
1234 40 2134 20 3124 15 4123 12
1243 8 2143 4 3142 3 4132 2
1324 10 2314 15 3214 5 4213 4
1342 6 2341 12 3241 4 4231 3
1423 6 2413 6 3412 6 4312 3
1432 2 2431 3 3421 2 4321 1

Table 1: Cardinalities of the sets O−1PA4((1,2,1,2))
(σ) for each σ ∈ S4.

σ |O−1PS4(y)
(σ)| σ |O−1PS4(y)

(σ)| σ |O−1PS4(y)
(σ)| σ |O−1PS4(y)

(σ)|
1234 40 2134 20 3124 10 4123 8
1243 8 2143 4 3142 3 4132 2
1324 10 2314 15 3214 5 4213 4
1342 6 2341 12 3241 4 4231 3
1423 6 2413 6 3412 4 4312 2
1432 2 2431 3 3421 2 4321 1

Table 2: Cardinalities of the sets O−1PS4((1,2,1,2))
(σ) for each σ ∈ S4.

Similar computations to those provided in Example 3.3 yield the values for O−1PSn(y)
(σ) for σ ∈ Sn provided

in Table 2.
We now prove the following results, which we enumerated at the conclusion of Section 1.

Lemma 3.2. If y = (1, 2, 3, . . . , n), then

|O−1PAn(y)
(123 · · ·n)| =

n∏
i=1

(
1 +

i(i− 1)

2

)
,

which is the partial products of the Lazy Caterer’s Sequence.

Proof. Let σ = 123 · · ·n and let σi = i for all i ∈ [n]. Then, for each car i entering the street, it could prefer
any of the spots occupied by cars 1, 2, . . . , i − 1 in addition to the spot it ends up parking in. Note that cars

1, 2, . . . , i− 1 have respective lengths 1, 2, . . . , i− 1. Hence |PrefPAn(y)(σi)| = 1 +
∑i−1
k=1 k = 1 + i(i−1)

2 , which is
precisely the formula for the entries in the Lazy Caterer’s sequence (OEIS A000124). Thus, By Theorem 3.2,

|O−1PAn(y)
(123 · · ·n)| =

n∏
i=1

|PrefPAn(y)(σi)| =
n∏
i=1

(
1 +

i(i− 1)

2

)
,

which is the partial products of the Lazy Caterer’s Sequence (OEIS A128814).

In what follows, we let Fn denote the nth Fibonacci number (OEIS A000045), which satisfies the recurrence
Fn = Fn−1 + Fn−2 for n ≥ 3 and F1 = F2 = 1.
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Lemma 3.3. If y = (1, 1, 2, 3, 5, 8, . . . , Fn) = consists of the first n Fibonacci numbers, then

|O−1PAn(y)
(123 · · ·n)| =

n∏
k=1

Fk+1,

which is the product of the first n+ 1 nonzero Fibonacci numbers (OEIS A003266).

Proof. Let σ = 123 · · ·n and let σi = i for all i ∈ [n]. Then, for each car i entering the street, it could prefer
any of the spots occupied by cars 1, 2, . . . , i− 1 in addition to the spot it ends up parking in.

Note that cars 1, 2, . . . , i− 1 have respective lengths F1, F2, . . . , Fi−1, which gives

|PrefPAn(y)(σi)| = 1 +

i−1∑
k=1

Fk = Fn+1,

following from the well-known identity
∑n
i=1 Fn = Fn+2 − 1.

By Theorem 3.2,

|O−1PAn(y)
(123 · · ·n)| =

n∏
i=1

|PrefPAn(y)(σi)| =
n∏
i=1

Fi+1,

which is the product of the first n+ 1 nonzero Fibonacci numbers (OEIS A003266).

In what follows, we let y = (y1, y2, . . . , yn) consist of the first n terms of the sequence enumerating standard
tableaux of shape (n + 1, n − 1) (starting at index 2, OEIS A071724). Moreover, we let Cn = 1

n+1

(
2n
n

)
be the

nth Catalan number.

Lemma 3.4. If y = (y1, y2, . . . , yn) with yi = 3
i+2

(
2i
i−1
)

for i ∈ [n], then

|O−1PAn(y)
(123 · · ·n)| =

n∏
k=1

Ck,

which is the product of the first n Catalan numbers.

Proof. Let σ = 123 · · ·n and let σi = i for all i ∈ [n]. Then, for each car i entering the street, it could prefer
any of the spots occupied by cars 1, 2, . . . , i − 1 in addition to the spot it ends up parking in. Note that cars
1, 2, . . . , i− 1 have respective lengths 1, 3, 9, . . . , 3

i+2

(
2i
i−1
)
. Hence

|PrefPAn(y)(σi)| = 1 +

i−1∑
k=1

3

k + 2

(
2k

k − 1

)
= 1 +

i−2∑
k=0

3

k + 3

(
2(k + 1)

k

)
, (4)

where the last equality follows from reindexing the sum. A straightforward induction argument establishes

i−2∑
k=0

3

k + 3

(
2(k + 1)

k

)
=

(
2i
i−1
)

i
− 1. (5)

Using identity (5) in (4) yields

|PrefPAn(y)(σi)| = 1 +

(
2i
i−1
)

i
− 1 =

1

i

(2i)!

(i− 1)!(i+ 1)!
=

1

i+ 1

(
2i

i

)
= Ci.

By Theorem 3.2, this implies

|O−1PAn(y)
(123 · · ·n)| =

n∏
i=1

Ci,

which is the product of the first n Catalan numbers (OEIS A003046).

Remark 3.1. Although our results are enumerative, they do in fact describe the set of preferences of the cars.
Moreover, we note that the preferences for car i are always bounded above by the sum of the lengths of the cars
parked to the left of car i plus one for the spot in which car i parks.
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