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Abstract: Carlitz and Scoville in 1973 considered a four-variable polynomial that enumerates permutations
in Sn with respect to the parity of its descents and ascents. In recent work, Pan and Zeng proved a q-analogue
of Carlitz-Scoville’s generating function by enumerating permutations with the above four statistics along with
the inversion number. Further, they also proved a type B analogue by enumerating signed permutations with
respect to the parity of descents and ascents. In this work, we prove a q-analogue of the type B result of Pan and
Zeng by enumerating permutations in Bn with the above four statistics and the type B inversion number. We
also obtain a q-analogue of the generating function for the type B bivariate alternating descent polynomials. We
consider a similar five-variable polynomial in the type D Coxeter groups as well and give their egf. Alternating
descents for the type D groups were previously also defined by Remmel, but our definition is slightly different.
As a by-product of our proofs, we get bivariate q-analogues of Hyatt’s recurrences for the type B and type D
Eulerian polynomials. Further corollaries of our results are some symmetry relations for these polynomials and
q-analogues of generating functions for snakes of types B and D.
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1. Introduction

For a positive integer n, let [n] = {1, 2, . . . , n} and let Sn be the set of permutations of [n]. For a permutation
π = π1, π2, . . . , πn ∈ Sn, an index i ∈ [n − 1] is said to be a descent of π if πi > πi+1. Define DES(π) = {i ∈
[n− 1] : πi > πi+1} to be the set of descents of π and let des(π) = |DES(π)|. The classical Eulerian polynomial
is defined as the generating function of the descent statistic over Sn, that is,

An(t) =
∑
π∈Sn

tdes(π).

These polynomials are very well-studied. The books by Foata and Schutzenberger [4] and by Petersen [9]
contain many interesting results on these polynomials. The Eulerian polynomials are further generalized to
get 1/k-Eulerian polynomials, see for example Ma and Mansour [6]. An index i ∈ [n] is called an ascent
of π ∈ Sn if πi < πi+1. Taking parity of the position of the descents, one can define odd ascents, odd
descents, even ascents and even descents. Formally, let EvenDES(π) = {i ∈ [n − 1] : πi > πi+1, i is even},
EvenASC(π) = {i ∈ [n − 1] : πi < πi+1, i is even}, OddDES(π) = {i ∈ [n − 1] : πi > πi+1, i is odd} and
OddASC(π) = {i ∈ [n− 1] : πi < πi+1, i is odd}. Carlitz and Scoville in [2] considered the polynomial

An(s0, s1, t0, t1) =
∑
π∈Sn

s
easc(π)
0 s

oasc(π)
1 t

edes(π)
0 t

odes(π)
1 .
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They gave the exponential generating function (egf henceforth) for the above polynomial (see Theorem [2,
Theorem 3.1]). Pan and Zeng considered a q-analogue of the above polynomial by adding the inversion number
as well. For π ∈ Sn define inv(π) = |{1 ≤ i < j ≤ n : πi > πj}|. They considered

An(s0, s1, t0, t1, q) =
∑
π∈Sn

s
easc(π)
0 s

oasc(π)
1 t

edes(π)
0 t

odes(π)
1 qinv(π).

Pan and Zeng gave the following egf for An(s0, s1, t0, t1, q). For integers i ≥ 0, define [i]q = (1+q+ · · ·+qi−1)

and define n!q =
∏n
i=1[i]q. Recall that eq(u) =

∑
n≥0

un

[n]q!
. Separating the odd and even terms, let

coshq(u) =
eq(u) + eq(−u)

2
and sinhq(u) =

eq(u)− eq(−u)

2
.

Pan and Zeng in [7, Theorem 1.2] showed the following (they use the variables x, y for what we denote t, s
respectively.)

Theorem 1.1 (Pan and Zeng). Let α =
√

(t0 − s0)(t1 − s1). Then,

∑
n≥1

An(s0, s1, t0, t1, q)u
n/n!q =

(s1 + t1) coshq(αu) + α sinhq(αu)− t1(cosh2
q(αu)− sinh2

q(αu))− s1
s0s1 − (s0t1 + s1t0) coshq(αu) + t0t1(cosh2

q(αu)− sinh2
q(αu))

.

Using the same notation, Theorem 1.1 gives rise to an identity for the bivariate Eulerian polynomial and
the bivariate alternating Eulerian polynomial. It is easy to see (and noted by Pan and Zeng [7]) among the four
statistics that involve descents and ascents in Theorem 1.1, there are choices of two of them which determine
the other two statistics. Indeed, using our result, we get type B and type D counterparts of Theorem 1.1. These
are presented as Theorem 2.4 and Theorem 3.2 respectively.

Pan and Zeng in [7] also gave a type B counterpart of these identities without the variable q (that is,
without taking type B inversions into account). For a positive integer n, let [±n] = {±1,±2, . . . ,±n}. Bn

is the set of permutations π of [±n] that satisfy π(−i) = −π(i). Let π0 = 0 for all π ∈ Bn and let [n]0 =
{0, 1, 2, . . . , n}. Define EvenDESB(π) = {i ∈ [n−1]0 : πi > πi+1, i is even}, EvenASCB(π) = {i ∈ [n−1]0 : πi <
πi+1, i is even}, OddDESB(π) = {i ∈ [n − 1]0 : πi > πi+1, i is odd} and OddASCB(π) = {i ∈ [n − 1]0 : πi <
πi+1, i is odd}. Define odesB(π) = |OddDESB(π)|, edesB(π) = |EvenDESB(π)|, oascB(π) = |OddASCB(π)|
and lastly eascB(π) = |EvenASCB(π)|. Further, define

Bn(s, t) =
∑
π∈Bn

sedesB(π)todesB(π) and B̂n(s, t) =
∑
π∈Bn

seascB(π)todesB(π). (1)

Setting s = t in the polynomial B̂n(s, t) gives B̂n(t), the type B alternating Eulerian polynomial which has been
studied for example by Ma, Fang, Mansour, and Yeh [3].

Theorem 1.2 (Pan and Zeng). Let α = (1− s)(1− t). Then, we have

∑
n≥1

B2n(s, t)
u2n

(2n)!
=

(s+ t)
∑
n≥0

αn(2u)2n

(2n)! +
∑
n≥0

αn+1u2n

(2n)! − (1 + st)

(1 + st)− (s+ t)
∑
n≥0

αn(2u)2n

(2n)!

,

∑
n≥0

B2n+1(s, t)
u2n+1

(2n+ 1)!
=

(s2 − 1)(t− 1)
∑
n≥0

αnu2n+1

(2n+1)!

(1 + st)− (s+ t)
∑
n≥0

αn(2u)2n

(2n)!

.

They also gave similar results about the type B alternating descent polynomials. Their result is as follows.

Theorem 1.3 (Pan and Zeng). Let α = (1− s)(1− t). Then, we have

∑
n≥1

B̂2n(s, t)u2n/(2n)! =
(1 + st)

∑
n≥0

(−α)n(2u)2n
(2n)! +

∑
n≥0

(−α)n+1u2n

(2n)! − (s+ t)

(s+ t)− (1 + st)
∑
n≥0

(−α)n(2u)2n
(2n)!

,

∑
n≥0

B̂2n+1(s, t)u2n+1/(2n+ 1)! =
(1 + s)

∑
n≥0

(−α)n+1u2n+1

(2n+1)!

(s+ t)− (1 + st)
∑
n≥0

αn(2u)2n

(2n)!

Let H0(s, t, u) =
∑
n≥0

B2n(s, t)
u2n

(2n)!
and H1(s, t, u) =

∑
n≥0

B2n+1(s, t)
u2n+1

(2n+ 1)!
.
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Recall that cosh(x) = 1
2

(
exp(x) + exp(−x)

)
and sinh(x) = 1

2

(
exp(x)− exp(−x)

)
.

Define M2 = α. (2)

It is easy to see that the following alternate form can be used to state Theorem 1.2.

Theorem 1.4 (Pan and Zeng). With the above notation,

H0(s, t, u) =
M2 cosh(uM)

M2 cosh2(uM)− (s+ 1)(t+ 1) sinh2(uM)
, (3)

H1(s, t, u) =
M(s+ 1) sinh(uM)

M2 cosh2(uM)− (s+ 1)(t+ 1) sinh2(uM)
. (4)

Recall that length in Type B Coxeter groups is defined as follows (see [9, Page 294]). For π ∈ Bn,

invB(π) = |{1 ≤ i < j ≤ n : πi > πj}|+ |{1 ≤ i < j ≤ n : −πi > πj}|+ |Negs(π)|,

where Negs(π) = {πi : i > 0, πi < 0}. Further, recall the definition of odesB(π) and edesB(π) from earlier.
Define

Bn(t, q) =
∑
π∈Bn

tdesB(π)qinvB(π) and Bn(s, t, q) =
∑
π∈Bn

sedesB(π)todesB(π)qinvB(π), (5)

H0(s, t, q, u) =
∑
k≥0

B2n(s, t, q)
u2n

B2n(1, q)
andH1(s, t, q, u) =

∑
k≥0

B2n+1(s, t, q)
u2n+1

B2n+1(1, q)
. (6)

Let expB(u; q) =
∑
n≥0

un

Bn(1, q)
. As before, we separate terms with odd and even exponents and define

coshB(u; q) =
expB(u; q) + expB(−u; q)

2
and sinhB(u; q) =

expB(u; q)− expB(−u; q)

2
.

With this notation, our first main result is the following q-analogue of Theorem 1.4.

Theorem 1.5. We have

H0(s, t, q, u) =

(1− s)
((

1− t coshq(Mu)
)
coshB(Mu; q) + t sinhq(Mu)sinhB(Mu; q)

)
1− (s+ t) coshq(Mu) + steq(Mu)eq(−Mu)

, (7)

H1(s, t, q, u) =

M

((
1− s coshq(Mu)

)
sinhB(Mu; q) + s sinhq(Mu)coshB(Mu; q)

)
1− (s+ t) coshq(Mu) + steq(Mu)eq(−Mu)

. (8)

Theorem 1.5 is proved in Subsection 2.1. Recalling (1), define

Ĥ0(s, t, u) =
∑
n≥0

B̂2n(s, t)
u2n

(2n)!
and Ĥ1(s, t, u) =

∑
n≥0

B̂2n+1(s, t)
u2n+1

(2n+ 1)!
.

We have rewritten Theorem 1.2 as Theorem 1.4 and stated our generalization as Theorem 1.5. Similarly, it
is easy to see that Theorem 1.3 can be rewritten as follows.

Theorem 1.6 (Pan and Zeng). With the above notation,

Ĥ0(s, t, u) =
−(s− 1)(t− 1) cos(Mu)

s+ t− (ts+ 1) cos(2Mu)
,

Ĥ1(s, t, u) =
−M(s+ 1) sin(Mu)

s+ t− (ts+ 1) cos(2Mu)
.

