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Abstract: Pak and Postnikov introduced a tree enumeration polynomial fG on graphs, as a multivariate
generalization of Cayley’s formula, and demonstrated an amazing reciprocity property. In this paper, we prove
that this tree enumeration polynomial can be factorized into linear factors for the inversion graph of separable
permutations. We derive an explicit formula for this factorization and provide three proofs: one using the
reciprocity theorem, one algebraic, and another one bijective. We also prove its converse: the tree enumeration
polynomials for all other graphs cannot be factored into linear factors.
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1. Introduction

Cayley’s formula [3] states that the number of spanning trees of the (labeled) complete graph Kn equals nn−2.
One simple proof of this result uses the Matrix-Tree Theorem, which expresses the number of spanning trees
of a graph as a determinant. However, a deterministic formula does not provide any algorithms to enumerate
spanning trees. The first enumerative proof of Cayley’s formula is given by Prüfer [13] via a simple bijective
encoding of all labeled trees. In particular, he encodes trees on n labeled vertices using sequences (a1, . . . , an) of
positive integers between 1 and n. The conversion between spanning trees and sequences can be done by well-
defined, bijective, iterative algorithms. Numerous generalizations of Cayley’s formula have then been found,
including Rényi’s coding for spanning trees of the complete bipartite graphs [14].

In particular, Pak and Postnikov [12] presented a novel approach to this problem by introducing a polynomial
fG that enumerates spanning forests of G according to degrees of all vertices. Moreover, they showed that the
polynomial fG satisfies a remarkable reciprocity theorem (Theorem 2.1), which allowed them to obtain a formula
for the number of spanning trees of the complete multipartite graphs very easily. Combinatorial proofs of this
reciprocity theorem are given by Huang-Postnikov [10] and Hoey-Xiao [9]. Additionally, [11] proposed a linear-
time algorithm by applying the Matrix Tree Theorem to determine the number of spanning trees in cographs—
an equivalent combinatorial object to the inversion graphs of separable permutations.

In this paper, we study the problem of enumeration of spanning forests of Gw, the inversion graph of a
permutation w ∈ Sn. Especially, we focus on the case when w is separable. The family of graphs Gw when w is
separable includes all complete multipartite graphs with arbitrary part sizes. Our main theorem (Theorem 1.1)
provides an explicit formula for fw := fGw

with w separable, which factors into linear factors, as follows.

Theorem 1.1. For a separable permutation w ∈ Sn,

fw(x0;x1, . . . , xn) =

n−1∏
i=1

(x0 + f1i + f2i ),

where f1i =
∑
j≤i,w(j)>w(i+1) xj and f2i =

∑
j≥i+1,w(j)<w(i) xj.

We provide three proofs: one uses the reciprocity theorem of Pak and Postnikov [12]; one uses a determinantal
argument; and the other one is bijective, which can be thought of as encoding spanning forests of Gw via a
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sequence of positive integers, in a much more general context than the Prüfer code. It is surprising that a
converse of Theorem 1.1 holds:

Theorem 1.2. For a permutation w ∈ Sn, if w is not separable, then fw cannot be factored into linear factors.

Separable permutations, which are defined as permutations that avoid the patterns 2413 and 3142, have
received a lot of attention in algebraic combinatorics. Arising from the study of pop-stack sorting [1], they
have nice recursive structures similar to binary trees, and have applications to bootstrap percolation [15] and
pattern matching [2]. Wei [16] showed that for a separable permutation w, its principal order ideal [id, w]
and principal order filter [w,w0] in the weak Bruhat order are rank symmetric, and the product of their
rank generating function equals [n]q!. This result is generalized to other Weyl groups by Gaetz and the first
author [5], who introduced the notion of a separable element. Further studies [6] made connections between
separable elements and faces of generalized permutahedron, splittings of Weyl groups, etc. And it is shown
that separable permutations have nice actions on canonical bases by bijections up to lower-order terms [8].
Our results (Theorem 1.1 and Theorem 1.2) provide yet another characterization of separable permutations, by
considering whether the tree enumeration polynomial fw factors linearly.

Remark 1.1. As our helpful referee pointed out, much of this paper can be written in the language of cographs
as well. For a graph G on labels {y1, . . . , ym} and a graph H on labels {z1, . . . , zn}, let G ⊕H and G 	H be
the graphs on {y1, . . . , ym, z1, . . . , zn}, where ⊕ is the disjoint union, and 	 is the join, connecting every vertex
in G to every vertex in H. The permutation graph of a separable permutation is called a cograph [2]. Cographs
can be generated from the single-vertex graph K1 by joins (	) and disjoint unions (⊕). They are equivalently
characterized as graphs that don’t contain P4 = •— •— •—• as a subgraph. Specifically, P4 is the permutation
graph of 2413 and 1324. The equivalence between labeled cographs and separable permutations allows us to
rewrite Theorem 1.2:

Theorem. The polynomial fG can be written as a product of linear factors if and only if G is a cograph.

This paper will be organized in the following fashion. In Section 2, we provide the necessary background on
the polynomial fG, which is the main object of study, and on separable permutations. In Section 3, we provide
a recursive proof of Theorem 1.1, using the reciprocity theorem in [12]; and in Section 4, we provide another
short proof using ideas in Matrix-Tree Theorem. A bijective proof is given in two sections: in Section 5, we
prove a recurrence formula bijectively, which is used in Section 6 to ensemble a bijective proof. In Section 7,
we discuss non-separable permutations and prove Theorem 1.2. Finally, we talk about further directions in
Section 8.

