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ABSTRACT: A finite topology T = (A, T) consists of a finite set A together with a family T of subsets of A,
the open sets, satisfying the axioms of a topology. 74(n) is the number of distinct topolgies T' of subsets of [n]
which satisfy ¢, where ¢ is a property of topologies expressible in TMSOL, topological monadic second order
logic.

A sequence s(n) of integers is C-finite if it satisfies a linear recurrence relation with constant coefficients. It
is MC-finite of for every modulus m the sequence s™(n) = s(n) (mod m) satisfies a linear recurrence relation
with constant coefficients depending on m. In general Ty(n) is not C-finite, because it grows too fast.

In this paper we show that 74(n) is MC-finite for every ¢ € TMSOL. We also show that this is still true for
TCMSOL, the extensions of TMSOL with modular counting quantifiers.
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1. Introduction

In the last decade finite topologies have received renewed attention due to their role in image analysis and data
science. There is a vast literature testifying to this. We just mention two references as typical examples, [9,26].
For mathematical applications of finite topologies, see [1]. Finite metric spaces are studied in [6,27]. The model
theory of topological spaces was studied in the late 1970s, see [19,22, 28, 35].

In [7] A. Broder introduced the restricted r-Stirling numbers and r-Bell numbers. They have found various
applications in enumerative combinatorics, e.g. see [2]. Inspired by this we study in this paper the number of
finite topologies on a finite set subject to various restrictions.

Assume you are given the set [r +n] = {1,2,3,...,r + n} and you want to count the number of finite
topologies on the set [r 4+ n] such that

(i) Each of the elements in [r] are in a different component, and
(ii) Each connected component is of odd size.

Or think of variations thereof, where the topologies on the elements of [r] satisfy some prescribed topological
configuration, such as all the singletons in [r] being closed sets, or being pairwise separable by an open set. In
the applications from [9,26] counting finite topologies with such or similar restrictions might be interesting.

Counting finite topologies is a difficult problem. Even for the case without restrictions, no explicit formula
is known. There are some asymptotic results, but the best results known so far are congruences modulo a fixed
integer m. Computing T'(n) for n = 1,2, 3,4 can be done by hand. There are two papers giving values for 7'(5):
In [11] it says that T'(5) = 6942. In [33] it says that T'(5) = 7181. E. Specker in 1980 got interested in modular
counting of finite topologies in order to prove which one of these claims must be false.

A sequence s(n) of integers is C-finite, if the sequence satisfies a linear recurrence relation with constant
coefficients. A sequence s(n) of integers is MC-finite, modularily C-finite, if for every integer m the sequence
s™(n) = s(n) (mod m) is an ultimately periodic sequence of positive integers. C. Blatter and E. Specker showed
in [4,5] the following theorem:

Theorem 1.1. (i) The number of finite topologies T'(n) on [n] is not C-finite, but it is MC-finite.

(i1) For every m € N there is a polynomial time algorithm which computes T (n) modulo m.
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(ii) T(n) =2 mod 5, hence T'(5) # 7181.

The proof of his theorem uses both logic and advanced combinatorics. In [34] Specker gave a very readable
expository version of its proof.

The purpose of this paper is to show similar results for the number of topologies with restrictions as suggested
above. In the presence of the restrictions we have in mind, the method underlying the Specker-Blatter theorem
cannot be applied directly, but it can be applied using our recent results together with a suitable definition of
a logic from [16,17].

We will use logic to make the framework of the restrictions precise. Let T = (X,U) be a finite topological
space on the finite set X and U the family of open sets in X. We associate with 7 a two sorted first-order
structure 7' = (X,U, E) where E C X x U and E(x,U) says that x is an element of U. If X = [r 4 n] we
use constant symbols aq,...,a, which have a fixed interpretation: a; is interpreted by i € [r]. We say that
the constant symbols a; are hard-wired. The topological restrictions are now described by first-order formulas
¢(a1,...,a,) over the structure ([r + n|,U, €,a1,...,a,). We denote by Ty ,(n) the number of topologies on
the set [r + n] which satisfy ¢(a1,...,a,). For a positive integer m we denote by T}" (n) the sequence T} .(n)
modulo m.

