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Abstract: Recently, Blecher and Knopfmacher explored the notion of fixed points in integer partitions. Here,
we distinguish partitions with a fixed point by which value is fixed and analyze the resulting triangle of integers.
In particular, we confirm various identities for diagonal sums, row sums, and antidiagonal sums (which are finite
for this triangle) and establish a four-term recurrence for triangle entries analogous to Pascal’s lemma for the
triangle of binomial coefficients. The partition statistics crank and mex arise. All proofs are combinatorial.
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1. Introduction and statement of primary results

Given a positive integer n, a partition of n is a collection of positive integers λ = (λ1, . . . , λj) with
∑
λi = n.

The λi, called parts, are ordered so that λ1 ≥ · · · ≥ λj . We use the notation λ ` n and |λ| = n to indicate that
λ is a partition of n. Write P (n) for the set of partitions of n and p(n) = #P (n) for the number of partitions
of n. Recall the convention that p(0) = 1.

Fixed points are a pervasive concept in mathematics, including the study of permutations. Recently, Blecher
and Knopfmacher brought the idea of fixed points to integer partitions [3, Section 4].

Definition 1.1. A partition λ has a fixed point if there is an index i for which λi = i.

For example, among the partitions of 5, α = (3, 2) has a fixed point since α2 = 2 while β = (3, 1, 1) has
no fixed points. With the convention of writing parts in nonincreasing order, it is clear that a partition has at
most one fixed point.

Here we consider a refinement of the fixed point.

Definition 1.2. Given n ≥ 1, let F (n, d) be the partitions of n with fixed point d and f(n, d) = #F (n, d) the
number of these partitions.

For example, F (5, 1) = {(1, 1, 1, 1, 1)} (which we sometimes write as 15) and F (5, 2) = {(3, 2), (2, 2, 1)}
account for all the partitions of 5 with a fixed point, so that f(5, 1) = 1, f(5, 2) = 2, and f(5, k) = 0 for all
k ≥ 3.

The irregular triangle of integers f(n, d), shown in Figure 1, has an internal recurrence similar to Pascal’s
lemma for the triangle of binomial coefficients and several sum identities. In particular, we establish the following
four results.

In Proposition 2.1 below, we will show that column d of the triangle satisfies a degree d2 recurrence. However,
using terms of column d− 1 allows the following recurrence which is linear in d.

Theorem 1.1. For d ≥ 2 and n ≥ d2,

f(n, d) = f(n− d+ 1, d) + f(n− d, d)− f(n− 2d+ 1, d) + f(n− 2d+ 1, d− 1).

There are several sums in the f(n, d) triangle that connect to other partitions and partition statistics. Next,
we recall the relevant definitions.

A partition λ can be represented as a Ferrers diagram where row i consists of λi dots. The conjugate λ′

switches the rows and columns of the Ferrers diagram. The largest square that can be placed in the Ferrers
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n\d 1 2 3 4
1 1
2 1
3 1
4 1 1
5 1 2
6 1 4
7 1 6
8 1 9
9 1 12 1

10 1 16 2
11 1 20 5
12 1 25 9
13 1 30 16
14 1 36 25
15 1 42 39
16 1 49 56 1
17 1 56 80 2
18 1 64 109 5
19 1 72 147 10
20 1 81 192 19

Figure 1: Triangle of f(n, d) values for n ≤ 20.

diagram of λ is called its Durfee square (see Figures 2 and 3 below). Symbolically, the dimension of the Durfee
is the greatest index i for which λi ≥ i.

The crank statistic was named by Dyson in 1944 who predicted its use in a combinatorial understanding of
Ramanujan’s modulo 11 congruence [4]. The “elusive crank” was defined by Andrews and Garvan in 1988 [1]
and has become a very important statistic for integer partitions. To define it for a partition λ, let ω(λ) be the
number of parts 1 in λ and µ(λ) the number of parts in λ greater than ω(λ). Then

crank(λ) =

{
λ1 if ω(λ) = 0,

µ(λ)− ω(λ) if ω(λ) > 0.

Write M(m,n) for the number of partitions of n with crank m.
The mex (minimal excludant) of a partition λ is the smallest positive integer that is not a part of λ. See [2,5]

for connections between the crank and mex statistics.
Related to the diagonal sum result, let a(n) be the number of partitions λ of n such that the size of the

Durfee square of λ is not a part of λ [7, A118199].