2. Background

We mainly follow notations in [12] on the enumeration of spanning trees of graphs.

Definition 2.1. For a graph G on n vertices V = [n] := {1, . . . , n} and a spanning tree T of G, we define

a monomial m(T ) =
∏
v∈V x

ρT (v)−1
v , where ρT (v) denotes the degree of the vertex v in the tree T . Define a

polynomial

tG :=
∑
T

m(T )

where the sum is over all spanning trees T of G.

As suggested in [12], it is often more convenient to work with the extended graph G̃ as follows.

Definition 2.2. The extended graph G̃ on vertices Ṽ := {0} ∪ V is obtained from G by adding a vertex, 0,

connected with all vertices of G. We construct another polynomial fG of variables xv for v ∈ Ṽ such that

fG := tG̃.

Write fG = fG(x0;x1, x2, . . . , xn). One should think of tG as a polynomial enumerating spanning trees of G,
while fG as a polynomial enumerating spanning forests of G. We can recover tG from fG by

tG(x1, x2, . . . , xn) · (x1 + x2 + · · ·+ xn) = fG(0;x1, x2, . . . , xn).

Pak and Postnikov developed the following reciprocity theorem, which is a powerful tool for the computation
of spanning trees of graphs. For a graph G = (V,E), denote its compliment as G = (V,E) which contains all
edges not in G.
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Theorem 2.1 ( [12]). Let G be a graph on vertices V = {1, 2, . . . , n}, then

fG(x0;x1, . . . , xn) = (−1)n−1fG(−x0 − x1 − · · · − xn;x1, . . . , xn).

Bijective proofs of Theorem 2.1 are given in [9, 10].
In this paper, we primarily focus on graphs that are the inversion graphs of permutations and classify

whether the polynomial fGw can be factored linearly by properties on w ∈ Sn.

Definition 2.3. For a permutation w ∈ Sn, define the inversion graph Gw to be a graph on [n] such that there
is an edge between vi and vj if i < j and w(i) > w(j), i.e. (i, j) is an inversion of w. For simplicity, we write
fw for fGw

.

Note that Gw = Gw0w where w0 = n · · · 1 ∈ Sn is the longest permutation. Because of this, we also write
w = w0w so that Gw = Gw.

Example 2.1. For w = 3412, Gw and G̃w are the following.

Gw =

v1v1

v2 v3

v4

(a) Gw

G̃w = v0

v1

v2 v3

v4

(b) G̃w.

Figure 1: Gw and its extended graph, G̃w for w = 3412.

Example 2.2. We provide two examples of spanning trees of Gw in Fig. 2.

v1

v2 v3

v4

(a) m(T1) = x2x3.

v1

v2 v3

v4

(b) m(T2) = x1x4.

Figure 2: Two examples of spanning trees, T1, T2, of Gw.

A particularly nice family of permutations relevant to our study is the set of separable permutations.

Definition 2.4. We say that a permutation w ∈ Sn avoids the pattern π ∈ Sk if there does not exist indices
i1 < · · · < ik such that w(i1), . . . , w(ik) have the same relative order as π(1), . . . , π(k). A permutation w ∈ Sn
is separable if it avoids 2413 and 3142.

Separable permutations have nice recursive structures as follows.

Proposition 2.1. For n > 1 and a separable permutation w ∈ Sn, we can write w = wAwB (concatenation of
words), where both wA and wB are separable permutations satisfying one of the following two properties, with
some 1 < m < n:

• wA is a permutation of 1, . . . ,m and wB is a permutation of m+ 1, . . . , n;

• wA is a permutation of n−m+ 1, . . . , n and wB is a permutation of 1, . . . , n−m.

Proposition 2.1 is well-known and easy to prove, so we omit the proof here. See for example [16]. In light of
Proposition 2.1, we say that a separable permutation w has an inversion cut at index i if w(a) > w(b) for all
a ≤ i and b ≥ i+ 1, and w has a non-inversion cut if w(a) < w(b) for all a ≤ i and b ≥ i+ 1. For any separable
permutation w, a sequence of cuts can be made until w is cut into singletons.

One main goal of this paper is to provide an explicit formula for fw when w is separable. See the following
for an example of the main result, Theorem 1.1.

Example 2.3. For w = 3241, fw = (x0 + x1 + x2 + x4)(x0 + x4)(x0 + x1 + x2 + x3 + x4).

1. At the first interval, w(1) > w(2), which creates an inversion. f11 = x0, f
2
1 = x4, because w(1) > w(4).

Therefore, the factor is x0 + x1 + x2 + x4.
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2. At the second interval, w(2) < w(3), which does not create an inversion. f12 = x0, f
2
1 = x4, because

w(2) > w(4). Therefore, the factor is x0 + x4.

3. At the third interval, w(3) > w(4), which creates an inversion. f11 = x1+x2, f
2
1 = x0, because w(1) > w(4)

and w(2) > w(4). Therefore, the factor is x0 + x1 + x2 + x3 + x4.

fw is obtained by multiplying all three factors.

3. Recursive Formula for Separable Permutations

In this section, we present a recursive formula for fw for separable permutations and provide an algebraic proof
of Theorem 1.1.

Theorem 3.1. Let w ∈ Sn be separable. Suppose w = wAwB in the sense of Proposition 2.1, the following
result is true.

• If wA is a permutation of {1, 2, . . . ,m} and wB a permutation of {m + 1,m + 2, . . . , n}, then fw =
x0fwA

(x0;x1, x2, . . . , xm)fwB
(x0;xm+1, xm+2, . . . , xn).