1.1 Main result

Our main result is stated here for topological first-order logic TFOL:

Theorem 1.2. (i) For every formula ¢ of TFOL and every positive integer m, the sequence T}" (n) is ulti-
mately periodic modulo m. In other words T(;”‘T(n) is MC-finite.

(1) Given ¢ and m, the sequence T} .(n) is Fized Parameter Tractable (FPT) where the parameters depend
on ¢,r and m.

The proof uses recent results on extensions of the Specker-Blatter theorem due to the authors, [16,17]. It
also uses model-theoretic methods as described in [35]. The same method was applied to prove congruences for
restricted Bell and Stirling numbers in [13].

One of our main contributions lies in identifying the logic TCMSOL, a topological version of Monadic Second
Order Logic with modular counting. This allows us to prove Theorem 5.4 in Section 5, which is like Theorem
1.2 but stated for TCMSOL instead of TFOL.

2. Background

2.1 C-finite and MC-finite sequences of integers

Some of the background material also appears in [13] and [16,17].
A sequence of integers s(n) is C-finite* if there are constants p,q € N and ¢; € Z,0 < i < p— 1 such that for
all n > ¢ the linear recurrence relation

s(n+p) = Z cis(n+1)
i=0

holds for s(n). C-finite sequences have limited growth, see e.g. [12,23]:

Proposition 2.1. Let s,, be a C-finite sequence of integers. Then there ewists ¢ € Nt such that for alln € N,
an < 2°7,

Actually, a lot more can be said, see [18], but we do not need it for our purposes.

To prove that a sequence s(n) of integers is not C-finite, we can use Proposition 2.1. To prove that a sequence
s(n) of integers is C-finite, there are several methods: One can try to find an explicit recurrence relation, one can
exhibit a rational generating function, or one can use a method based on model theory as described in [14,15].

A sequence of integers s(n) is modular C-finite, abbreviated as MC-finite, if for every m € N there are
constants p,,, ¢ € N' such that for every n > g, there is a linear recurrence relation

Pm—1
s(n+pm) = Z ¢ ms(n + 1) mod m
i=0
with constant coefficients c; ,,, € Z. Note that the coefficients ¢; ,,, and both p,, and ¢,, generally do depend on
m.
We denote by s™(n) the sequence s(n) mod m.

*These are also called constant-recursive sequences or linear-recursive sequences in the literature.
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Proposition 2.2. The sequence s(n) is MC-finite iff s"™(n) is ultimately periodic for every m.
Proof. MC-finiteness clearly implies periodicity. The converse is from [30]. O

Clearly, if a sequence s(n) is C-finite it is also MC-finite with r,, = r and ¢; ,, = ¢; for all m. The converse
is not true, there are uncountably many MC-finite sequences, but only countably many C-finite sequences with
integer coefficients, see Proposition 2.3 below.

Examples 2.1.

(i) The Fibonacci sequence is C-finite.

(i1) If s(n) is C-finite it has at most simple exponential growth, by Proposition 2.1.
(iii) The Bell numbers B(n) are not C-finite, but are MC-finite.

(iv) Let f(n) be any integer sequence. The sequence s1(n) = 2 - f(n) is ultimately periodic modulo 2, but not
necessarily MC-finite.

(v) Let g(n) be any integer sequence. The sequence so(n) =n!- g(n) is MC-finite.

(vi) The sequence s3(n) = %(27:‘) is not MC-finite: s3(n) is odd if and only if n is a power of 2, and otherwise

it is even (Lucas, 1878). A proof may be found in [21, Exercise 5.61] or in [34].

(vii) The Catalan numbers C(n) = %4—1(27?) are not MC-finite, since C(n) is odd iff n is a Mersenne number,

i.e., n =2" —1 for some m, see [25, Chapter 13].