Define B̂n(s, t, q) =
∑
π∈Bn

todesB(π)seascB(π)qinvB(π) and let

Ĥ1(s, t, q, u) =
∑
n≥0

B̂2n+1(s, t, q)
u2n+1

B2n+1(1, q)
, and Ĥ0(s, t, q, u) =

∑
n≥0

B̂2n(s, t, q)
u2n

B2n(1, q)
.

Moreover, let

cosB(u; q) =
expB(iu; q) + expB(−iu; q)

2
and sinB(u; q) =

expB(iu; q)− expB(−iu; q)

2
.

Another of our main results is the following q-analogue of Theorem 1.6.
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Theorem 1.7. We have

Ĥ0(s, t, q, u) =

(s− 1)

(
(1− t cosq(Mu)) cosB(Mu; q)− t sinq(Mu) sinB(Mu; q)

)
s+ teq(iMu)eq(−iMu)− (ts+ 1) cosq(Mu)

,

Ĥ1(s, t, q, u) =

−M
(

(s− cosq(Mu) sinB(Mu; q) + sinq(Mu) cosB(Mu; q)

)
s+ teq(iMu)eq(−iMu)− (ts+ 1) cosq(Mu)

.

The proof of Theorem 1.7 is also given in Subsection 2.1. We move to our counterpart of this result to
type D Coxeter groups Dn. Recall that Dn is the subgroup of Bn consisting of the signed permutations which
have an even number of negative signs. We denote −1 as 1 and for π = π1, π2, . . . , πn ∈ Dn, define π1 = −π1
and let DESD(π) = {i ∈ {−1, 1, . . . , n − 1} : πi > π|i|+1} be its set of descents. Let desD(π) = |DESD(π)|.
Moreover, let OddDESD(π) = {i ∈ [−1, n− 1]− {0} : πi > π|i|+1 and i is odd} be the set of odd indices where
descents occur in π and similarly let EvenDESD(π) = {i ∈ [−1, n − 1] − {0} : πi > πi+1 and i is even}. Let
odesD(π) = |OddDESD(π)| and edesD(π) = |EvenDESD(π)|. Recall that length in Type D Coxeter groups
invD is defined as follows (see [9, Page 302]):

invD(π) = |{1 ≤ i < j ≤ n : πi > πj}|+ |{1 ≤ i < j ≤ n : −πi > πj}|.

Remmel in [12] has given a definition of alternating descent for type D Coxeter groups based on a total
order on the elements of [±n]. The polynomial that Remmel gets is different from the one we have. Remmel’s
main result is a joint distribution of alternating descents and alternating major index in types B and D Coxeter
groups. Below, we consider a slightly different polynomial enumerating alternating descents and type D inversion
number in Dn. Our definition uses the parity of the position of descents as before. Formally, define

Dn(t, q) =
∑
π∈Dn

tdesD(π)qinvD(π) and Dn(s, t, q) =
∑
π∈Dn

sedesD(π)todesD(π)qinvD(π). Define

D0(s, t, q, u) =
∑
k>0

D2k(s, t, q)
u2k

D2k(1, q)
,D1 =

∑
k>0

D2k+1(s, t, q)
u2k+1

D2k+1(1, q)
.

Define D̂n(s, t, q) =
∑
π∈Dn

todesD(π)seascD(π)qinvD(π) and let

D̂0(s, t, q, u) =
∑
n≥1

D̂2n(s, t, q)
u2n

D2n(1, q)
, D̂1(s, t, q, u) =

∑
n≥1

D̂2n+1(s, t, q)
u2n+1

D2n+1(1, q)
. (9)

Moreover, let expD(u; q) =
∑
n≥0

un

Dn(1, q)
. We split it is odd and even parts and write

coshD(u; q) =
expD(u; q) + expD(−u; q)

2
and sinhD(u; q) =

expD(u; q)− expD(−u; q)

2
.

Recalling M from (2), let

OD = ut2(coshq(Mu)− 1) +
(1− t)M
(1− s)

(sinhD(Mu; q)−Mu) +
2t(1− t)

M
(sinhq(Mu)−Mu),

ED = 2t(coshq(Mu)− 1) + (1− t)(coshD(Mu; q)− 1) +
ut2(1− s)

M
sinhq(Mu).

For type D Coxeter groups, our main results are the following.

Theorem 1.8. We have the egfs

D0(s, t, q, u) =
ED(1− t coshq(Mu)) + OD( t(1−s)M sinhq(Mu))

1− (s+ t) coshq(Mu) + steq(Mu)eq(−Mu)
,

D1(s, t, q, u) =
OD(1− s coshq(Mu)) + ED( s(1−t)M sinhq(Mu))

1− (s+ t) coshq(Mu) + steq(Mu)eq(−Mu)
.

Theorem 1.9. We have the egfs

D̂0(s, t, q, u) =
T ′(ED)(1− t cosq(Mu))− T ′(OD)( t(s−1)

√
s

Ms sinq(Mu))

s− (st+ 1) cosq(Mu) + teq(iMu)eq(−iMu)
,

ECA 4:1 (2024) Article #S2R3 4
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D̂1(s, t, q, u) =

T ′(OD)√
s

(s− cosq(Mu))− T ′(ED)( (1−t)
M sinq(Mu))

s− (st+ 1) cosq(Mu) + teq(iMu)eq(−iMu)
,

where

T ′(OD) =
√
sut2(cosq(Mu)− 1)− (1− t)M

(s− 1)
√
s

(sinD(Mu; q)−Mu)

+
2t(1− t)

√
s

M
(sinq(Mu)−Mu),

T ′(ED) = 2t(cosq(Mu)− 1) +
ut2(s− 1)

√
s

sM
sinq(Mu) +

(1− t)
t

(coshD(Mu; q)− 1).

The proof of Theorem 1.8 and Theorem 1.9 appear in Subsection 3.1. It can be checked that Theorem 1.8
refines a result of Reiner [10, Corollary 4.5] for type D Euler-Mahonian polynomials. Our proofs in both the
type B and type D cases use an inclusion-exclusion-based argument.

1.1 Refining Hyatt’s recurrences for the Type B and Type D Eulerian polynomial

As an outcome of our proofs, we get a refinement of Hyatt’s recurrences for the type B and type D Eulerian
polynomials. Hyatt in [5] gave the following recurrences for type B Eulerian polynomials. We partition Bn

based on the sign of the last element. Define B+
n = {π ∈ Bn : πn > 0} to be the set containing the elements of

Bn with last element being positive and let B−n = Bn −B+
n . Define B+

n (t) =
∑
π∈B+

n
tdesB(π). The following

result is due to Hyatt.

Theorem 1.10 (Hyatt). For integers n ≥ 1, we have

B+
n (t) =

n−1∑
k=0

(
n

k

)
Bk(t)(t− 1)n−k−1.

Our extension of Theorem 1.10 involves the following polynomial. Define

B±n (s, t, q) =
∑
π∈B±n

sedesB(π)todesB(π)qinvB(π). (10)

Our type B generalization is the following.

Theorem 1.11. For even positive integers n, we have

B+
n (s, t, q) =

n
2−1∑
r=0

q(
2r+1

2 )
(

n

2r + 1

)
q

Bn−2r−1(s, t, q)(s− 1)r(t− 1)r

+

n
2∑

r=1

q(
2r
2 )
(
n

2r

)
q

Bn−2r(s, t, q)(s− 1)r−1(t− 1)r.

For odd positive integers n, we have

B+
n (s, t, q) =

bn2 c∑
r=0

q(
2r+1

2 )
(

n

2r + 1

)
q

Bn−2r−1(s, t, q)(s− 1)r(t− 1)r

+

bn2 c∑
r=1

q(
2r
2 )
(
n

2r

)
q

Bn−2r(s, t, q)(s− 1)r(t− 1)r−1.

It is clear that setting q = 1 and s = t in Theorem 1.11 gives us Theorem 1.10. The proof of Theorem 1.11
appears in Subsection 2.2. For Type D Coxeter groups, our analogous result is Theorem 3.3.

1.2 More consequences

Another outcome of our results is some symmetry relations. For the type B case, our results are Theorem 2.5
and Lemma 2.4. For the type D case, our symmetry results are Theorem 3.4 and Corollary 3.6.

From the q-analogue of our generating function, we naturally get a q-analogue of the enumeration of type B
and type D snakes. These results are presented in Section 4. Enumeration of type B and D snakes with respect
to some statistics and thus q-analogues have been obtained, see for example, Verges [14]. However, to the best
of our knowledge, we have not seen q-analogues involving the appropriate length function in these groups.

ECA 4:1 (2024) Article #S2R3 5
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2. Type B results

Recall that Bn is the set of permutations of [±n] = {±1,±2, . . . ,±n} satisfying π(−i) = −π(i). We think of π
as a word π = π0, π1, π2, . . . , πn where πi = π(i) and π0 = 0.

For positive integers n and an integer i with 0 ≤ i ≤ n, let
(
[n]
i

)
= {A ⊆ [n] : |A| = i} be the set of subsets

of [n] with cardinality i. We define a signed subset (A, ε) to be a subset A ⊆ [n] and ε is a string of signs ± of
length |A|. Here, each element ai ∈ A has either a positive or a negative sign, encoded by εi, attached to it.
When a ∈ A, we denote a positive signed a just by a and a negative signed a by a. The set of all signed subsets
of size i of [n] will be denoted as sgn

(
[n]
i

)
. Clearly, |sgn

(
[n]
i

)
| = 2i

(
n
i

)
.

Let Gn,i be the set of signed permutations π ∈ Bn such that the last n − i elements of π are increasing,
that is we have πi+1 < πi+2 < · · · < πn−1 < πn. It is easy to see that |Gn,i| = 2n

(
n
i

)
i!. Let π = 0, 1, 2, . . . , n

and define Gn,−1 to be the set containing the single element π. For example, when n = 3, π = 0, 1, 2, 3 and
G3,−1 = {π}.

Let σ = 0, σ1, · · · , σn−i ∈ Bn−i and (A, ε) ∈ sgn
(
[n]
i

)
be a signed subset. Moreover, let [n] − A =

{c1, c2, . . . , cn−i} be written in ascending order, that is with c1 < c2 < · · · < cn−i. We define a map h :
Bn−i → B{c1,c2,...,cn−i} which for 1 ≤ k ≤ n− i, maps k to ck and preserves the sign. Formally,

h(σ) = 0, π1, π2, . . . , πn−i, (11)

where for 1 ≤ i ≤ n − i, if |σi| = k then |πi| = ck and πi has the same sign as σi. This map h is clearly a
bijection and is hence invertible.