• If wA is a permutation of {m+1,m+2, . . . , n} and wB a permutation of {1, 2, . . . ,m}, then fw = (x0+x1+
· · ·+ xn)fwA

(x0 + xn−m+1 + · · ·+ xn;x1, x2, . . . , xn−m)fwB
(x0 + x1 + · · ·+ xm;xn−m+1, xn−m+2, . . . , xn).

In the graph induced by the permutation in the second case, all vertices in wA are connected to all vertices
in wB , since every wA(i), wB(j) is an inversion.

Proof. The non-inversion cut case follows from Theorem 2.1, as {1, 2, . . . ,m} and {m+ 1,m+ 2, . . . , n} are two
sets of vertices where there are no edges between the two sets.

In the inversion cut case, Gw = GwA
∪GwB

. By the Reciprocity Theorem in [12],

fwA
= (−1)|A|−1fwA

(−x0 − xn−m+1 − · · · − xn;x1, x2, . . . , xn−m),

fwB
= (−1)|B|−1fwA

(−x0 − x1 − x2 − · · · − xm;xn−m+1, xn−m+2, . . . , xn).

Apply case 1 and the reciprocity theorem one more time, and substitute in −x0 − x1 − · · · − xn for x0 to
conclude the proof.

Remark 3.1. Theorem 3.1 can be restated in the language of cographs as follows.
Let G,H be cographs on m and n vertices, respectively. Set y := y1 + · · ·+ ym and z := z1 + · · ·+ zn. Then

the polynomials can be written as

fG⊕H(x0; y1, . . . , ym, z1, . . . , zn) =x0 · fG(x0; y1, . . . , ym) · fH(x0; z1, . . . , zn)

fG	H(x0; y1, . . . , ym, z1, . . . , zn) =(x0 + y + z) · fG(x0 + z; y1, . . . , ym)

· fH(x0 + y; z1, . . . , zn)

Theorem 1.1 can be proved with this recursive formula by strong induction on the number of vertices.

Proof of Theorem 1.1. The case when w is of size 1 is trivial. Suppose Theorem 1.1 is true on permutations of
size 1, 2, . . . , k. Let w be a permutation of size k + 1. Since w is separable, let w = wAwB , where wA and wB
have sizes m and n−m.

If wAwB is a non-inversion cut, Theorem 3.1 asserts that

fw = x0 · fwA
· (x0;x1, x2, . . . , xm) · fwB

(x0;xm+1, xm+2, . . . , xn).

In this instance, all factors f1i and f2i in Theorem 1.1 remain unchanged, and f1m = f2m = 0, as no wA(j) with
j ∈ [1,m] is greater than wB(1) and no wB(j) with j ∈ [1, n−m] is less than wA(m). So x0 is the linear factor
at the m-th interval of w.

If wAwB is an inversion cut, Theorem 3.1 asserts that fw = (x0 + x1 + · · · + xn) · fwA
(x0 + xm+1 + · · · +

xn;x1, x2, . . . , xm)fwB
(x0 + x1 + · · · + xm;xm+1, xm+2, . . . , xn). For each interval i = 1, 2, . . . ,m − 1 in wA,

wA(i) is greater than all of wB , which adds xm+1 + xm+2 + · · ·+ xn to every linear factor in wA. Similarly, the
inversion cut adds x1 + x2 + · · ·+ xm to every linear factor in wB . Additionally, f1m = xm+1 + xm+2 + · · ·+ xn
and f2m = x1 + x2 + · · ·+ xm, so the linear factor at the m-th interval is x0 + x1 + · · ·+ xn.

The induction step concludes the proof of Theorem 1.1.
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4. Recursive Formula Proof 2: the Matrix-Tree Theo-
rem

In this section, we provide a second proof of Theorem 3.1 with the Weighted Matrix-Tree Theorem.

Definition 4.1. The Laplacian matrix L(G) of G on n vertices is a n × n matrix whose (i, j) - entry Li,j is
given by

Li,j =


−xixj i 6= j and there is an edge connecting i, j,

0 i 6= j and there is no edge connecting i, j,

−
∑
h6=i Li,h i = j.

The reduced Laplacian matrix L̃i(G) is obtained from deleting the i-th row and i-th column from L(G).

L(G) can also be seen as the matrix representation of a tree with edge weights −Li,j for i 6= j. We introduce
the Weighted Matrix-Tree Theorem before proceeding to the second proof.

Theorem 4.1. [Weighted Tree Theorem [4]] For a graph G, the number of spanning trees of G̃ is equal to

the determinant of the reduced Laplacian of G̃, where −Li,j is the edge weight between vertices i 6= j and
Li,i = −

∑
h 6=i Li,h.

In particular, as every row and column of L sum to 0, linear dependence guarantees that the determinant of
the reduced Laplacian is identical regardless of the choice of i. Without loss of generality, we choose to always
eliminate the row and column that records the connections of x0, and write the corresponding reduced Laplacian

as L̃(G̃).

Proposition 4.1. For a graph G,

fG =

det

(
L̃i(G̃)

)
∏
v∈Ṽ xv

=

det

(
L̃(G̃)

)
∏
v∈Ṽ xv

.

Proof. For a spanning tree T in the graph G with the degrees of vertices vi being deg(vi), the monomial in

det (L̃i(G̃)) associated to T is equal to the product of the weights on all edges of T by Theorem 4.1. As the

weight on each edge equals the product of the two vertices that it connects, this monomial is
∏
v∈Ṽ x

deg(v)
v ,

which is equal to m(T ) ·
∏
v∈Ṽ xv.