(viti) Let p be a prime and f(n) be monotone increasing. The sequence s(n) = p- f(n) + z(n), where z(n) is
defined to equal 1 if n is a power of p and to equal O for any other m, is monotone increasing but not
ultimately periodic modulo p, hence not MC-finite.

Proposition 2.3. There are uncountably many monotone increasing sequences that are MC-finite, and un-
countably many which are not MC-finite.

Proof. Use examples 2.1 (v) and (viii). O

Although we are mostly interested in MC-finite sequences s(n), it would be natural to check in each example
whether the sequence s(n) is also C-finite. In most concrete examples the answer is negative, which can be seen
by a growth argument. Proposition 3.2 in Section 3 gives a model-theoretic tool for finite topological structures.
However, we will not elaborate on this further.

Actually, in the following subsection, we show that almost all bounded integer sequences are not MC-finite.

2.2 Normal sequences

Let s(n) be an integer sequence, and b € NT. The sequence s’(n) = s(n) mod b is normal, if, when we chunk
it into substrings of length £ > 1, each of the b’ possible strings of [b]’ appears in s°(n) with equal limiting
frequency. It is absolutely normal if it is normal for every b. The sequence s°(n) = s(n) mod b can be viewed
as a real number 7, written in base b. A classical theorem from 1922 by E. Borel says that almost all reals are
absolutely normal, [12]. The proposition below shows that MC-finite integer sequences are very rare.

Let PR, be the set of integer sequences s”(n) with s°(n) = s(n) mod b for some integer sequence s(n). PR,
is the projection of all integer sequences to sequences over Z;. We think of PR} as a set of reals with the usual
topology and its Lebesgue measure. Let UP, C PR, be the set of sequences s’(n) € PR, which are ultimately
periodic.

Proposition 2.4. (i) Almost all reals are absolutely normal by their Lebesgue measure.
(ii) s(n) is MC-finite iff for every b € Nt the sequence s®(n) is ultimately periodic.

(iii) If s°(n) is mormal for some b, then s(n) is not MC-finite.

(iv) UP, C PRy has measure 0.

Proving that a specific sequence is normal is usually very difficult. It has been an elusive goal to prove the
normalcy of numbers that are not artificially constructed. While v/2, 7, In(2) and e are strongly conjectured
to be normal, it is still not known whether they are normal or not. It has not even been proven that all digits
actually occur infinitely many times in the decimal expansions of those constants. It has also been conjectured
that every irrational algebraic number is absolutely normal, and no counterexamples are known in any base.
However, not even a single irrational algebraic number has been proven to be normal in any base.
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2.3 Counting finite topologies

Here we follow the presentation from [29]. Let 7 = (X,U) be a finite topological space on the finite labeled
set X and let U be the family of open sets in X. Counting topologies on X is defined as counting the number
of distinct families U of subsets of X. By Alexandroff’s Theorem 2.2(i) and 5.1 this is equivalent to counting
the number of labeled finite quasi-orders. Let T'(n) and Tp(n) be the number of topologies and Tp-topologies
respectively on a the set [n] = {1,...,n}. Recall that a topology on [n] is Ty if for all a,b € [n], there is some
open set containing one but not both of them. No explicit formulas for T'(n) and Tp(n) are known.

The following is known:

Theorem 2.2.

(i) T(n) = Q(n), where Q(n) is the number of pre-orders on [n], [29]. It is AO00798 in the Online Encyclopedia
of Integer Sequences, [20].

(i) To(n) = P(n), where P(n) is the number of partial orders on [n], [29]. It is A001035 in the Online
Encyclopedia of Integer Sequences.

(iii) Q(n) =Y 1_oS(n, k) - P(k), where S(n, k) is the Stirling number of the second kind, [8].