By inverting the map h on the elements of [0, n] − A and appending the elements of (A, ε) in ascending
order, we get a signed permutation in Gn,n−i. This map is also invertible, and thus we have a bijection

f : Bn−i× sgn
(
[n]
i

)
7→ Gn,n−i defined below. Let σ ∈ Bn−i and (A, ε) ∈ sgn

(
[n]
i

)
. For a set S (resp. a signed set

(S, ε)), by [S] (respectively by [(S, ε)]), we denote the string obtained by writing the elements of S (respectively
(S, ε)) in ascending order in the usual linear order of Z. Define f(σ, (A, ε)) = h(σ)[(A, ε)] where h(σ)[(A, ε)]
denotes the juxtaposition of h(σ) and [(A, ε)].

Example 2.1. Let n = 7, i = 4, σ = 0, 2, 1, 3 ∈ B3 and (A, ε) = {1, 4, 5, 6} be a signed subset of sgn
(
[7]
4

)
. Then,

[0, n]− A = {0, 2, 3, 7} and thus h(σ) = 0327. Moreover, we have [[0, n]− A] = 0, 2, 3, 7 and [(A, ε)] = 6, 4, 1, 5.
Therefore, f(σ, (A, ε)) = 0, 3, 2, 7, 6, 4, 1, 5. We also have f([[0, 7]−A], (A, ε)) = 0, 2, 3, 7, 6, 4, 1, 5.

Lemma 2.1. For positive integers n, we have∑
(A,ε)∈sgn([n]

r )

qinvB(f([[0,n]−A],(A,ε))) =

(
n

r

)
q

(1 + qn)(1 + qn−1) · · · (1 + qn−r+1).

Proof. We proceed by induction on n. The base case when n = 1 is easy to verify. We assume the result is true
for n and want to show it holds for n+ 1. Thus, we want to show that∑

(A,ε)∈sgn([n+1]
r+1 )

qinvB(f([[0,n+1]−A],(A,ε))) =

(
n+ 1

r + 1

)
q

(1 + qn+1)(1 + qn) · · · (1 + qn−r+1). (12)

Let η(n, r) = (1 + qn) · · · (1 + qn−r+1). We partition sgn
(
[n+1]
r+1

)
into the disjoint union of the following three

subsets and determine the contribution of each of these three sets.

1. A1 = {(A, ε) ∈ sgn
(
[n+1]
r+1

)
;n+ 1 ∈ (A, ε)},

2. A2 = {(A, ε) ∈ sgn
(
[n+1]
r+1

)
;n+ 1 ∈ (A, ε)},

3. A3 = {(A, ε) ∈ sgn
(
[n+1]
r+1

)
;n+ 1 /∈ (A, ε)}.

If n+1 ∈ (A, ε), as [(A, ε)] is in ascending order, it will be the rightmost element of f([[0, n+1]−A], [(A, ε)])
and thus it will contribute no extra inversions. Thus∑

(A,ε)∈A1

qinvB(f([[0,n+1]−A],[(A,ε)])) = η(n, r)

(
n

r

)
q

. (13)

If n+ 1 ∈ (A, ε), then n+ 1 has to be in the ’n−r+1’-th position in f([[0, n+1]−A], (A, ε)). Every element
of [[0, n+ 1]−A] will be to its left and will thus contribute 2 inversions. Further, every element to its right will
contribute 1 inversion. Thus, we get 2n− r + 1 new inversions. Therefore,∑

(A,ε)∈A2

qinvB(f([[0,n+1]−A],[(A,ε)])) = η(n, r)q2n−r+1

(
n

r

)
q

. (14)
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Lastly, when n+ 1 ∈ [0, n+ 1]−A, then it has to be the rightmost element in [0, n+ 1]−A. Every element
of (A, ε) will contribute one inversion and thus we get ‘r + 1’ extra inversions. Hence,∑

(A,ε)∈A3

qinvB(f([[0,n+1]−A],(A,ε))) = qr+1η(n, r + 1)

(
n

r + 1

)
q

= qr+1(1 + qn−r)η(n, r)

(
n

r + 1

)
q

. (15)

Summing up (13), (14) and (15), we get∑
(A,ε)∈sgn([n+1]

r+1 )

qinvB(f([[0,n+1]−A],(A,ε)))

= η(n, r)

((
n

r

)
q

+ q2n−r+1

(
n

r

)
q

+ qr+1(1 + qn−r)

(
n

r + 1

)
q

)
= η(n, r)

(
(1 + qn+1)

(
n+ 1

r + 1

)
q

)
= η(n+ 1, r + 1)

(
n+ 1

r + 1

)
q

.

The last equation follows from the q-Pascal recurrence for the Gaussian binomial coefficients (see [9, Chapter
6]). The proof of (12) and hence of Lemma 2.1 is complete.

We illustrate the statement of Lemma 2.1 by the following example and we write permutations without
comma for brevity.

Example 2.2. When n = 3 and r = 1, the set sgn
(
[n]
r

)
is clearly {{3}, {3}, {2}, {2}, {1}, {1}} and hence we

have ∑
(A,ε)∈sgn([3]

1 )

qinvB(f([[0,n]−A],(A,ε)))

= qinvB(0123) + qinvB(0123) + qinvB(0132) + qinvB(0132) + qinvB(0231) + qinvB(0231)

= 1 + q5 + q + q4 + q2 + q3 = (1 + q + q2)(1 + q3) =

(
3

1

)
q

(1 + q3).

When n = 4 and r = 2, the set sgn
(
[n]
r

)
is clearly {{3, 4}, {3, 4}, {3, 4}, {3, 4}, {2, 4}, {2, 4}, {2, 4}, {2, 4}, {2, 3},

{2, 3}, {2, 3}, {2, 3}, {1, 4}, {1, 4}, {1, 4}, {1, 4}, {1, 3}, {1, 3}, {1, 3}, {1, 3}, {1, 2}, {1, 2}, {1, 2}, {1, 2}}. It is easy
to verify that ∑

(A,ε)∈sgn([3]
1 )

qinvB(f([[0,n]−A],(A,ε)))

= 1 + q + 2q2 + 2q3 + 3q4 + 3q5 + 3q6 + 3q7 + 2q8 + 2q9 + q10 + q11

= (1 + q + 2q2 + q3 + q4)(1 + q4)(1 + q3) =

(
4

2

)
q

(1 + q3).

Corollary 2.1. Let σ ∈ Bn−r be a signed permutation and (A, ε) ∈ sgn
(
[n]
r

)
be a signed subset. Then

∑
(A,ε)∈sgn([n]

r )

qinvB(f(σ,(A,ε))) = qinvB(σ)

(
n

r

)
q

(1 + qn)(1 + qn−1) · · · (1 + qn−r+1). (16)

Proof. For σ ∈ Bn−r and (A, ε) ∈ sgn
(
[n]
r

)
, we have

invB(f(σ, (A, ε))) = invB(h(σ), [(A, ε)])) = invB(f([[0, n]−A], (A, ε))) + invB(σ).

The proof follows as it takes exactly invB(σ) inversions to get h(σ) from the identity permutation in Bn−r
(recall h(σ) is defined in (11)).

Adding (16) overall π ∈ Bn−r gives us the following.

Corollary 2.2. For positive integers n, we have∑
σ∈Bn−r

∑
(A,ε)∈sgn([n]

r )

todesB(σ)sedesB(σ)qinvB(f(σ,(A,ε))) = Bn−r(s, t, q)

(
n

r

)
q

(1 + qn) · · · (1 + qn−r+1).
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Reiner in [11] gave the following egf for the polynomial enumerating descents and length in Bn.

Theorem 2.1 (Reiner). We have the following:∑
n≥0

Bn(t, q)
un

Bn(1, q)
=

(1− t) expB (u(1− t); q)
1− t exp(u(1− t); q)

.

It can be seen that Theorem 2.1 is equivalent to the following.

Theorem 2.2 (Reiner). For positive integers n, the polynomials Bn(q, t) satisfy the following:

Bn(t, q)

Bn(1, q)
= t

n∑
k=0

Bn−k(t, q)(1− t)k

Bn−k(1, q)[k]q!
+

(1− t)n+1

Bn(1, q)
.

We are now interested in proving a trivariate analogue of Theorem 2.2. Towards that, we start with the
following lemma.

Lemma 2.2. Let n be a positive integer and let 0 ≤ i ≤ n. When i is odd, we have∑
π′∈Gn,i

todesB(π′)sedesB(π′)qinvB(π′) = t
Bi(s, t, q)Bn(1, q)

Bi(1, q)[n− i]q!

+ (1− t)
{ ∑
π′∈Gn,i−1

todesB(π′)sedesB(π′)qinvB(π′)

}
. (17)

When i is even, we have∑
π′∈Gn,i

todesB(π′)sedesB(π′)qinvB(π′) = s
Bi(s, t, q)Bn(1, q)

Bi(1, q)[n− i]q!

+(1− s)
{ ∑
π′∈Gn,i−1

todesB(π′)sedesB(π′)qinvB(π′)

}
. (18)

Proof. We prove (17) first and therefore take i to be odd. Let Fn,i = Gn,i −Gn,i−1. We have∑
(π,(A,ε))∈Bi×sgn( [n]

n−i)

todesB(π)sedesB(π)qinvB(f(π,(A,ε)))

=
∑

(π,(A,ε))∈f−1(Gn,i)

todesB(π)sedesB(π)qinvB(f(π,(A,ε)))

=
∑

(π,(A,ε))∈f−1(Gn,i−1)

todesB(π)sedesB(π)qinvB(f(π,(A,ε)))

+
∑

(π,(A,ε))∈f−1(Fn,i)

todesB(π)sedesB(π)qinvB(f(π,(A,ε)))

=
∑

f(π,(A,ε))∈Gn,i−1

todesB(f(π,A))sedesB(f(π,A))qinvB(f(π,(A,ε)))

+
1

t

{ ∑
f(π,(A,ε))∈Fn,i

todesB(f(π,A))sedesB(f(π,A))qinvB(f(π,(A,ε)))

}
=

∑
π′∈Gn,i−1

todesB(π′)sedesB(π′)qinvB(π′)

+
1

t

{ ∑
π′∈Gn,i

todesB(π′)sedesB(π′)qinvB(π′) −
∑

π′∈Gn,i−1

todesB(π′)sedesB(π′)qinvB(π′)

}
.

The second equality follows because f is a bijection between Bi×sgn
(
[n]
n−i
)

and Gn,i. For the fourth equality, we
have used that i is odd. In the fifth equality, we are again using that f is a bijection and Fn,i = Gn,i −Gn,i−1.

From Corollary 2.2 with i = n− r, we have

Bi(s, t, q)

(
n

n− i

)
q

(1 + qn) · · · (1 + qi+1)
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= (t− 1)
∑

π′∈Gn,i−1

todes(π
′)sedesB(π′)qinvB(π′) +

∑
π′∈Gn,i

todesB(π′)sedesB(π′)qinvB(π′). (19)

The following result is easy to see(
n

n− i

)
q

(1 + qn) · · · (1 + qi+1) =
Bn(1, q)

Bi(1, q)[n− i]q!
. (20)

Combining (19) and (20) completes the proof of (17). The proof when i is even is similar and hence is
omitted.