We give an example of the reduced Laplacian and leverage Proposition 4.1 to provide an alternative proof
of Theorem 3.1.

Example 4.1. For w = 2143, the Laplacian matrix for G̃w is

L(G̃w) =


x0(x1 + x2 + x3 + x4) −x0x1 −x0x2 −x0x3 −x0x4

−x0x1 x1(x0 + x2) −x1x2 0 0
−x0x2 −x1x2 x2(x0 + x1) 0 0
−x0x3 0 0 x0x3 0
−x0x4 0 0 0 x0x4


And the reduced Laplacian is

L̃(G̃w) =


x1(x0 + x2) −x1x2 0 0
−x1x2 x2(x0 + x1) 0 0

0 0 x0x3 0
0 0 0 x0x4


We return to the proof for Theorem 3.1.

Proof of Theorem 3.1. Case 1: wA, wB are permutations of permutation of {1, . . . ,m} and of {m + 1, . . . , n},
respectively. As such, their corresponding reduced Laplacian matrix can be written as Ã(x0, x1, . . . , xm) and

B̃(x0, x1, . . . , xn−m).

Let L̃ be the reduced Laplacian matrix for permutations Gw. Define Ã = Ã and B̃ = B̃(x0, xm+1, . . . , xn).

Then L̃ is a block diagonal matrix with blocks Ã and B̃.
By Proposition 4.1,

det(L̃) = x0x1 . . . xnfw

ECA 4:1 (2024) Article #S2R6 5
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and
det(Ã) det(B̃) = x20x1 . . . xnfwA

fwB
(x0;xm+1, xm+2, . . . , xn).

Therefore, fw = x0fwA
fwB

(x0;xm+1, xm+2, . . . , xn), as desired.
Case 2: wA, wB are permutations of {m + 1, . . . , n} and permutations of {1, . . . ,m}, respectively. Define

Ã, B̃, L̃ similarly for permutations wA of length n−m, wB of length m, and w = wBwA. Define matrices Ã, B̃ :

Ãi,j =
Ãi,j(x0 + xm+1 + · · ·+ xn;x1, . . . , xm)

xj
(1)

and

B̃i,j =
B̃i,j(x0 + x1 + · · ·+ xm;xm+1, . . . , xn)

xm+j
. (2)

Therefore

det Ã = (x0 + xm+1 + · · ·+ xn)fwA
(x0 + xm+1 + · · ·+ xn;x1, . . . , xm)

det B̃ = (x0 + x1 + · · ·+ xm)fwB
(x0 + x1 + · · ·+ xm;xm+1, . . . , xn)

We use these to compute the determinant of L̃. Define

L̃′ =


Ã

−xm+1 −xm+2 . . . −xn
...

. . .

−xm+1 −xm+2 . . . −xn
−x1 −x2 . . . −xn
...

. . .

−x1 −x2 . . . −xn
B̃


Notably, det(L̃) = x1x2 . . . xn det(L̃′). The factor x1x2 . . . xn compensates for the division in Eq. (1) and

Eq. (2). To compute for det(L̃′, we define L̃′′ with elementary row operations matrices M1,M2,M3 and M4

that divides the first row by x0. Specifically,

L̃′′ =

(
Im 0
M1 In

)(
M2 0
0 M2

)
L̃′ ·M3 ·M4, (3)

whereM1 =


−1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 , M2 =


1 0 . . . 0
−1 1 . . . 0
...

...
. . .

...
−1 0 . . . 1

 , M3 =


1 0 . . . 0
1 1 . . . 0
...

...
. . .

...
1 0 . . . 1

 , andM4 =


1
x0

0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


Since M1,M2, and M3 are elementary row operations and have determinants equal to 1 and det (M4) = 1

x0
,

det (L̃′′) = det (L̃′)
x0

.

Substituting the Ã and B̃ into the expression for L̃′ in Eq. (3), L̃′′ simplifies to

(
N1 N2

N3 N4

)
, whereN1, N2, N3, N4

are matrices of size m×m, m× n, n×m, and n× n respectively, defined by

N1 =


1 Ã1,2 Ã1,3 . . . Ã1,m

0 Ã2,2 − Ã1,2 Ã2,2 − Ã1,3 . . . Ã2,2 − Ã1,m

...
...

...
. . .

...

0 Ãm,2 − Ã1,2 Ãm,2 − Ã1,3 . . . Ãm,2 − Ã1,m

 ,

N2 =


−xm+1 −xm+2 −xm+3 . . . −xn

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 ,

N3 =


0 −x2 − Ã1,2 −x3 − Ã1,3 . . . −xm − Ã1,m

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 , and

ECA 4:1 (2024) Article #S2R6 6
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N4 =


B̃m+1,m+1 + xm+1 B̃m+1,m+2 + xm+2 B̃m+1,m+3 + xm+3 . . . B̃m+1,n + xn
B̃m+2,m+1 + xm+1 B̃m+2,m+2 + xm+2 B̃m+2,m+3 + xm+3 . . . B̃m+2,n + xn

...
...

...
. . .

...

B̃n,m+1 + xm+1 B̃n,m+2 + xm+2 B̃n,m+3 + xm+3 . . . B̃n,n + xn


The product N2N

−1
4 N3 is zero in all entries except its (1, 2), (1, 3), . . . , (1,m) entry, and N1 is zero in

the first column except entry (1, 1). Therefore, det (N1 −N2N
−1
4 N3) is equal to the determinant of matrix of

(N1 − N2N
−1
4 N3) with the first row and column removed. As such, the block matrix L̃′′ has a determinant

equal to
det (N1 −N2N

−1
4 N3) det (N4) = det (N1) det (N4).