(iv) B(n) < P(n) < Q(n), where B(n) are the Bell numbers, which count the number of equivalence relations
on [n]. Furthermore, see [3,10],

(v) The logarithm with base 2 of both T'(n) and Ty(n) goes asymptotically to %2 as n goes to infinity, [24].
Theorem 2.3. (i) T(n) and To(n) are not C-finite.
(i) T(n) and To(n) are MC-finite.

Proof. (i) follows from Theorem 2.2(v).
(ii) follows from Theorem 2.2(i) and (ii) and the Specker-Blatter Theorem 4.1. O

3. Topologies as relational structures

3.1 The logics TCMSOL and CMSOL

Let T = (X,U, €) be a finite topological space on the finite set X and let U be the family of open sets in X.
The relation € is the natural membership relation between elements of X and sets in &/. We associate with a
finite topological space (X,U) a two-sorted relational structure 7 = (X,U, E), where E C X X U is a binary
relation and E(z,U) says that = is an element of U. F is required to satisfy the extensionality axiom

VU,V cU(u=v Vo e X(E(x,U) « E(z,v))).

There is a natural bijection between finite topological spaces and their associated first-order structures. Given
T = (X,U, €), a finite topological space, we define the first- order structure ¢((X,U, E)) by setting U = U
and E(z,U) iff x € U. Conversely, given T = (X,U, E) which satisfies the extensionality axiom, we define
t~1((X,U, E)) by setting for U € U

xeUiff E(z,U).

Proposition 3.1. t is a bijection between finite topological spaces and their associated first-order structures.
Furthermore, t=1 is its inverse.

We denote by TCMSOL the monadic second-order logic for structures of this form possibly augmented by
constant symbols. We allow quantification over subsets of X, but only quantification over elements of U.
Furthermore, we have a modular counting quantifier Cy, ,x¢(x) which says that modulo m there are a elements
satisfying ¢(z). TFOL is the logic without second-order quantification and without modular counting. Similarly,
CMSOL is defined as TCMSOL for one-sorted structures with one binary relation.

For finite structures of the form T the following are TCMSOL-definable.

(i) U is a topology for the finite set A: (i) § e U, A € U. (ii) U is closed under unions. (iii) U is closed under
intersections.

(i) U is Ty: Va,b € AU € U(E(a,U) A—E(b,U)V (=E(a,U) A E(b,U)).
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(iii) U is Ty if every complement of a singelton set is open: Ya € A(A —a € U).
(iv) X is connected: There are no two non-empty disjoint open sets Uy, Uy with U; UUs = X.

(v) The TFOL-formula ¢y, (z, U) says that U is the smallest open set containing x:
UelU)N(E@U)ANNVV eclU(E(z, V)=V CU))

(vi) A typical formula which is in TCMSOL would be: There is a set of points of even cardinality which is not
an open set.

3.2 Hard-wired constant symbols

Let @ = (ay,...,ax) be k constant symbols. For each of them, there are n possible interpretations in the set
[n]. However, we say that (ai,...,a,), for r < k are hard-wired on [n], if a; is interpreted by ¢ € [n]. In the
presence of constant symbols (hard-wired or not) ay,...,ar we can say:

(i) {a1,...,ax} is a minimal non-empty open set:

W e Z/I((/T\ E(a;, U))

i=1

-

AVz(/\ (z # ai) = ~E(x,U)))

K3

AV € U((V

N L

U)=((V=0)v(V=0)))

(ii) There are pairwise disjoint open sets Uy, ..., U, such that a; in U;.
(iii) The elements denoted by a; are all in different connected components.

In analogy to Broder’s r-Stirling numbers, we also count finite topologies restricted by TCMSOL-formulas with
hard-wired constant symbols.