In the following example, we illustrate Lemma 2.2.

Example 2.3. We first provide an example when i is odd. Let n = 3 and i = 1. It is easy to verify the
following: ∑

π′∈G3,1

todesB(π′)sedesB(π′)qinvB(π′)

= 1 + (s+ t)q + (s+ 2t)q2 + 2(t+ s)q3 + (ts+ 2t+ s)(q4 + q5) + (ts+ t+ s)q6 + (t+ ts)q7 + tsq8.

Moreover, B1(s, t, q) = 1 + sq, B3(1, q) = (1 + q)(1 + q + q2 + q3)(1 + q + q2 + q3 + q4 + q5), and∑
π′∈G3,0

todesB(π′)sedesB(π′)qinvB(π′) = 1 + sq + sq2 + 2sq3 + sq4 + sq5 + sq6.

Equation (17) clearly holds when n = 3 and i = 1 by simple algebraic manipulation. We now give an example
when i is even. Let n = 3 and i = 2. We have∑

π′∈G3,2

todesB(π′)sedesB(π′)qinvB(π′)

= 1 + (2s+ t)q + (s2 + 2s+ 2t)q2 + (s2 + ts+ 2t+ 3s)q3 + 2(s2 + ts+ s+ t)(q4 + q5)

+(2s2 + 3ts+ t+ s)q6 + (t+ 2ts+ 2s2)q7 + (2ts+ s2)q8 + ts2q9.

Further, B2(s, t, q) = 1 + (t + s)(q + q2 + q3) + tsq4 and B3(1,q)
B2(1,q)

= (1 + q + q2 + q3 + q4 + q5). Now it can be

easily verified that equation (18) holds when n = 3 and i = 2.

We are now in a position to give a refinement of Theorem 2.2.

Theorem 2.3. Let B0(s, t, q) = 1. When n ≥ 1, the polynomials Bn(s, t, q) satisfy the following recurrence:

Bn(s, t, q)

Bn(1, q)
=

(1− t)k(1− s)k+1

Bn(1, q)
+

k−1∑
r=0

t(1− t)r(1− s)r+1 Bn−2r−1(s, t, q)

Bn−2r−1(1, q)[2r + 1]q!

+

k∑
r=0

s(1− t)r(1− s)r Bn−2r(s, t, q)

Bn−2r(1, q)[2r]q!
if n = 2k is even, (21)

Bn(s, t, q)

Bn(1, q)
=

(1− t)k+1(1− s)k+1

Bn(1, q)
+

k∑
r=0

s(1− t)r+1(1− s)r Bn−2r−1(s, t, q)

Bn−2r−1(1, q)[2r + 1]q!

+

k∑
r=0

t(1− t)r(1− s)r Bn−2r(s, t, q)

Bn−2r(1, q)[2r]q!
if n = 2k + 1 is odd. (22)

Proof. Recall that Gn,i is the set of signed permutations whose rightmost (n − i) entries form an increasing
run. Thus, Gn,n−1 = Bn. Further, Gn,−1 is just the signed permutation π = 0, 1, 2, · · · , n. Let n be even. By
repeatedly applying (18) and (17) we have

Bn(s, t, q) =
∑

π∈Gn,n−1

todesB(π)sedesB(π)qinvB(π)

= t
Bn−1(s, t, q)Bn(1, q)

Bn−1(1, q)[1]q!
+ (1− t)

( ∑
π∈Gn,n−2

todesB(π)sedesB(π)qinvB(π)

)

= t
Bn−1(s, t, q)Bn(1, q)

Bn−1(1, q)[1]q!
+ (1− t)sBn−2(s, t, q)Bn(1, q)

Bn−2(1, q)[2]q!

ECA 4:1 (2024) Article #S2R3 9



Hiranya Kishore Dey, Umesh Shankar, and Sivaramakrishnan Sivasubramanian

+(1− t)(1− s)
( ∑
π∈Gn,n−3

todesB(π)sedesB(π)qinvB(π)
)

= (1− t)k(1− s)k+1 +

k−1∑
r=0

t(1− t)r(1− s)r+1Bn−2r−1(s, t, q)Bn(1, q)

Bn−2r−1(1, q)[2r + 1]q!

+

k∑
r=0

s(1− t)r(1− s)rBn−2r(s, t, q)Bn(1, q)

Bn−2r(1, q)[2r]q!
.

This completes the proof of (21). We now consider the case when n is odd. Here, we will get

Bn(s, t, q) =
∑

π∈Gn,n−1

todesB(π)sedesB(π)qinvB(π)

= s
Bn−1(s, t, q)

Bn−1(1, q)[1]q!
+ (1− s)

( ∑
π∈Gn,n−2

todesB(π)sedesB(π)qinvB(π)

)

= s
Bn−1(s, t, q)Bn(1, q)

Bn−1(1, q)[1]q!
+ (1− s)t Bn−2(s, t, q)

Bn−2(1, q)[2]q!
+

+(1− s)(1− t)
( ∑
π∈Gn,n−3

todesB(π)sedesB(π)qinvB(π)
)
.

Continuing as in the case when n was even, completes the proof of (22) and hence completes the proof of
Theorem 2.3.

2.1 Type B Generating Functions

We recast Theorem 2.3 in the language of egfs to prove Theorem 1.5. Recall our definitions from (6).

Proof of Theorem 1.5. For positive integers n = 2k, we have

Bn(s, t, q)u2k

Bn(1, q)
=

(1− t)k(1− s)k+1u2k

Bn(1, q)
+

k∑
r=0

(
(1− t)r(1− s)ru2r

[2r]q!

)(
sBn−2r(s, t, q)u

n−2r

Bn−2r(1, q)

)

+

k−1∑
r=0

(
(1− t)r(1− s)r+1u2r+1

[2r + 1]q!

)(
tBn−2r−1(s, t, q)un−2r−1

Bn−2r−1(1, q)

)
. (23)

When n = 2k + 1, we have

Bn(s, t, q)u2k+1

Bn(1, q)
=

(1− t)k+1(1− s)k+1u2k+1

Bn(1, q)

+

k∑
r=0

(
(1− t)r(1− s)ru2r

[2r]q!

)(
tBn−2r(s, t, q)u

n−2r

Bn−2r(1, q)

)

+

k∑
r=0

(
(1− t)r+1(1− s)ru2r+1

[2r + 1]q!

)(
sBn−2r−1(s, t, q)un−2r−1

Bn−2r−1(1, q)

)
. (24)

Summing (23), (24) over k ≥ 0 yields

(1− s) coshB(Mu; q) +M sinhB(Mu; q) = B0
(

1− s coshq(Mu)− s sinhq(Mu)

L

)
+B1(1− t coshq(Mu)− tL sinhq(Mu)), (25)

where L =
√

(1− s)/(1− t), B0 = H0(s, t, q, u) and B1 = H1(s, t, q, u). Changing u to −u gives us

(1− s) coshB(Mu; q)−M sinhB(Mu; q) = B0
(

1− s coshq(Mu) +
s sinhq(Mu)

L

)
−B1(1− t coshq(Mu) + tL sinhq(Mu)). (26)

Solving (25) and (26), completes the proof.
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Remark 2.1. We show that setting q = 1 in Theorem 1.5 gives Theorem 1.4. We claim that H0(s, t, 1, u) =
H0(s, t, u2 ) and likewise H1(s, t, 1, u) = H1(s, t, u2 ). As Bn(1, 1) = 2nn!, coshB(u; 1) = cosh(u2 ), sinhB(u; 1) =
sinh(u2 ), and eq(u)eq(−u)|q=1 = 1, setting q = 1 on the right-hand side of (7) gives the right hand side of (3).
Similarly, setting q = 1 on the right-hand side of (8), we get the right hand side of (4).

We are now in a position to prove Theorem 1.7.

Proof of Theorem 1.7. If B2k(s, t, q) is the polynomial defined in (5), it is easy to see that B̂2k(s, t, q) =
skB2k(1/s, t, q). Therefore,

Ĥ0(s, t, q, u) = H0

(1

s
, t, q,

√
su
)

=

(s− 1)

(
(1− t cosq(Mu)) cosB(Mu; q)− t sinq(Mu) sinB(Mu; q)

)
s+ teq(iMu)eq(−iMu)− (ts+ 1) cosq(Mu)

.

As the proof is complete, we move on to the case when n = 2k + 1 is odd. Clearly, in this case, we have

B̂2k+1(s, t, q) = sk+1B2k+1

(
1
s , t, q

)
. Therefore,

Ĥ1(s, t, q, u) =
√
sH1(

1

s
, t, q,

√
su)

=

−M
(

(s− cosq(Mu) sinB(Mu; q) + sinq(Mu) cosB(Mu; q)

)
s+ teq(iMu)eq(−iMu)− (ts+ 1) cosq(Mu)

.

This completes the proof.

Corollary 2.3. We have the following egf for the type B bivariate alternating descent polynomials:∑
n≥0

B̂n(s, t)
un

n!
=
−(s− 1)(t− 1) cos(Mu)−M(s+ 1) sin(Mu)

s+ t− (ts+ 1) cos(2Mu)
.

Corollary 2.4. We get an alternate proof of the following egf for the type B alternating descent polynomials
(see also [3] and [8]):

∑
n≥0

B̂n(t)
un

n!
=
−(t− 1)2 cos((1− t)u) + (t2 − 1) sin((1− t)u)

2s− (t2 + 1) cos(2(1− t)u)
.

As mentioned in Section 1 though we consider a two variable enumerator, we can get a four-variable version
and hence a type B counterpart of Theorem 1.1.

Define variables s0, t0, s1 and t1 to keep track of even ascents, even descents, odd ascents, and odd descents
respectively. Let m =

√
(s0 − t0)(s1 − t1). Define the five variable distribution

Bn(s0, s1, t0, t1, q) =
∑
w∈Bn

s
eascB(w)
0 s

oascB(w)
1 t

edesB(w)
0 t

odesB(w)
1 qinvB(w).

Further, define the generating functions

H0(s0, s1, t0, t1, q, u) =
∑
k≥0

B2k(s0, s1, t0, t1, q)
u2k

B2k(1, q)
,

H1(s0, s1, t0, t1, q, u) =
∑
k≥0

B2k+1(s0, s1, t0, t1, q)
u2k+1

B2k+1(1, q)
.