Hence it suffices to find det (N1) and det (N4).
Upon division by x0 in the first column,

det (N1) =
det Ã
x0

= fwA
(x0 + xm+1 + . . . xn;x1, . . . , xm).

On the other hand, let K = x0 + x1 + · · ·+ xm,

N4 =
1

K


xm+1 +K xm+1 xm+1 . . . xm+1

xm+2 xm+2 +K xm+2 . . . xm+2

...
...

...
. . .

...
xn xn xn . . . xn +K

 · B,
where the eigvenvalues of the matrix are (K + xm+1 + · · · + xn) with multiplicity 1, and K with multiplicity
(n−m− 1). Therefore,

det (N4) =Km−n · (K + xm+1 + · · ·+ xn) ·Kn−m−1

=
x0 + x1 + · · ·+ xn
x0 + x1 + · · ·+ xm

· detB

=(x0 + x1 + · · ·+ xn)fwB
(x0 + x1 + · · ·+ xm; , xm+1, . . . , xn).

As such,

det (L̃) =x1x2 . . . xn det (L̃′)

=x0x1x2 . . . xn det (L̃′′)

= detN1 detN4

=(x0 + x1 + · · ·+ xn)fwA
(x0 + xm+1 + . . . xn;x1, . . . , xm)fwB

(x0 + x1 + · · ·+ xm; , xm+1, . . . , xn).

5. Recursive Formula Proof 3: Bijection

In this section, we provide an alternative proof of the second case of Theorem 3.1 with a bijection between
tree-sequence tuples and trees in Theorem 5.1. This proof takes inspiration from a special case of [12]. We start
by defining the combinatorial objects for this bijection.

Consider the permutation w = wAwB , where wA is a permutation of {1, 2, . . . ,m} and wB a permutation

of {m+ 1,m+ 2, . . . , n}. Let T be a spanning tree of G̃w, TA be the induced subgraph of T on G̃wA
, and TB be

the induced subgraph of T on G̃wB
. Since wAwB is an non-inversion cut, TA, TB are both spanning trees. Let

degTA
(v0) = k1 in TA and degTB

(v0) = k2.

Theorem 5.1. Let u = uAuBuC be a sequence of length k1 + k2 − 1. In particular, uA is a length-(k1 − 1)
sequence with entries from the set {0,m + 1,m + 2, . . . , n}. uB is a length-(k2 − 1) sequence with entries from
the set {0, 1, 2, . . . ,m}. uC is a length-1 sequence whose only entry is from {0, 1, 2, . . . , n}.

There exists a bijection between the set of (T, u) tuples and the set of trees T ′, where T, T ′ are spanning trees

of G̃w, G̃w′ , and u a sequence of length degT (v0)− 1. Explicitly, this bijection is defined by the following map:

φ : (T, u)→ T ′,

ψ : T ′ → (T, u).
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The intuition for u arises from the formula in Theorem 3.1. As x0 is replaced by x0 + xn−m+1 + · · ·+ xn in
fwA

and x0 is replaced by x0 + x1 + · · ·+ xm in fwB
, sequences uA and uB determines the destination of each

x0 under such replacement. The factor of (x0 + x1 + · · ·+ xn) is represented by uC , as it can choose from any
of {0, 1, 2, . . . , n}.

To further explain the intuition, the bijection re-directs every edge that connects a vertex in GwA
and 0

according to uA. These vertices can either remain connected to 0, or connect to some vertex in GwB
, as uA

chooses vertices from 0 or VB . Similarly, edges between GwB
and 0 are redirected according to uB . Since uA

and uB have lengths k1 − 1 and k2 − 1, uC determines how 0, the last 0-adjacent vertex in GwA
and GwB

, and
the remainder of Gw are connected.

In this proof, we define φ and ψ and show they are well-defined. We will show that they are inverses of each
other by arguing that each step in φ can be inverted by a step in ψ.

In defining φ, the first step is to decompose T into components and assign a value to each. In the second
step, we re-direct edges based on uA. In the third step, we devise an algorithm inspired by the [13] to re-direct
edges based on uB . In the fourth step, we make the final two connections according to uC .

Map ψ first identifies the components of GwA
and GwB

, then reverse φ step by step. Together, the bijection
gives us explicit constructions of all monomials corresponding to the spanning trees, which can be summed and
factored to obtain the desired polynomial.

5.1 Define φ

We begin the proof by defining φ given the tuple (T, u). T is a spanning tree in G̃w. φ is defined in 4 steps:

1. Step 1: Identify the components of TA and TB and their representatives (“root”). Assign a value to each
component.

2. Step 2: Add k1 − 1 edges between TA and TB according to uA.

3. Step 3: Add k2 − 1 edges between TA and TB according to uB .

4. Step 4: Add the final 2 edges according to uC .

Readers are welcome to refer to the universal examples starting at Example 5.1 throughout the steps. This
configuration will be used in all examples when possible.

Example 5.1. Let wA = 2431 and wB = 576. Let T be the tree in Fig. 3 and u = 532.

5.1.1 Step 1 of φ

Consider the k1 vertices in GwA
that are connected to 0, and the k2 vertices in GwB

that are connected to 0.
Call these vertices “roots” in A and B. The induced graph of T on Gw has k1 + k2 disconnected components,
where each is connected to 0 through the unique root in their component.