3.3 Topological model theory

In his retiring presidential address presented at the annual meeting of the Association for Symbolic Logic
in Dallas, January 1973 Abraham Robinson suggested, among other topics, to develop a model theory for
topological structures, [31]. This led to several approaches described in [19,22,28,35,36]. M. Ziegler introduced
the logic L, which is a fragment of TFOL with the additional property that it is basis-invariant in the following
sense:

Let ¢ be a formula of L; and T = (X,U) be a (not necessarily finite) topological structure, and let B be any
basis for U. Then

T=XUEFT=(X,B) E o

In fact in [19,35,36] X can be replaced by arbitrary first order structures. L; now shares most model-theoretic
characterstics of first-order logic, like compactness, Lowenheim-Skolem theorems, preservation theorems, etc.
However, if we restrict the topological structures for L; to be finite, this is not true anymore. A topological
structure 7 = (X,U) is an open substructure of T' = Y, V) if X CY, U={AC X : A=A NX, A €V)and
X e V. We write T C, T'. A formula ¢ € L; is preserved under open extensions if for every pair of topological
structures 7 C, T’ we have

T & ¢ implies T’ = ¢.
In [19] there is also a syntactical characterization of the formulas preserved under open extensions. However, it
fails if restricted to finite structures. Nevertheless, we can use this to show (here without proof):

Proposition 3.2. Let ¢ € Ly with r constant symbols (hard-wired or not) which has arbitrarily large finite
models and is preserved under open extensions. Then Ty .(n) is not C-finite.

4. Most general Specker-Blatter Theorem

In order to prove Theorem 1.2 for TCMSOL, we now state the Specker-Blatter Theorem for CMSOL with
hard-wired constants, [16,17]. This generalizes substantially the original Specker-Blatter Theorem from 1981,
but is still formulated for one-sorted relational structures for binary and unary relation symbols. Note that
in [16,17] it is also shown that Theorem 4.1 does not hold for ternary relations.

Let 7 be a finite set of binary and unary relation symbols. Let Spy ,(n) be the number of labeled T-structures
on the set [r 4+ n] where the elements of [r] are hard-wired and which satisfy the formula ¢ of CMSOL.
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Theorem 4.1 (Most general Specker-Blatter Theorem). (i) Spg.(n) is MC-finite.

(11) For every m € NT the sequence Spg.(n) = Spg.r(n) mod m is computable in polynomial time. In fact it
is in FPT (Fized Parameter Tractable) with parameters ¢,r and m.

For the technical details and the history of this theorem, the logically inclined reader should consult [16,17].

The theorem holds for a fixed number of hard-wired constants. It does not hold for of a hard-wired relation. A
relation R C [n]® is hard-wired if R has a unique interpretation on [n]*. We can view the natural order NO C [n]?
as hard-wired. The number of equivalence relations (set partitions) on [n] is given by the Bell numbers B(n)
which are MC-finite. They satisfy the hypothesis of the Specker-Blatter Theorem, as an equivalence relation is
definable in FOL.

Proposition 4.1. The Specker-Blatter Theorem does not hold in the presence a hard-wired linear order on [n].

Proof. Let A and B be two blocks of a partition of [n]. A and B are crossing if there are elements a1, a2 € A and
b1,be € B such that a3 < by < ag < by or by < a; < by < ag. The number B(n)" of non-crossing set partitions
on [n] is one of the interpretations of the Catalan numbers C'(n), [32], hence C(n) = B(n)™°. Non-crossing set
partitions are definable in FOL in the presence of the hard-wired natural order on [n]. But the Catalan numbers
are not MC-finite. O

5. Proof of Theorem 1.2

5.1 Alexandroff’s Theorem

Our next task is now to show how to reduce the theorem for TCMSOL to Theorem 4.1 of Section 4. Besides
using Theorem 4.1 we use several classical facts about finite topologies, taken from [29].
First, we state a bijection theorem.

Theorem 5.1 (Alexandroff, 1931). There are bijections a and o/ between finite topologies and finite quasi-orders
and vice versa. Furthermore, they are the inverses of each other.

Proof. Let T = (X,U, E) be a finite topology. For z € X define U, to be the intersection of all open sets
which contain z. The sets U, form a basis for Z/. Define a relation <;/ on the set X by z <y y if x € Uy, or,
equivalently, U, C U, . Write & <y y if the inclusion is proper. The relation <;; is transitive and reflexive,
hence it defines for each U a unique quasi-order <z;. We define o(7) = (X, <y).