Theorem 2.4. We have the egfs

H0(s0, s1, t0, t1, q, u)

s0 − t0
=

((
s1 − t1 coshq(mu)

)
coshB(mu; q) + t1 sinhq(mu)sinhB(mu; q)

)
s0s1 − (t0s1 + s0t1) coshq(mu) + t0t1eq(mu)eq(−mu)

,

H1(s0, s1, t0, t1, q, u) =

m

((
s0 − t0 coshq(mu)

)
sinhB(mu; q) + t0 sinhq(mu)coshB(mu; q)

)
s0s1 − (s1t0 + t1s0) coshq(mu) + t0t1eq(mu)eq(−mu)

.
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Proof. Recalling (6), it is easy to see that

H0(s0, s1, t0, t1, q, u) = H0

(
t0
s0
,
t1
s1
, q,
√
s0s1u

)
,

H1(s0, s1, t0, t1, q, u) =

√
s0√
s1
H1

(
t0
s0
,
t1
s1
, q,
√
s0s1u

)
.

The proof is complete.

2.2 q-analogues of Hyatt’s recurrences and symmetries

Hyatt gives a proof of Theorem 1.10 for the polynomials B+
n (t) by considering a statistic maxdropB . We give

an inclusion-exclusion argument.

Proof of Theorem 1.11. We prove the two recurrences separately. Let Âk be the set of signed permutations in
Bn such that the last k+1 elements are positive and are arranged in descending order. Thus, the set Âk−1− Âk
is the set of signed permutations with no descent in the (n− k)-th position and with their last k elements being
positive and descending. Define

Ak(s, t, q) =
∑
w∈Âk

todesB(w)sedesB(w)qinvB(w).

We abbreviate Ak(s, t, q) as Ak for the rest of this proof for better readability. When n is even, we claim that

q(
2r
2 )
(
n

2r

)
q

Bn−2r(s, t, q)s
rtr = sA2r−1 − (s− 1)A2r, (27)

q(
2r+1

2 )
(

n

2r + 1

)
q

Bn−2r−1(s, t, q)srtr+1 = tA2r − (t− 1)A2r+1. (28)

When n is odd, we claim that

q(
2r
2 )
(
n

2r

)
q

Bn−2r(s, t, q)s
rtr = tA2r−1 − (t− 1)A2r, (29)

q(
2r+1

2 )
(

n

2r + 1

)
q

Bn−2r−1(s, t, q)sr+1tr = sA2r − (s− 1)A2r+1. (30)

We prove (27) and (29). The proofs of (28) and (30) follow from a very similar argument. Recall that
(
[n]
n−i
)

is the

set of all (n− i)-sized subsets of [n]. Given A ∈
(
[n]
n−i
)
, we arrange its elements in descending order and list them

as a1, a2, · · · , an−i with a1 > a2 > · · · > an−i > 0. Define a new juxtaposition map f ′ : Bi ×
(
[n]
n−i
)
→ Ân−i−1

that takes (ψ,A) to the signed permutation ψ[n]−A, a1, a2, · · · , an−i, i.e.

f ′(ψ,A) = ψ[n]−A, a1, a2, · · · , an−i.

It is easy to see that f ′ is a bijection from Bi×
(
[n]
n−i
)

to Ân−i−1. We define invB([X], [Y ]) to be the number
of inversions that occur between the X and Y . The LHS of (27) is clearly obtained as follows∑

((ψ,A)∈Bn−2r×([n]
2r)

todesB(ψ)+odesB(A)sedesB(ψ)+edesB(A)qinvB(ψ)+invB(A)+invB([ψ],[A])

= q(
2r
2 )sr−1tr

∑
(ψ,A)∈Bn−2r×([n]

2r)

todesB(ψ)sedesB(ψ)qinvB(ψ)+invB([ψ],[A])

= q(
2r
2 )sr−1tr

∑
ψ∈Bn−2r

∑
A∈([n]

2r)

todesB(ψ)sedesB(ψ)qinvB(ψ)+invB([ψ],[A])

= q(
2r
2 )sr−1tr

(
n

2r

)
q

Bn−2r(s, t, q).

The expression above does not account for the descent occurring at the (n− 2r)-th position. Thus, it is off
by a factor of 1

s on the set Â2r. Further, it counts correctly on the set Â2r−1 − Â2r. This gives us

q(
2r
2 )sr−1tr

(
n

2r

)
q

Bn−2r(s, t, q) = A2r−1 −A2r +
1

s
A2r,
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which is equivalent to (27). Similarly for 2r + 1 , we get (28)

q(
2r+1

2 )srtr+1

(
n

2r + 1

)
q

Bn−2r−1(s, t, q) = tA2r − (t− 1)A2r+1.

We now give a short proof of (29). For A ∈
(
[n]
n−i
)
, we again arrange its elements in descending order

and list them as a1, a2, · · · , an−i with a1 > a2 > · · · > an−i > 0. We now define the juxtaposition map

f ′′ : Bi ×
(
[n]
n−i
)
→ Ân−i−1 that takes (ψ,A) to the signed permutation ψ[n]−A, a1, a2, · · · , an−i, i.e.

f ′′(ψ,A) = ψ[n]−A, a1, a2, · · · , an−i.

It is easy to see that f ′′ is a bijection from Bi ×
(
[n]
n−i
)

to Ân−i−1. By a similar argument to that of (27) we
can now show that the LHS of (29) is∑

((ψ,A)∈Bn−2r×([n]
2r)

todesB(ψ)+odesB(A)sedesB(ψ)+edesB(A)qinvB(ψ)+invB(A)+invB([ψ],[A])

= q(
2r
2 )tr−1sr

(
n

2r

)
q

Bn−2r(s, t, q).

The expression above does not account for the descent occurring at the (n− 2r)-th position. Thus, it is off
by a factor of 1

t on the set Â2r. Further, it counts correctly on the set Â2r−1 − Â2r. This gives us

q(
2r
2 )tr−1sr

(
n

2r

)
q

Bn−2r(s, t, q) = A2r−1 −A2r +
1

t
A2r,

which is equivalent to (29). Equations (27) and (28) gives

q(
2r
2 )
(
n

2r

)
q

Bn−2r(s, t, q)(s− 1)r−1(t− 1)r

=

(
s− 1

s

)r−1(
t− 1

t

)r
A2r−1 −

(
s− 1

s

)r(
t− 1

t

)r
A2r, (31)

q(
2r+1

2 )
(

n

2r + 1

)
q

Bn−2r−1(s, t, q)(s− 1)r(t− 1)r

=

(
s− 1

s

)r(
t− 1

t

)r
A2r −

(
s− 1

s

)r(
t− 1

t

)r+1

A2r+1. (32)

Summing (31), over the indices 1 ≤ r ≤ n
2 and (32) over the indices 0 ≤ r ≤ n−2

2 , we get

A0 =

n
2−1∑
r=0

q(
2r+1

2 )
(

n

2r + 1

)
q

Bn−2r−1(s, t, q)(s− 1)r(t− 1)r

+

n
2∑

r=1

q(
2r
2 )
(
n

2r

)
q

Bn−2r(s, t, q)(s− 1)r−1(t− 1)r.

As Â0 is the set of signed permutations with elements having a positive last element (ie B+
n ), this completes

our proof.

We recall the polynomials B+
n (s, t, q) and B−n (s, t, q) from (10). We consider the map that flips the sign of

all elements below and give a few properties.

Lemma 2.3. Let f : Bn → Bn be the involution that sends w = w1, · · · , wn to w = w1, · · · , wn. Then, we
have the following.

1. When n = 2k + 1, we have odesB(w) + odesB(f(w)) = k and when n = 2k, we have odesB(w) +
odesB(f(w)) = k.

2. When n = 2k + 1, we have edesB(w) + edesB(f(w)) = k + 1 and when n = 2k, we have edesB(w) +
edesB(f(w)) = k.

3. The sum invB(w) + invB(f(w)) = n2.

ECA 4:1 (2024) Article #S2R3 13



Hiranya Kishore Dey, Umesh Shankar, and Sivaramakrishnan Sivasubramanian

Proof. The proof of the first two assertions are straightforward and hence omitted. For the third part, we
recall that invB(w) = inv(w) + NegSum(w) where inv(w) = |{(i, j) : 1 ≤ i < j ≤ n : wi > wj}| and
NegSum(w) =

∑
i∈Negs(w) i. Thus, we have

invB(w) + invB(f(w)) = inv(w) + NegSum(w) + inv(w) + NegSum(w)

= inv(w) + inv(w) + NegSum(w) + NegSum(w)

=

(
n+ 1

2

)
+

(
n

2

)
= n2.

The proof is complete.

2.3 Symmetry results

Theorem 2.5. For positive integers n, we have

B−n (s, t, q) = qn
2

sk+1tkB+
n (s−1, t−1, q−1) when n = 2k + 1,

B−n (s, t, q) = qn
2

sktkB+
n (s−1, t−1, q−1) when n = 2k.

Therefore, we have

Bn(s, t, q) = B+
n (s, t, q) + qn

2

sk+1tkB+
n (s−1, t−1, q−1) when n = 2k + 1,

Bn(s, t, q) = B+
n (s, t, q) + qn

2

sktkB+
n (s−1, t−1, q−1) when n = 2k.

Proof. Let f : B+
n → B−n be the map that sends w = w1, · · · , wn to w = w1, · · · , wn. By Lemma 2.3, when

n = 2k, we have∑
w∈B−n

todesB(w)sedesB(w)qinvB(w) =
∑
w∈B+

n

todesB(f(w))sedesB(f(w))qinvB(f(w))

=
∑
w∈B+

n

tk−odesB(w)sk−edesB(w)qn
2−invB(w)

= qn
2

sktk
∑
w∈B+

n

t−odesB(w)s−edesB(w)q−invB(w).

When n = 2k + 1, we have∑
w∈B−n

todesB(w)sedesB(w)qinvB(w) =
∑
w∈B+

n

todesB(f(w))sedesB(f(w))qinvB(f(w))

=
∑
w∈B+

n

tk−odesB(w)sk+1−edesB(w)qn
2−invB(w)

= qn
2

sk+1tk
∑
w∈B+

n

t−odesB(w)s−edesB(w)q−invB(w).

completing the proof.

In a similar manner, the following result also follows.

Lemma 2.4. We have

B2k(s, t, q) = qn
2

sktkB2k

(
1

s
,

1

t
,

1

q

)
when n = 2k,

B2k+1(s, t, q) = qn
2

sk+1tkB2k+1

(
1

s
,

1

t
,

1

q

)
when n = 2k + 1.

3. Type D analogues

Let Hn,i be the set of signed permutations π ∈ Dn such that the last n− i elements of π are increasing, that is
we have πi+1 < πi+2 < · · · < πn−1 < πn. Clearly, |Hn,i| = 2n−1

(
n
i

)
i!.
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Let σ = σ1, · · · , σn−i ∈ Dn−i and (A, ε) ∈ sgn
(
[n]
i

)
be a signed subset. Further, let [n]−A = {c1, c2, . . . , cn−i}

be written in ascending order. Thus, c1 < c2 < · · · < cn−i. We define two maps h : Dn−i → D{c1,c2,...,cn−i} and
hD : Dn−i → Bc1,c2,...,cn−i

−D{c1,c2,...,cn−i} as follows:

h(σ) = π1, π2, . . . , πn−i and hD(σ) = π1, π2, . . . , πn−i,

where for 1 ≤ i ≤ n− i, if |σi| = k then |πi| = ck and πi has the same sign as σi. Both maps h, hD are clearly
bijections and hence invertible.