To assign values to the components, we rank the components in A by the smallest vertex in each component,
in increasing order. The “value” of this component is its rank. For each component, label its root rAz , where
z is the value of this component. This procedure finds rA1 , r

A
2 , . . . , r

A
k1
, which are roots of components valued

1, 2, . . . , k1. The value of each root is the value of the component that contains this root.
Repeat this procedure for B and obtain rB1 , r

B
2 , . . . , r

B
k2
.

Example 5.2. This example is a continuation of Example 5.1. We provide an example of this root-identification

and component value-assigning process for a spanning tree T of the graph G̃2431576. In particular, the roots, which
are vertices connected to v0, are v3, v4, v5, v6. Considering the smallest vertex in the component attached to each
root, we see that the roots ranked from the smallest-valued to the largest-valued, are v4, v3, v5, v6. Root v3 is
ranked after v4 because the smallest vertex in the component of v4 is v1, smaller than the smallest vertex in the
component 0f v3.

v0

v1

v2

v3
v4

v5

v6

v7

Figure 3: G̃2431576 with the identified roots in blue.
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We illustrate φ using this example, following each step.

Example 5.3. We provide an example of this root-identification and component value-assigning process for a

spanning tree T of the graph G̃12543.

v0

v1

v2

v3

v4

v5 1

2 2

1

v0

v1

v2

v3

v4

v5

Figure 4: Spanning tree T of the graph G̃1243. The three components of T are v1, v2, v4 and v3 − v5, with the
root in each component identified in blue. The yellow components v1, v2 have respective values of 1, 2 in A. The
green components v3 − v5 has a value of 1 (as 3 is its smallest vertex) and the component v4 has a value of 2
in B. rA1 = v1, r

A
2 = v2, r

B
1 = v5, r

B
2 = v4.

The heuristics for φ is to break all existing connections between the roots and 0, and reconnect all roots
according to uC . Each root is reconnected once, and uC specifies the destination of these edges, increasing the
degree of each vertex in uC by 1. The monomial representing T ′ can be expressed as

m(T ′) =
m(T ) ·

∏k1+k2−1
i=1 xu(i)

xk1+k2−10

.

After this step, the degree of v0 has decreased by k1 + k2, and the degree of each root has decreased by 1.

5.1.2 Step 2 of φ

For the first k1 − 1 entries in u, connect u(i) with rAi for 1 ≤ i < k1. Now all components except for the one
connected to rAk1 are connected to either 0 or some component in B. Let ∗A = rAk1 , which is the only root
that remains unconnected to 0 or B. This assignment process is illustrated concretely in Example 5.4 for our
universal example and more abstractly in Example 5.5.

Example 5.4. We give this example as a continuation of Example 5.2. In Fig. 5, A has two roots: v3, v4. Then
uA must be of length 1. In this example, u = 532, so uA = 5, v4 connects to uA(1) = v5, ∗A = v3.

v0

v1

v2

v3
v4

v5

v6

v7

Figure 5: G̃2431576 after step 2 of φ.

Example 5.5. Suppose A has four roots: rA1 , r
A
2 , r

A
3 , r

A
4 . Then uA must be of length 3. In this example,

rA1 , r
A
2 , r

A
3 connect to uA(1), uA(2), uA(3).
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v0

rA1 rA2 rA3 rA4

A

B

uA(1)

uA(2)

uA(3)

Figure 6: An example of the assignment process for T and uA = uA(1)uA(2)uA(3).

5.1.3 Step 3 of φ

This step connects k2 − 1 components in B with either 0 or some component in A by running an algorithm
inspired by the Prüfer code bijection.

During the iteration of this algorithm, we call a root “available” if it is not in the set V. Initially, the set of
all roots in B are in V : V = {rB1 , . . . , rBk2}. Note that no two trees in B are connected, as each disconnected
tree in A connects to at most one tree in B.

Run the algorithm starting with i = 0. While |V | > 1:

1. Copy V into V ′, which contains all vertices that are currently available.

2. For each entry uB(j) for j > i, if uB(j) is connected to some vertex v ∈ V ′, remove v from V ′.

3. For all remaining vertices in V ′, connect uB(i) with the first vertex in the ordered set V ′. Remove this
vertex from V.

4. Increment i by 1.

At the end of this process, there will be one vertex in V. Let this vertex be ∗B .
This process is well-defined because all vertices in V are disconnected at all times, and no cycles are produced

through this procedure.
To see this, whenever a connection is made in Step 3, it either connects a root in V that is disconnected from

all of B, or it indirectly connects two roots in V, with one of them removed from V before the next iteration.
This ensures that vertices in V remain disconnected at all times. Additionally, no cycles are created because,
at the end of each iteration, |V | is always one greater than (k2 − i) — the remaining number of connections to
be made.

At the end of Step 3, the degree of all vertices in uA, uB , and all roots except for ∗A and ∗B has increased
by 1. We finish φ in Step 4 by adding two edges to increase the degree of ∗A, ∗B , 0, and uC by 1 each. This is
illustrated in Example 5.6.

Example 5.6. Continuing from Example 5.4, in Fig. 7, B has two roots: v5, v6. Then uB must be of length
1. In this example, uB = 3. Initially, V ′ = V = {v5, v6}. Since v3 is not connected to v5, we connect v3 to v5
and remove it from V, as shown by the purple edge in Fig. 7. V now contains a singular element v6, which we
assign to ∗B .

v0

v1

v2

v3
v4

v5

v6

v7

Figure 7: G̃2431576 after step 3 of φ. The purple edge is added in step 3.
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5.1.4 Step 4 of φ

In this step, we make the final 2 connections according to uC , which induces three cases to be handled differently
to avoid cycles. Prior to this step, ∗A and ∗B are disconnected from each other and from 0. We use the same
incomplete spanning tree Fig. 8 as an alternative example, and show how uC affects the last two edges drawn
to finish φ.

v0

rA1 rA2 rA3

A B

rB1 rB2 rB3

Figure 8: Incomplete spanning tree T ∗ before Step 3. In particular, ∗A = rA3 and ∗B = rB2 . Edges drawn in
Steps 2 and 3 are in orange and blue, respectively.