Conversely, let (X, <) be a quasi-order. The sets U, = {y € X : y <z} form a basis for a topology U<. We
define o/ ((X, <)) = (X, U<). O

5.2 Translation schemes

The maps a and o' from Theorem 5.1 are actually definable in MSOL and TMSOL respectively by translation
schemes as defined below. This is needed to construct an algorithm that translates a formula 6 of TCMSOL
into a formula #* of CMSOL over quasi-orders such that for every finite quasi-order ©O

&(Q) k= 0 iff 9 = 6.

Conclusion 1. The number of finite topologies on a set with n elements which satisfy 0 equals the number of
finite quasi-orders on a set with n elements which satisfy 6*.

We first show the definability of . Let T = (X,U, E) be a finite topology. We want to define inside T a
quasi-order @ = (X, <). For this we exhibit two formulas ¢(x) and ¢< (z, y) in TMSOL which form a translation

scheme ® = (¢(z), o< (z,y)).
With ® we associate two maps. ®* and ®!. ®* maps finite topological spaces into quasi-orders, and ®*

maps formulas of CMSOL into formulas of TCMSOL. Let T a finite topology and 6 a formula of CMSOL for
quasi-orders. These two maps satisfy the following:

O*(T) = 0 iff T |= ®¥(6)

and

a(T) = (7).

For o/ we proceed similarly. Let Q be a quasi-order. We want to define inside Q a finite topology using
formulas of CMSOL given by

U= (’(/}(I), '(/}open<U)7 U(l‘))
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e ¢(x) := x = z defines the universe of the topology.
® Ypasic(z,U) := (U(x) A (Vy(U(y) <> y < x)) defines the basic open sets.
o Yopen(U) :=V2(U(z) > 3V C U3y(¢pasic(y, V) AV (2)) says that U is a union of basic open sets.

With ¥ we associate two maps. U* and Uf. ¥* maps finite quasi-orders into finite topologies, and ¥# maps
formulas of TCMSOL into formulas of CMSOL. Let Q a finite quasi-order and 8 a formula of TCMSOL. These
two maps satisfy the following:

UH(T) = 0 iff T = U4 (6)

and
o (Q) = T*(Q).

Uf is defined inductively.

The atomic formulas of TCMSOL are E(z,U), which is translated as open(U) A U(z), and U(z), which is
translated by U(z). The translations commute with the boolean operations and quantifications of TCMSOL.

Let U, be the intersection of all open sets U which contain x.

This can be expressed in TFOL by the formula ¢y, (z,U) from the previous section. Now = < y can be
defined by U, C U,, which be expressed as

¢<(x,y) : V2[BU(E(2,U) A ¢y, (x,U)) = IV(E(2,V) A du, (y, V)]

The translation scheme ® = (x = z,¢<(z,y)) consists of two formulas. The first is a tautology in the free
variable = and defines the new universe, which in this case is also X. The second formula, ¢<(z,y)) defines the
quasi-order.

® induces to maps, ®* which maps finite topologies onto quasi-orders over the same universe, and ®#, which
maps CMSOL-formulas into TCMSOL-formulas, by replacing each occurrence of z1 < zo by ¢< (21, z2).

Lemma 5.1. o(T) = ®*(7).

In the other direction, let @ = (X, <) be a finite quasi-order. We want to define inside Q a topology
T =(X,U,E). We actually define a structure

T/ = (X’P(X)auvaEaEtopaEbasis)

where P(A) is the powerset of A, and B is a minimal basis for the topolgy U. E, Eiop, Epesis are the membership
relations for elements of X and P(A),U, B respectively.

Again X can be defined by = z, and P(A) can be defined by ¢set(X) : V(X (z) + X (x)), or, for that
matter, by any appropriate tautology in one free variable.

The non-empty basic sets are defined by

B={BeP(X):JaVyly € B+ (y<x)}.