If (A, ε) has an even number of negative elements, then by inverting the map h on the elements of [0, n]−A
and appending the elements of (A, ε) in ascending order, we get a signed permutation in Hn,n−i. Similarly, if
(A, ε) has odd number of negative elements, then by inverting the map hD on the elements of [0, n] − A and
appending the elements of (A, ε) in ascending order, we get a signed permutation in Hn,n−i.

These maps are also invertible, so we have a bijection fD : Dn−i× sgn
(
[n]
i

)
7→ Hn,n−i defined as follows. Let

σ ∈ Bn−i and (A, ε) ∈ sgn
(
[n]
i

)
.

Define

fD(σ, (A, ε)) =

{
h(σ)[(A, ε)] if (A, ε) has even no. of negatives

hD(σ)[(A, ε)] if (A, ε) has odd no. of negatives

where (A, ε) is juxtaposed at the end of the h(σ) or hD(σ).
We start with the following type D counterpart of Lemma 2.1.

Lemma 3.1. Let (A, ε) ∈ sgn
(
[n]
r

)
be a signed subset of [n]. Then,

∑
(A,ε)∈sgn([n]

r )

qinvD(fD([[n]−A],[(A,ε)])) =

(
n

r

)
q

(1 + qn−1)(1 + qn−2) · · · (1 + qn−r).

Proof. We proceed by induction on n. The base case when n = 1 is easy. We assume that our Lemma is true
for n and show that it holds for n+ 1. Thus, we need to show the following:∑

(A,ε)∈sgn([n+1]
r+1 )

qinvD(fD([[n+1]−A],(A,ε))) =

(
n+ 1

r + 1

)
q

(1 + qn)(1 + qn−1) · · · (1 + qn−r).

Let η(n, r) = (1 + qn−1) · · · (1 + qn−r). We partition sgn
(
[n+1]
r+1

)
into the disjoint union of the following three

subsets:

1. A1 = {(A, ε) ∈ sgn
(
[n+1]
r+1

)
: n+ 1 ∈ (A, ε)},

2. A2 = {(A, ε) ∈ sgn
(
[n+1]
r+1

)
: n+ 1 ∈ (A, ε)},

3. A3 = {(A, ε) ∈ sgn
(
[n+1]
r+1

)
: n+ 1 /∈ (A, ε)}.

We next determine the contribution to
∑

(A,ε)∈sgn([n+1]
r+1 ) q

invD(fD([[n+1]−A],(A,ε))) from each of the above sets.

If n+ 1 ∈ (A, ε), as [(A, ε)] is in ascending order, it will be the rightmost element of f([[n+ 1]−A], [(A, ε)]) and
thus it will contribute no extra inversions. Thus∑

(A,ε)∈A1

qinvD(fD([[n+1]−A],[(A,ε)])) = η(n, r)

(
n

r

)
q

. (33)

If n+ 1 ∈ (A, ε), then n+ 1 has to be in the (n− r+ 1)-th position in f([[n+ 1]−A], (A, ε)). Every element
of [[n + 1]− A] will be to its left and will thus contribute 2 inversions. Further, every element to its right will
contribute 1 inversion. Thus, we get 2n− r new inversions. Therefore,∑

(A,ε)∈A2

qinvD(fD([[n+1]−A],[(A,ε)])) = η(n, r)q2n−r
(
n

r

)
q

. (34)

Lastly, when n+ 1 ∈ [n+ 1]− A, then it has to be the rightmost element in [n+ 1]− A. Every element of
(A, ε) will contribute one inversion and thus we get ‘r + 1’ extra inversions. Hence,∑

(A,ε)∈A3

qinvD(fD([[n+1]−A],(A,ε))) = qr+1η(n, r + 1)

(
n

r + 1

)
q

= qr+1(1 + qn−r−1)η(n, r)

(
n

r + 1

)
q

. (35)
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Summing up (33), (34) and (35), we get∑
(A,ε)∈sgn([n+1]

r+1 )

qinvD(fD([[n+1]−A],(A,ε)))

= η(n, r)

((
n

r

)
q

+ q2n−r
(
n

r

)
q

+ qr+1(1 + qn−r−1)

(
n

r + 1

)
q

)
= η(n+ 1, r + 1)

(
n+ 1

r + 1

)
q

.

The last equation follows from the q-Pascal recurrence for the Gaussian binomial coefficients. This completes
the proof.

We now illustrate the statement of Lemma 3.1 by the following example. Recall that we abbreviate permu-
tations by dropping commas between elements.

Example 3.1. For n = 3 and r = 1, the set sgn
(
[n]
r

)
is clearly {{3}, {3}, {2}, {2}, {1}, {1}} and hence we have∑

(A,ε)∈sgn([3]
1 )

qinvD(fD([[n]−A],(A,ε)))

= qinvD(123) + qinvD(231) + qinvD(132) + qinvD(123) + qinvD(231) + qinvD(132)

= 1 + q2 + q + q4 + q2 + q3 = (1 + q + q2)(1 + q2) =

(
3

1

)
q

(1 + q2).

Corollary 3.1. Let σ ∈ Dn−r be a signed permutation, (A, ε) ∈ sgn
(
[n]
r

)
be a signed subset.

∑
(A,ε)∈sgn([n]

r )

qinvD(fD(σ,[(A,ε)])) = qinvD(σ)

(
n

r

)
q

(1 + qn−1)(1 + qn−2) · · · (1 + qn−r).

Proof. The proof follows exactly as the proof of Corollary 2.1. The result follows by noting that changing the
sign of the first element does not affect the type D inversion statistic.

Corollary 3.2. We have ∑
σ∈Dn−r

∑
(A,ε)∈sgn([n]

r )

todesD(σ)sedesD(σ)qinvD(fD(σ,[(A,ε)]))

= Dn−r(s, t, q)

(
n

r

)
q

(1 + qn−1)(1 + qn−2) · · · (1 + qn−r).

Proof. For a particular σ ∈ Dn−r, we have

todesD(σ)sedesD(σ)
∑

(A,ε)∈sgn([n]
r )

qinvD(fD(σ,[(A,ε)]))

= todesD(σ)sedesD(σ)qinvD(σ)

(
n

r

)
q

(1 + qn−1)(1 + qn−2) · · · (1 + qn−r).

Summing over all possible σ ∈ Dn−r finishes the proof.

Lemma 3.2. Let X{1,1} be the set of signed permutations in Dn such that the descent set is a subset of {1, 1}.
Then, ∑

w∈X{1,1}

todesD(w)sedesD(w)qinvD(w) = t2
Dn(1, q)

[n− 1]q!
+ t(1− t)

(
2Dn(1, q)

[n]q!
− 1

)
+ (1− t).

Proof. Let Y1 = X{1,1} be the set of signed permutations of Dn with the last n− 1 elements in ascending order

and Y0 be the set of signed permutations of Dn such that the descent set is a subset of {1} or {1}. Then, by
inclusion-exclusion, we can say that

∑
w∈X{1,1}

todesD(w)sedesD(w)qinvD(w) = t2
( ∑
w∈Y1

qinvD(w)

)
+ t(1 − t)

( ∑
w∈Y0

qinvD(w)

)
+ (1 − t). (36)

From (3.1), we get
∑
w∈Y1

qinvD(w) =
Dn(1, q)

[n− 1]q!
. We just need to show that

∑
w∈Y0

qinvD(w) =
2Dn(1, q)

[n]q!
− 1.
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If we want a descent at {1} but not at {1} or vice versa, then we need |π(1)| > |π(2)|. This can be done in
the following way. We assign signs to the elements of [n] and arrange them in ascending order. Then, choose the
sign of the first element accordingly to make it an element of Dn (i.e. to make the total number of negative signs
even). An element i will either contribute 1 if it is positive or qi−1 if it is negative, giving the term (1 + qi−1).
Therefore, the total contribution would be (1 + q0)(1 + q) · · · (1 + qn−1). However, this procedure also produces
1, 2, . . . , n and 1, 2, · · · , n, out of which we only need the former. The latter has a length of 1 which we subtract
to complete the proof.

Example 3.2. For n = 2, the set of permutations of D2 with descent set being a subset of {1, 1} is the whole
D2 itself. For n = 3, the permutations of D3 with descent set being a subset of {1, 1} is

X1,1 = {123, 123, 132, 132, 213, 213, 231, 231, 312, 312, 321, 321}.

It is easy to verify that ∑
w∈X{1,1}

todesD(w)sedesD(w)qinvD(w)

= 1 + t2q2 + t2q3 + 2t2q4 + 2tq + 2tq2 + 2tq3 + t2q5

= t2[3]q[4]q + t(1− t)(2[4]q − 1) + (1− t).

Lemma 3.3. With the above notations, when i is odd, we have∑
π′∈Hn,i

todesD(π′)sedesD(π′)qinvD(π′) = t
Di(s, t, q)Dn(1, q)

Di(1, q)[n− i]q!

+ (1− t)
{ ∑
π′∈Hn,i−1

todesD(π′)sedesD(π′)qinvD(π′)

}
. (37)

When i is even, we have∑
π′∈Hn,i

todesD(π′)sedesD(π′)qinvD(π′) = s
Di(s, t, q)Dn(1, q)

Di(1, q)[n− i]q!

+ (1− s)
{ ∑
π′∈Hn,i−1

todesD(π′)sedesD(π′)qinvD(π′)

}
. (38)

Proof. We at first prove (37) and therefore take i to be odd. We evaluate∑
(π,(A,ε))∈Di×sgn( [n]

n−i)

todesD(π)sedesD(π)qinvD(fD(π,(A,ε))) in a different way as compared to (3.2).