Theorem 1.2. For n ≥ 1,
f(n, 1) + f(n− 1, 2) + · · · = a(n+ 1).

The nth row sum automatically gives the total number of partitions of n with a fixed point. By recent work
of the author and James Sellers [6], this connects to the crank and mex as follows.

Theorem 1.3. For n ≥ 1,

f(n, 1) + f(n, 2) + · · · = #{λ ` n | crankλ ≡ 0 mod 2} =
∑
m≥1

M(m,n).

Because, for n ≥ 2, the nth row of the triangle has fewer than n nonzero entries, antidiagonal sums are
finite.

Theorem 1.4. For n ≥ 1,
f(n, 1) + f(n+ 1, 2) + · · · = p(n− 1).

In the next section, we address the columns of the f(n, d) triangle and prove Theorem 1.1. In Section 3, we
prove the sum results. All proofs are combinatorial.
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2. Recurrences in the refined fixed point triangle

We first consider each column of the triangle, that is, the sequence of f(n, d) values for a fixed d specifying the
position of the fixed point. The next proposition gives the generating function for this sequence. The statement
of the result uses the Pochhammer symbol: For n ≥ 1,

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1).

Proposition 2.1. For a fixed d ≥ 1, the sequence f(n, d) satisfies

∑
n≥1

f(n, d) qn =
qd

2

(q; q)d−1(q; q)d
.

It follows that f(n, d) can be described with a degree d2 linear recurrence relation.

Proof. A partition λ ∈ F (n, d) has λd = d, which means that its Durfee square is d × d. Therefore λ can be
decomposed into three parts: the Durfee square, a partition α below the Durfee square with first part at most
d, and a partition β′ to the right of the Durfee square with first part at most d − 1 (since β1 = d would make
λd > d; see Figure 2). Since 1/(q; q)k accounts for the partitions with parts at most k, the generating function
follows. The linear recurrence statement follows from the fact that (q; q)k is a polynomial of order

(
k+1
2

)
.

d× d

α

β′

Figure 2: The Durfee square decomposition of a partition λ with fixed point λd = d.

The first few columns of the f(n, d) triangle match sequences recorded in the On-Line Encyclopedia of
Integer Sequences, namely

f(n, 2) = 2f(n− 1, 2)− 2f(n− 3, 2) + f(n− 4, 2)

with initial values f(1, 2) = f(2, 2) = f(3, 2) = 0 and f(4, 2) = 1 from the partition (2, 2) ` 4 is [7, A002620],
and

f(n, 3) = 2f(n− 1, 3) + f(n− 2, 3)− 3f(n− 3, 3)− f(n− 4, 3)

+ f(n− 5, 3) + 3f(n− 6, 3)− f(n− 7, 3)− 2f(n− 8, 3) + f(n− 9, 3)

with initial values f(1, 3) = · · · = f(8, 3) = 0 and f(9, 3) = 1 from the partition (3, 3, 3) ` 9 is [7, A097701].
Examining an expanded version of the f(n, d) triangle of Figure 1 suggests that the columns ‘stabilize’ to

the sequence 1, 2, 5, 10, 20, . . . , the convolution of p(n) values
∑n

i=0 p(i)p(n− i) [7, A000712]. More specifically,
the values of f(n, d) for 1 ≤ n ≤ d2 + d− 1 are given by the following proposition.

Proposition 2.2. For a fixed d ≥ 1, the sequence f(n, d) satisfies f(1, d) = · · · = f(d2 − 1, d) = 0 and, for
0 ≤ k ≤ d− 1,

f(d2 + k, d) =

k∑
i=0

p(i)p(k − i).

Proof. First, note that f(n, 1) = 1 for all n ≥ 1 from the partition 1n ` n. (Recall that, for a partition, an
exponent denotes repetition.)

For d ≥ 2, the smallest partition with a fixed point at d is dd ` d2, thus f(n, d) = 0 for n ≤ d2 − 1.
For 0 ≤ k ≤ d − 1, a partition in F (d2 + k, d) has Durfee square d × d and k additional dots in its Ferrers

diagram. These k dots can be split between the partitions below and to the right of the Durfee square, i.e., in
the notation of Figure 2, |α|+ |β| = k. Since k < d, these dots outside the Durfee square cannot affect the fixed
point. Therefore any pair of partitions α, β with α ` i and β ` k − i for 0 ≤ i ≤ k gives a partition of d2 + k
with fixed point d.
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One could extend this result using the convolution of p(n) values by carefully counting exceptions (e.g.,
using the notation of Proposition 2.2 and its proof, the one case when k = d that affects the fixed point is when
α is the empty partition and β = (d)), but that approach soon becomes complicated.