Case 1: uC = 0. In this case, connect both ∗A and ∗B with 0. The two added edges create no cycles and
connect all components of A and B and 0.

Example 5.7. For uC = 0, the two edges added to T∗ are (0, rA3 ) and (0, rB2 ).

v0

rA1 rA2 rA3

A B

rB1 rB2 rB3

Figure 9: T ∗ with two added edges (in red) when uC = 0.

Case 2: uC = i, where vertex i is connected to 0 either directly or through some other vertices. In this case,
if i ∈ A, connect ∗A with 0 and connect i with ∗B . If i ∈ B, connect ∗B with 0 and connect i with ∗A.

Example 5.8. For uC = rB1 , the two edges added to T∗ are (0, rA3 ) and (rA3 , r
B
2 ).

v0

rA1 rA2 rA3

A B

rB1 rB2 rB3

Figure 10: T ∗ with two added edges (in red) when uC = rB1 .

The vertex i being connected to 0 prior to this step entails that uA made this connection in step 2. All other
connections i has with B are through step 3, which does not involve ∗B . As such, connecting i and ∗B does not
create cycles. After making these two connections, both ∗A and ∗B are connected to 0.

Case 3: this case deals with all other scenarios. That is when uC = i 6= 0 and i is not connected to 0. In
this case, connect ∗A with ∗B and vertex 0 with vertex i.

Example 5.9. For uC = rB1 , the two edges added to T∗ are (0, rA3 ) and (rA3 , r
B
2 ).
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v0

rA1 rA2 rA3

A B

rB1 rB2 rB3
uC

Figure 11: T ∗ with two added edges (in red) when uC = i where i is in the same component as rA1 . The two
connections made were (0, uC) and (∗A, ∗B).

Before this step, there are exactly 3 disconnected components: one that contains ∗A, one that contains ∗B ,
and one that contains 0. Making two connections between 3 disconnected components without creating cycles
makes the graph fully connected.

We finish off this section with another example in Example 5.10, continuing from Example 5.6.

Example 5.10. With uC = 2, ∗A = v3 and ∗B = v6. This scenario falls into Case 3. As such, we connect both
v0 and v6 with v2, as done in Fig. 12.

v0

v1

v2

v3
v4

v5

v6

v7

Figure 12: G̃2431576 after step 4 of φ. The orange edges are added in this step.

These 4 steps concludes the definition for φ. We proceed to define ψ : T ′ → (T, u).

5.2 Define ψ

The definition will similarly be separated into 4 steps. These 4 steps in ψ reverse the 4 steps in φ.
In the first step, we separate T ′ into disconnected components and determine the value of each component.

In the second and third d step, we recover the roots rA1 , . . . , r
A
k1
, rB1 , . . . , r

B
k2
, and uC , then reverse the Step 2

and 3 in φ to recover uA and uB . Finally, we put all these information together to recover T and u in the final
step.

5.2.1 Step 1 of ψ

Given T ′, copy all vertices and edges into T, except the edges that are connected to 0 and those that connect a
vertex in A to a vertex in B. Rank the components in A and B separately by their smallest vertex. Now T has
all components and rankings as it does after Step 1 of φ. Steps 2, 3, and 4 fill in the remaining edges between
these components and 0 to recover T.

5.2.2 Step 2 of ψ

In this step, we determine the roots and uC . As ∗A was the root in the highest-ranking component in the map
φ, we can identify the component that contains ∗A, call it T∗A . Similarly, we call the component that contains
∗B T∗B .

To find ∗A and ∗B , consider sets P,Q,R, S :
P := {vertices in A that are connected to both 0 and some vertex in B}
Q := {vertices in B that is connected to P}
R := {vertices in B connected to 0}
S := {vertices in B connected to T∗A}
We proceed by separating into cases based on whether T∗A is to the vertex 0 (directly or indirectly).
Case 1: T∗A is connected to the vertex 0.
There are two scenarios where this case could arise:
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• when uC = 0,

• when uC = i where i ∈ B and i and 0 were already connected prior to step 4 of φ.

We first determine which scenario our case falls into. In this case, T∗B is the largest component in Q ∪ R.
If T∗B ∈ R, then uC = 0, and ∗B is the vertex that 0 is connected to in T∗B . This is case 1 in step 3 of φ. If
T∗B ∈ Q, then uC is the vertex in A that connects to ∗B .

Case 2: T∗A is not connected to the vertex 0.
The two scenarios that lead to this case are:

• when uC = i and i is not connected to 0 prior to step 4 of φ,

• when uC = i where i ∈ A and i and 0 were already connected prior to step 4 of φ.

Similarly, we start by determining which scenario our case falls into. In this case, T∗B is the largest component
in S ∪R. If T∗B ∈ S, ∗B is the vertex in T∗B that connects to 0. The largest component in R contains uC , which
is connected to 0. If T∗B ∈ R, there is exactly one vertex in B that T∗A connects to. Specifically, this edge that
connects uC and ∗A. ∗B is the vertex that 0 is connected to in T∗B .