∑
(π,(A,ε))∈Di×sgn( [n]

n−i)

todesD(π)sedesD(π)qinvD(fD(π,(A,ε)))

=
∑

(π,(A,ε))∈f−1
D (Hn,i)

todesD(π)sedesD(π)qinvD(fD(π,(A,ε)))

=
∑

(π,(A,ε))∈f−1
D (Hn,i−1)

todesD(π)sedesD(π)qinvD(fD(π,(A,ε)))

+
∑

(π,(A,ε))∈f−1
D (H′n,i)

todesD(π)sedesD(π)qinvD(fD(π,(A,ε)))

=
∑

fD(π,(A,ε))∈Hn,i−1

todesD(fD(π,(A,ε)))sedesD(fD(π,(A,ε)))qinvD(fD(π,(A,ε)))

+
1

t

{ ∑
fD(π,(A,ε))∈H′n,i

todesD(fD(π,(A,ε)))sedesD(fD(π,(A,ε)))qinvD(fD(π,(A,ε)))

}
=

∑
π′∈Hn,i−1

todesD(π′)sedesD(π′)qinvD(π′)

+
1

t

{ ∑
π′∈Hn,i

todesD(π′)sedesD(π′)qinvD(π′) −
∑

π′∈Hn,i−1

todesD(π′)sedesD(π′)qinvD(π′)

}
. (39)
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The second equality follows because fD is a bijection between Di× sgn
(
[n]
n−i
)

to Hn,i. For the fourth equality, we
have used that i is odd. For the fifth equality, we are again using that fD is a bijection and H ′n,i = Hn,i−Hn,i−1.
We determine the contribution of each of these three sets. From (3.2) and (39), we have

t
Di(s, t, q)Dn(1, q)

Di(1, q)[n− i]q!
= (t− 1)

{ ∑
π′∈Hn,i−1

todesD(π′)sedesD(π′)qinvD(π′)

}
+

∑
π′∈Hn,i

todesD(π′)sedesD(π′)qinvD(π′)

This completes the proof of (37). The proof when i is even is similar and hence is omitted.

Example 3.3. When n = 3, i = 2, the set H3,2 is D3. The set H3,1 is

{123, 123, 132, 132, 213, 213, 231, 231, 312, 312, 321, 321}.

Now,

s
D2(s, t, q)D2(1, q)

D3(1, q)[1]q!
+ (1− s)

{ ∑
π′∈H3,1

todesD(π′)sedesD(π′)qinvD(π′)

}
= s(1 + q2)(1 + q + q2)(1 + 2tq + t2q2) + (1− s)(1 + t2q2 + t2q3 + 2t2q4 + 2tq + 2tq2 + 2tq3 + t2q5)

= t2sq6 + t2(q2 + q3 + 2q4 + q5) + ts(2q3 + 2q4 + 2q5) + t(2q + 2q2 + 2q3) + s(q + 2q2 + q3 + q4) + 1

= D3(s, t, q)

Thus, equation (38) clearly holds when n = 3 and i = 2.

Our next result is a type D counterpart of the recurrence given in Theorem 2.3.

Theorem 3.1. Define D2(s, t, q) = (1 + tq)2. When n ≥ 3, the polynomials Dn(s, t, q) satisfy the following
recurrence.

Dn(s, t, q)

Dn(1, q)
=

(1− t)k+1(1− s)k

Dn(1, q)
+

2t(1− t)k(1− s)k

[n]q!
+
t2(1− t)k−1(1− s)k

[n− 1]q!

+

k−1∑
r=0

t(1− t)r(1− s)r+1 Dn−2r−1(s, t, q)

Dn−2r−1(1, q)[2r + 1]q!

+

k−1∑
r=0

s(1− t)r(1− s)r Dn−2r(s, t, q)

Dn−2r(1, q)[2r]q!
if n = 2k is even, (40)

Dn(s, t, q)

Dn(1, q)
=

(1− t)k+2(1− s)k

Dn(1, q)
+

2t(1− t)k+1(1− s)k

[n]q!
+
t2(1− t)k(1− s)k

[n− 1]q!

+

k−1∑
r=0

s(1− t)r+1(1− s)r Dn−2r−1(s, t, q)

Dn−2r−1(1, q)[2r + 1]q!

+

k−1∑
r=0

t(1− t)r(1− s)r Dn−2r(s, t, q)

Dn−2r(1, q)[2r]q!
if n = 2k + 1 is odd. (41)

Proof. As Hn,i is the set of signed permutations in Dn whose rightmost (n− i) entries form an increasing run,
we see that Hn,n−1 must be the whole of Dn. We first consider the case when n is even. By repeatedly applying
(37) and (38), we have

Dn(s, t, q) =
∑

π∈Hn,n−1

todesD(π)sedesD(π)qinvD(π)

= t
Dn−1(s, t, q)Dn(1, q)

Dn−1(1, q)[1]q!
+ (1− t)

( ∑
π∈Hn,n−2

todesD(π)sedesD(π)qinvD(π)

)

= t
Dn−1(s, t, q)Dn(1, q)

Dn−1(1, q)[1]q!
+ s(1− t)Dn−2(s, t, q)Dn(1, q)

Dn−2(1, q)[2]q!

+(1− s)(1− t)
∑

π∈Hn,n−3

todesD(π)sedesD(π)qinvD(π)
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= t
Dn−1(s, t, q)Dn(1, q)

Dn−1(1, q)[1]q!
+ s(1− t)Dn−2(s, t, q)Dn(1, q)

Dn−2(1, q)[2]q!
+ · · ·

+s(1− t)n
2−1(1− s)n

2−2
D2(s, t, q)Dn(1, q)

D2(1, q)[n− 2]q!

+(1− t)n
2−1(1− s)n

2−1

( ∑
π∈X{1,1}

todesD(π)sedesD(π)qinvD(π)

)
.

This completes the proof of (40). We now consider the case when n is odd. Here, we have

Dn(s, t, q) =
∑

π∈Hn,n−1

todesD(π)sedesD(π)qinvD(π)

= s
Dn−1(s, t, q)Dn(1, q)

Dn−1(1, q)[1]q!
+ (1− s)

( ∑
π∈Hn,n−2

todesD(π)sedesD(π)qinvD(π)

)

= s
Dn−1(s, t, q)Dn(1, q)

Dn−1(1, q)[1]q!

+(1− s)

tDn−2(s, t, q)Dn(1, q)

Dn−2(1, q)[2]q!
+ (1− t)

( ∑
π∈Hn,n−3

todesD(π)sedesD(π)qinvD(π)
)

and we can continue as in the case for n being even, to complete the proof of (41). This completes the proof.

Setting s = t in Theorem 3.1, we have the following corollary.

Corollary 3.3 (Reiner). Define D2(t, q) = (1+tq)2. When n ≥ 3, the polynomials Dn(t, q) satisfy the following
recurrence:

Dn(t, q)

Dn(1, q)
=

(1− t)2k+1

Dn(1, q)
+

2t(1− t)2k

[n]q!
+
t2(1− t)2k−1

[n− 1]q!
+

k−1∑
r=0

t(1− t)2r+1 Dn−2r−1(t, q)

Dn−2r−1(1, q)[2r + 1]q!

+

k−1∑
r=0

t(1− t)2r Dn−2r(t, q)

Dn−2r(1, q)[2r]q!
if n = 2k is even,

Dn(t, q)

Dn(1, q)
=

(1− t)2k+2

Dn(1, q)
+

2t(1− t)2k+1

[n]q!
+
t2(1− t)2k

[n− 1]q!
+

k−1∑
r=0

t(1− t)2r+1 Dn−2r−1(t, q)

Dn−2r−1(1, q)[2r + 1]q!

+

k−1∑
r=0

t(1− t)2r Dn−2r(t, q)

Dn−2r(1, q)[2r]q!
if n = 2k + 1 is odd.

Setting q = 1 in Theorem 3.1, we also have the following.

Corollary 3.4. Define D2(s, t) = (1 + t)2. When n ≥ 3, the polynomials Dn(s, t) satisfy the following recur-
rence:

Dn(s, t)

2n−1n!
=

(1− t)k+1(1− s)k

2n−1n!
+

2t(1− t)k(1− s)k

n!
+
t2(1− t)k−1(1− s)k

(n− 1)!

+

k−1∑
r=0

t(1− t)r(1− s)r+1 Dn−2r−1(s, t)

2n−2r−2(n− 2r − 1)!(2r + 1)!

+

k−1∑
r=0

s(1− t)r(1− s)r Dn−2r(s, t)

2n−2r−1(n− 2r)!(2r)!
if n = 2k is even,

Dn(s, t)

2n−1n!
=

(1− t)k+2(1− s)k

2n−1n!
+

2t(1− t)k+1(1− s)k

n!
+
t2(1− t)k(1− s)k

(n− 1)!

+

k−1∑
r=0

s(1− t)r+1(1− s)r Dn−2r−1(s, t)

2n−2r−2(n− 2r − 1)!(2r + 1)!

+

k−1∑
r=0

t(1− t)r(1− s)r Dn−2r(s, t)

2n−2r−1(n− 2r)!(2r)!
if n = 2k + 1 is odd.
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3.1 Type D generating functions

We again cast the recurrences in egf language to get generating functions. We begin with our proof of Theorem
1.8.

Proof of Theorem 1.8. Recurrences (40) and (41) give rise to the following:

D0

(
1− s coshq(Mu)− s(1− t) sinhq(Mu)

M

)
+D1

(
1− t coshq(Mu)− t(1− s) sinhq(Mu)

M

)
= OD + ED.

Changing u to −u gives us

D0

(
1− s coshq(Mu) +

s(1− t) sinhq(Mu)

M

)
−D1

(
1− t coshq(Mu) +

t(1− s) sinhq(Mu)

M

)
= −OD + ED

Solving the above two equations for D0 and D1 completes the proof.

We can now prove Theorem 1.9.

Proof of Theorem 1.9. As done in the proof of Theorem 1.7, one can check when n = 2k is even, that

D̂2k(s, t, q) = skD2k(1/s, t, q) and when n = 2k + 1 is odd, that D̂2k+1(s, t, q) = sk+1D2k+1

(
1
s , t, q

)
. The

other details follow as in the proof of Theorem 1.7, completing the proof.

Using Theorem 1.8 we get a type D counterpart of Theorem 1.1. Define

Dn(s0, s1, t0, t1, q) =
∑
w∈Dn

s
eascD(w)
0 s

oascD(w)
1 t

edesD(w)
0 t

odesD(w)
1 qinvD(w).

Further, define the generating functions

D0(s0, s1, t0, t1, q, u) =
∑
k≥1

D2k(s0, s1, t0, t1, q)
u2k

D2k(1, q)
,

D1(s0, s1, t0, t1, q, u) =
∑
k≥1

D2k+1(s0, s1, t0, t1, q)
u2k+1

D2k+1(1, q)
.

We move to our type D counterpart of Theorem 1.1. Recall D0(s, t, q, u) and D1(s, t, q, u) from (9).

Theorem 3.2. We have the egf

D0(s0, s1, t0, t1, q, u) =
1
s0

[T (ED)(s1 − t1 coshq(mu))] + T (OD)(
t1(s0−t0)

√
s0s1

ms0
sinhq(mu))

s0s1 − (s0t1 + s1t0) coshq(mu) + t0t1eq(mu)eq(−mu)
,

D1(s0, s1, t0, t1, q, u) =

s1
√
s1T (OD)√
s0

(s0 − t0 coshq(mu)) + T (ED)( s1t0(s1−t1)m sinhq(mu))

s0s1 − (s0t1 + s1t0) coshq(mu) + t0t1eq(mu)eq(−mu)
.

where

T (OD) =

√
s0s1ut

2
1

s21
(coshq(mu)− 1) +

(s1 − t1)m

(s0 − t0)
√
s0s1

(sinhD(mu; q)−mu)

+
2t1(s1 − t1)

√
s0s1

s21m
(sinhq(mu)−mu),

T (ED) =
2t1
s1

(coshq(mu)− 1) +
ut21(s0 − t0)

√
s0s1

s21s0m
sinhq(mu) +

(s1 − t1)

t1
(coshD(mu; q)− 1).