Instead, we improve the order d2 linear recurrence for f(n, d) provided in Proposition 2.1 by Theorem 1.1
which expresses f(n, d) in terms of four values above and left of it in the triangle, namely

f(n, d) = f(n− d+ 1, d) + f(n− d, d)− f(n− 2d+ 1, d) + f(n− 2d+ 1, d− 1).

Proof of Theorem 1.1. We establish a bijection

F (n, d) ∪ F (n− 2d+ 1, d) ∼= F (n− d+ 1, d) ∪ F (n− d, d) ∪ F (n− 2d+ 1, d− 1).

Starting from the right-hand side, given λ ∈ F (n− 2d+ 1, d− 1), increase the first d− 2 parts by one, add
a part d, and increase the fixed point λd−1 by one. That is,

(λ1, . . . , λd−2, d− 1, λd, . . .) 7→ µ = (λ1 + 1, . . . , λd−2 + 1, d, d, λd, . . .).

The image µ is a partition of n − 2d + 1 + (d − 2) + d + 1 = n with µd = d, thus an element of F (n, d). Note
also that µd−1 = d and µd+1 < d.

There are two cases for the image of a partition λ ∈ F (n− d, d).
First, if λd−1 = d (in addition to the fixed point λd = d), then add another part d to make a partition

µ ∈ F (n, d) with µd−1 = µd = µd+1 = d.
Second, if λd−1 > d, then decrease the first d− 1 parts by one to make a partition µ ∈ F (n− 2d+ 1, d).
Given λ ∈ F (n− d+ 1, d), increase the first d− 1 parts by one to make a partition µ ∈ F (n, d). Note that

µd−1 > d.
As noted, the images of F (n − 2d + 1, d − 1), of F (n − d + 1, d), and from F (n − d, d) into F (n, d) are all

distinct.
For the reverse map, given µ ∈ F (n − 2d + 1, d), increase the first d − 1 parts by one to make a partition

λ ∈ F (n− d, d). Note that λd−1 > d.
There are three cases for the image of a partition µ ∈ F (n, d).
First, if µd−1 > d, then decrease the first d− 1 parts by one to make a partition λ ∈ F (n− d+ 1, d).
Second, if µd−1 = µd+1 = d (= µd), then remove µd+1 = d to make a partition λ ∈ F (n − d, d). Note that

λd−1 = d.
Third, if µd−1 = d and µd+1 < d, then decrease the first d− 2 parts by one, remove µd−1 = d, and decrease

the fixed point µd = d by one, i.e.,

(µ1, . . . , µd−2, d, d, µd+1, . . .) 7→ λ = (µ1 − 1, . . . , µd−2 − 1, d− 1, µd+1, . . .).

The image λ is a partition of n − (d − 2) − d − 1 = n − 2d + 1 with λd−1 = d − 1, thus an element of
F (n− 2d+ 1, d− 1).

As noted, the images of F (n− 2d+ 1, d) and from F (n, d) into F (n− d, d) are distinct.
It is clear that the two maps are inverses, establishing the bijection.

For example, Table 1 shows the correspondence between F (7, 2) ∪ F (4, 2) and F (6, 2) ∪ F (5, 2) ∪ F (4, 1).

F (7, 2) ∪ F (4, 2) 52 421 322 3211 2221 22111 22

F (6, 2) ∪ F (5, 2) ∪ F (4, 1) 42 321 222 2211 221 1111 32

Table 1: Example of the bijection in the proof of Theorem 1.1.

3. Sums in the refined fixed point triangle

We now prove the various sum results related to the f(n, d) triangle. Recall that a(n) is the number of partitions
λ ` n such that the size of the Durfee square of λ is not a part of λ. First, we establish the generating function
for a(n) and show that the sequence counts a different family of partitions.

Proposition 3.1. The sequence a(n) satisfies∑
n≥1

a(n) qn =
∑
d≥1

qd
2+d

(q; q)d−1(q; q)d
.