Hence we put
¢basis(B) : ﬂxVy(E(% B) <~ (y < (E)

Then the non-empty open sets are defined by
U={Uec PX):Vz(xeU <« (3BeB(xe€ BABCU)))}.

Hence we put
G1op(U) : Vz(E(z,U) <> (3B € B(x € BA B CU))).

The translation scheme is now defined by

U= (:17 =, (rbset(X)a ¢t0p(U)a beasis(B)a X(JC))

¥ induces to maps, ¥*, which maps finite quasi-order onto topologies over the same underlying set. and
! which transforms TCMSOL-formulas by replacing each occurrence of E(x, X), E(z,U), E(z, B) by its defi-
nitions.

Lemma 5.2. ¢/(Q) = ¥(Q).
Theorem 5.2. The translation schemes ® and ¥ satisfy the following:
(i) ®*(T) = a(T) and ¥*(Q) = a/(Q);
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(ii) for every 6 € CMSOL and every finite quasi-order Q,
o(T) = Q0 i T = 9(0).
(iii) for every o € TCMSOL and every finite topology T,
(Q =T o iff QF V(o)
In [16,17] the following is shown:

Theorem 5.3. Let 0(ay, ..., a,) be a sentence in CMSOL with r constant symbols, and let S(n) = Sy(a, ,....a,) (1)
be the number of relations R C [n)?, such that

([n], R, (a1,...,a)) Eb8(as,...,a).

In both cases, where the constant symbols are hard-wired or not, S is MC-finite.

Let o(a1,...,a,) be a sentence in TCMSOL with r constant symbols, and let S*(n) = S?

o(ai,...,ar,)

(n) be the
number of topologies on [n] such that

([n), U, (a1,-...,a.)) Eolal,...,ar).

and let S*(n) = Sio’(al,...,ar)(n) be the number of topologies on [n] such that

([n) U, (a1,...,a,)) E—o(a,...,a).
Theorem 5.4. In both cases, whether the constant symbols are hard-wired or not,
(i) St(n) and S'(n) are MC-finite, but

(i1) at least one of them is not C-finite.

6. Conclusions

We have shown that counting finite topologies T (1) on a set of n elements subject to restrictions with a fixed
finite number r of (hard-wired) constants expressed by ¢ € TCMSOL is an MC-finite sequence. The underlying
set X of the topology can be equipped with unary and binary relations, but counting now also counts the
number of their interpretations. As we have seen in Section 4 the Specker-Blatter Theorem does not work for
hard-wired relations.

No explicit formulas for T'(n) and Tp(n) are known, but we have

T(n) =3 S(n. k) - To(k),

k=0

n

where S(n, k) is the Stirling number of the second kind.
Problem 1. Find better descriptions of T'(n) and To(n).

The logic TCMSOL can express many topological properties. Here are some possibly challenging test
problems.

In analogy to counting various set partitions on [n] as described in [13], one can look at topological set
partitions of finite topological spaces on [n] such that each block is a connected component, an open, or a closed
set. Note that the topology in a topological set partition is not hard-wired. We count the set partitions of X
and the topologies separately. Given [n] the Bell numbers B(n) count the partitions of [n] and for each such
partition we count the number of topologies such that the blocks are connected, open or closed. The Stirling
numbers of the second kind S(n, k) count the partitions of [n] into k blocks, and again we can require that the
blocks are connected, open or closed.

Similarly, we can look at topological spaces on [r + n| such that the hard-wired constants of [r] are all in
different blocks. Like with the Bell and Stirling numbers, the number of non-empty blocks may be arbitrary
or fixed to k blocks. If the topology is assumed to be discrete, we get the restricted Bell numbers B,.(n) and
Stirling numbers of the second kind S, (n, k) from [7]. Otherwise, these give different topological versions of
B,.(n) and S, (n,k).

Problem 2. What can we say beyond that the number of such topological set partitions form an MC-finite
sequence? Are some of them C-finite?
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