Proof. We proceed as we did in the proof of Theorem 2.4. It is easy to see that

D0(s0, s1, t0, t1, q, u) =
s1
s0
D0(

t0
s0
,
t1
s1
, q,
√
s0s1u),

D1(s0, s1, t0, t1, q, u) =

√
s1√
s0
D1(

t0
s0
,
t1
s1
, q,
√
s0s1u).

We denote by T the transformation that sends s to
t0
s0

, t to
t1
s1

and u to
√
s0s1u. It is easy to see that T (OD)

and T (ED) are as given above, completing the proof.
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3.2 Type D q-analogue of Hyatt’s recurrences

We give our q-analogue of Hyatt-type recurrences in this subsection.

Theorem 3.3. For even n,

∑
w∈D+

n

todesD(w)sedesD(w)qinvD(w) =

n
2−1∑
r=0

q(
2r+1

2 )
(

n

2r + 1

)
q

Dn−2r−1(s, t, q)(s− 1)r(t− 1)r

+

n
2∑

r=1

q(
2r
2 )
(
n

2r

)
q

Dn−2r(s, t, q)(s− 1)r−1(t− 1)r.

For odd n,

∑
w∈D+

n

todesD(w)sedesD(w)qinvD(w) =

bn2 c∑
r=0

q(
2r+1

2 )
(

n

2r + 1

)
q

Dn−2r−1(s, t, q)(s− 1)r(t− 1)r

+

bn2 c∑
r=1

q(
2r
2 )
(
n

2r

)
q

Dn−2r(s, t, q)(s− 1)r(t− 1)r−1.

Proof. Define DÂk to be the signed permutations in D+
n that have their rightmost k+ 1 elements being positive

and arranged in descending order. Thus, the first n − k − 1 elements must have an even number of negative
signs. With this observation note that the map f ′′ : Dk ×

(
[n]
n−k
)
→ DÂn−k−1 that carries (ψ,A) to the signed

permutation ψ[n]−Aa1a2 · · · an−k (a1 > a2 > · · · an−k > 0), that is,

f ′′(ψ,A) = ψ[n]−A, a1, a2, · · · , an−k.

is a bijection from Dk ×
(

[n]
n−k
)

onto DÂn−k−1.

Write DAk(s, t, q) =
∑
w∈DÂk

todesD(w)sedesD(w)qinvD(w). We will abbreviate the LHS as DAk for brevity.
The following recurrences are then easy to prove. For even n, we have

q(
2r
2 )
(
n

2r

)
q

Dn−2r(s, t, q)s
rtr = sDA2r−1 − (s− 1)DA2r.

q(
2r+1

2 )
(

n

2r + 1

)
q

Dn−2r−1(s, t)srtr+1 = tDA2r − (t− 1)DA2r+1.

For odd n, we have

q(
2r
2 )
(
n

2r

)
q

Dn−2r(s, t)s
rtr = tDA2r−1 − (t− 1)DA2r.

q(
2r+1

2 )
(

n

2r + 1

)
q

Dn−2r−1(s, t)sr+1tr = sDA2r − (s− 1)DA2r+1.

The proofs of these recurrences are along the same lines as the proofs of (27),(28),(29) and (30). The only
ambiguity might be when r =

⌊
n
2

⌋
− 1, but this is easily resolved as in DÂ2r the rightmost n− 1 elements are

positive and descending for even n or DÂ2r+1 when n is odd, the first element has to be positive due to the
constraint that there are an even number of negative signs. Therefore, there is no possibility of w1 + w2 being
lesser than 0.

Setting s = t in Theorem 3.3, we have the following corollary.

Corollary 3.5. For even n,

∑
w∈D+

n

tdesD(w)qinvD(w) =

n
2−1∑
r=0

q(
2r+1

2 )
(

n

2r + 1

)
q

Dn−2r−1(t, q)(t− 1)2r

+

n
2∑

r=1

q(
2r
2 )
(
n

2r

)
q

Dn−2r(t, q)(t− 1)2r−1.
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For odd n,

∑
w∈D+

n

tdesD(w)qinvD(w) =

bn2 c∑
r=0

q(
2r+1

2 )
(

n

2r + 1

)
q

Dn−2r−1(t, q)(t− 1)2r

+

bn2 c∑
r=1

q(
2r
2 )
(
n

2r

)
q

Dn−2r(t, q)(t− 1)2r−1.

Setting q = 1 in Corollary 3.5, we get Hyatt’s recurrences [5, Lemma 3.2].
To preserve elements being in Dn, we consider the map that flips the sign of all elements when n is even

and the map that flips the sign of all elements except the first when n is odd.

Lemma 3.4. Let fD : Dn → Dn be the involution that sends w = w1, · · · , wn to w = w1, . . . , wn if n is even
and w = w1, · · · , wn to w = w1, w2 . . . , wn if n is odd. Then, we have the following:

1. When n = 2k + 1, we have odesD(w) + odesD(fD(w)) = k + 1 and when n = 2k, we have odesD(w) +
odesD(fD(w)) = k + 1.

2. When n = 2k + 1, we have edesD(w) + edesD(fD(w)) = k and when n = 2k, we have edesD(w) +
edesD(fD(w)) = k − 1.

3. invD(w) + invD(fD(w)) = n(n− 1).

Proof. The proof of the first two assertions is straightforward and hence omitted. For the third part, recall that
invD(w) = invB(w)− |Negs(w)|. Thus, we have, for even n,

invD(w) + invD(w) = invB(w) + invB(w)− |Negs(w)| − |Negs(w)|
= n2 − n = n(n− 1).

When n is odd, it is easy to see that invD(w1, w2, . . . , wn) = invD(w1, . . . , wn). The rest follows from the
previous argument. The proof is complete.

3.3 Symmetry results

In this Subsection, we give our type D counterparts of our symmetry results.

Theorem 3.4. We have

D−n (s, t, q) =

{
qn(n−1)sktk+1D+

n (s−1, t−1, q−1) when n = 2k + 1,
qn(n−1)sk−1tk+1D+

n (s−1, t−1, q−1) when n = 2k.

Therefore, we have

Dn(s, t, q) =

{
D+
n (s, t, q) + qn(n−1)sktk+1D+

n (s−1, t−1, q−1) when n = 2k + 1,
D+
n (s, t, q) + qn(n−1)sk−1tk+1D+

n (s−1, t−1, q−1) when n = 2k.

Proof. Let fD : D+
n → D−n be the map described earlier. By Lemma 3.4, when n = 2k, we have∑

w∈D−n

todesD(w)sedesD(w)qinvD(w) =
∑
w∈D+

n

todesD(fD(w))sedesD(fD(w))qinvD(fD(w))

=
∑
w∈D+

n

tk+1−odesD(w)sk−1−edesD(w)qn(n−1)−invD(w)

= qn(n−1)sk−1tk+1
∑
w∈D+

n

t−odesD(w)s−edesD(w)q−invD(w).

When n = 2k + 1, we have∑
w∈D−n

todesD(w)sedesD(w)qinvD(w) =
∑
w∈D+

n

todesD(fD(w))sedesD(fD(w))qinvD(fD(w))

=
∑
w∈D+

n

tk+1−odesD(w)sk−edesD(w)qn(n−1)−invD(w)

= qn(n−1)sktk+1
∑
w∈D+

n

t−odesD(w)s−edesD(w)q−invD(w).

completing the proof.
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Since the following corollary is straightforward, we only state it and omit its proof.

Corollary 3.6 (Type-D Symmetry). We have

Dn(s, t, q) =

{
qn(n−1)sktk+1Dn(s−1, t−1, q−1) when n = 2k + 1,
qn(n−1)sk−1tk+1Dn(s−1, t−1, q−1) when n = 2k.

4. Snakes

A snake in Bn is a signed permutation w ∈ Bn satisfying 0 < w1 > w2 < · · · . Let SnakeBn be the set of
snakes in Bn and denote |SnakeBn | by SBn . The paper by Arnol’d [1] is a good reference for this topic. Let
SBn (q) =

∑
w∈SnakeBn

qinvB(w). Springer in [13] showed the following.

Theorem 4.1 (Springer). The following is the egf for the numbers SBn :∑
n≥0

SBn
un

n!
=

1

cos(u)− sin(u)
.

The following corollary of Theorem 2.4 is now easy.

Corollary 4.1. We have the following egf of the SBn (q) polynomials:∑
n≥0

SBn (q)
un

Bn(1, q)
=

cosq(u) cosB(u; q) + (sinq(u)− 1) sinB(u; q)

cosq(u)
.

Proof. Setting s1 = t0 = 0 and t1 = s0 = 1 in both H0(s0, s1, t0, t1, q, u) and H1(s0, s1, t0, t1, q, u) from Theorem
2.4 and adding completes the proof.

It is easy to see that setting q = 1 in Corollary 4.1 gives us Theorem 4.1.

4.1 D-snakes

A d-snake in Dn is a signed permutation w in Dn that satisfies −w2 > w1 > w2 < w3 > . . . wn. Let
SnakeDn be the set of all d-snakes in Dn. Denote |SnakeDn | by SDn . Let SDn (q) =

∑
w∈SnakeDn

qinvD(w). Define

SD0(q, u) =
∑
n≥1

SD2n(q) u2n

D2n(1,q)
and SD1(q, u) =

∑
n≥1

SD2n+1(q) u2n+1

D2n+1(1,q)
.

Corollary 4.2. We have the following egf of the SDn (q) polynomials:

SD0(q, u) =
−2 cos2q(u) + cosq(u)(cosD(u; q)− 1)− 2 sin2

q(u) + sinq(u) sinD(u; q)

− cosq(u)
, (42)

SD1(q, u) =
−2 sinq(u) + u cosq(u) + sinD(u; q)

− cosq(u)
. (43)

Proof. Set t = 1/t, u = u
√
t, multiply by t and setting s = t = 0 in Theorem 1.8 gives us (42). Set t = 1/t,

u = u
√
t, multiply by

√
t and setting s = t = 0 in Theorem 1.8 gives us (43).

Setting q = 1 in Corollary 4.2 gives us the following egf which is given by Springer.

Corollary 4.3 (Springer). The egf for the SDn is:∑
n≥1

SD2n
u2n

(2n)!
=

cos(u)− cos(2u)− 1

− cos(2u)
,

∑
n≥1

SD2n+1

u2n+1

(2n+ 1)!
=
− sin(2u) + u cos(2u) + sin(u)

− cos(2u)
.
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