Also, a(n) counts the partitions µ of n for which µd = µd+1 = d, i.e., the µ ∈ F (n, d) with the additional
constraint that µd+1 = d.
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Proof. The generating function argument is much like the proof of Proposition 2.1. Suppose λ has Durfee square
d×d. In order to not have d as a part, it must be the case that λd ≥ d+ 1 and λd+1 ≤ d−1. Referencing α and
β in the left-hand side of Figure 3, that means α1 ≤ d− 1 and α, thus the 1/(q; q)d−1 term. Also, β1 = d which
accounts for the additional d in the exponent of q in the numerator—this makes a d× (d+ 1) rectangle, known
as a 1-Durfee rectangle. The remaining dots to the right of the 1-Durfee rectangle have first part at most d,
thus the 1/(q; q)d term.

The other family of partitions counted by a(n) follows by conjugation. Given λ counted by a(n), let µ = λ′.
Conjugation fixes the Durfee square, swaps α for β, and swaps β′ for α′. Since α1 ≤ d− 1, now α′ to the right
of the Durfee squares leaves µd = d. Also, since β1 = d, now β below the Durfee square gives µd+1 = d.

d× d

α

β′ d× d

β

α′

Figure 3: On the left-hand side, a partition with a d× d Durfee square and no part d. On the right-hand side,
the conjugate of that partition.

We can now prove the diagonal sum result.

Proof of Theorem 1.2. We establish a bijection

F (n, 1) ∪ F (n− 1, 2) ∪ F (n− 2, 3) ∪ · · · ∼= B(n+ 1)

where B(n+ 1) consists of the µ ∈ F (n+ 1, d) with µd+1 = d also. We know by Proposition 3.1 that these are
counted by the sequence a(n), as desired.

Given d ≥ 1 and λ ∈ F (n+ 1− d, d), let

µ = (λ1, . . . , λd − 1, λd, d, λd+1, . . .),

i.e., insert an additional part d as the new (d + 1)st part of µ. The resulting µ is a partition of n + 1 with
µd = µd+1 = d as required.

For the reverse map, given µ ∈ B(n+ 1), simply remove µd+1 = d to give a partition in F (n+ 1− d, d).

For example, Table 2 shows the correspondence between F (8, 1) ∪ F (7, 2) and B(9). (Note that 33 /∈ B(9)
since the definition requires µ3 = µ4 = 3 while (3, 3, 3) has only three parts.)

F (8, 1) ∪ F (7, 2) 18 52 421 322 3211 2221 22111

B(9) 19 522 4221 3222 32211 22221 222111

Table 2: Example of the bijection in the proof of Theorem 1.2.

In Theorem 1.3, the row sums of the f(n, d) triangle connect to the crank and mex statistics as follows.

Proof of Theorem 1.3. Clearly the row sums
∑

k≥1 f(n, k) give the total number of partitions of n that have a
fixed point. The author and Sellers have shown that this count matches the partitions of n with even mex and
also the number of partitions of n with positive crank [6, Theorem 2.1].

For our last proof, recall that the f(n, d) triangle has finite antidiagonal sums as one can show that row n has
b
√
nc nonzero entries (where b·c denotes the integer floor function). The antidiagonal sums are the well-known

sequence p(n), the partition numbers.

Proof of Theorem 1.4. We establish a bijection

F (n, 1) ∪ F (n+ 1, 2) ∪ F (n+ 2, 3) ∪ · · · ∼= P (n− 1).

Given d ≥ 1 and λ ∈ F (n− 1 + d, d), let

µ = (λ1, . . . , λd−1, λd+1, . . .),
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i.e., remove the fixed point. The resulting µ is a partition of n− 1.
For the reverse map, given µ ∈ P (n− 1), find the greatest d such that µd−1 ≥ d (this is a parameter for the

1-Durfee rectangle of µ, which can have size 0× 1). Let

λ = (µ1, . . . , µd−1, d, µd, . . .),

i.e., insert λd = d. This λ is a partition of n− 1 + d with fixed point d, so λ ∈ F (n− 1 + d, d).
It is clear that these are inverse maps.

For example, Table 3 shows the correspondence between F (7, 1) ∪ F (8, 2) ∪ F (9, 3) and P (6).

F (7, 1) ∪ F (8, 2) ∪ F (9, 3) 17 62 521 422 4211 3221 32111 2222 22211 2216 333

P (6) 16 6 51 42 411 321 3111 222 2211 21111 33

Table 3: Example of the bijection in the proof of Theorem 1.4.
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