With the knowledge of ∗A and ∗B , we proceed to identify all other roots. We assign all other inter-tree edges
in T ′ as follows.

For an oriented edge from vs to vt, we call vs the “head” and vt the “tail.”
If there is an edge between ∗A and ∗B , remove this edge from T ′, and orient all remaining edges towards ∗A

and ∗B .
If there is no edge connecting ∗A and ∗B , remove all inter-component edges incident to ∗A and ∗B . This

separates T ′ to either 2 or 3 disconnected sub-trees: one containing ∗A, one containing ∗B , and if there is a
third sub-tree, it contains 0. Orient the remaining inter-component edges towards ∗A and ∗B , as well as 0, if
applicable.

We can identify the roots of T by looking at oriented edges. The tails of these oriented edges are the roots of
T ′. Knowing the value of each component helps us rank the roots and obtain rA1 , r

A
2 , . . . , r

A
k1

and rB1 , r
B
2 , . . . , r

B
k2
.

5.2.3 Step 3 of ψ

This step determines uA and uB .
To determine uA, it suffices to look at the vertices that rA1 , . . . , r

A
k1−1 are connected to, as to reverse Step 2

in φ. Since the assignment process in Step 2 of φ follows the order, uA(i) is the vertex in B that rAi connects to.
To determine uB , we reverse the Prüfer code inspired algorithm in Step 3 of φ.
First, initiate an empty sequence uB . We call a component a “component-leaf” in T ′ if it is only connected

to one other component (or 0) in T ′.
While the length of uB is less than k2 − 1 :

1. Remove all component leaves that are in A.

2. Find the component leaf with the smallest value in T ′. Suppose this component-leaf is connected to another
component through edge (r, vi), where r is the root in this component-leaf. Concatenate vi to the end of
uB and remove this component-leaf from T ′.

The iterations end when there are exactly 2 component leaves left in T ′. This generates the sequence uB of
length k2 − 1.

5.2.4 Step 4 of ψ

Finally, to recover T, we remove all inter-component edges from T ′ and connect all roots with 0. The sequence
u is recovered by concatenating uA, uB , uC , found in steps 2 and 3.

As each step in ψ reverses a step in φ, they form a bijection between tree-sequence pairs in wAwB and trees
in wBwA.

We end this section by illustrating ψ with Example 5.11

Example 5.11. Given the tree T ′ Fig. 13, this example illustrates the process to recover T and the sequence u.
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v0

v1

v2

v3
v4

v5

v6

v7

Figure 13: T ′.

The first step of ψ determines the components of T ′ and their values. Ranking the components by their
smallest vertex, we find 2 components in A : {v1, v3, v4}, {v3} and 2 components in B : {v5}, {v6, v7}.

In step 2 of ψ, we find ∗A = v3, the root of the largest component in A. P = {v2}, Q = {v6}, R = {v5}, and
S = ∅. As T∗A is connected to v0 and T∗B ∈ Q ∪ R is largest component. Hence, T∗B = v6 and our case falls
into Case 1 Scenario 2. Since ∗B ∈ Q, , uC = v2, as v2 is the vertex in A that is connected to v6. To identify
the roots, orient edges as detailed to find rA1 = v4, r

A
2 = v3, r

B
1 = v5, r

B
2 = v6.

In the third step of ψ, we determine uA and uB . The only remaining root in A, v4, is connected to v5. So
uA = 5. Eliminating all ”component-leaves” in A, the only remaining connection with v5 is v3. So uB = 3.

Putting all the information together in the last step, we obtain u = uAuBuC = 532, and connecting all roots
to v0 recovers T, as illustrated in Fig. 14

v0

v1

v2

v3
v4

v5

v6

v7

Figure 14: T recovered after steps of ψ.

6. Proof of Theorem 1.1

In this section, we extend the bijection in Section 5 to construct a bijection between sequences u of length n−1
and spanning trees T given a permutation w of length n. In particular, u is a permutation of {1, 2, . . . , n− 1}.
This bijection proves Theorem 1.1.

We first set up some notations for this bijection. Given separable permutation w, number the intervals
between each pair of adjacent entries of w from 1 to n− 1. Obtain sets S1, S2, . . . , Sh as follows.

1. Find all intervals where an inversion cut is possible. There may be multiple, exactly one, or none. From
left to right, record the intervals in S1.

2. Consider all segments of the permutation separated by S1. For each segment, find all intervals where a
non-inversion cut is possible and record their indices in S2.

3. Consider all segments of the permutation separated by S1 and S2. For each segment, find all intervals
where an inversion cut is possible and record their indices in S3.

4. Continue this process until all segments are of length 1.

By the end of this process, we should have sets S1, S2, . . . , Sh where |S1| + |S2| + · · · + |Sh| = n − 1.
Example 6.1 illustrates how S1, S2, . . . are obtained for permutation w = 7635421.

Example 6.1. For a permutation w = 7635421, the inversion cuts are in the second and fifth intervals (solid
lines). This determines S1 = {2, 5} and the three segments, (76), (354), (21). Now find the non-inversion cuts,
which only exist at the third interval, between 3 and 54 in the second segment (dashed line). Record S2 = {3}.
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Finally, inversion cuts at the first, fourth, and sixth intervals separate w into singletons (dotted lines),

S3 = {1, 4, 6}.
7 6 3 5 4 2 1

1 ∈ S3 2 ∈ S1 3 ∈ S2 4 ∈ S3 5 ∈ S1 6 ∈ S3

Definition 6.1. A decorated spanning tree T ∗ is a tree with labeled intervals. The decorated version of a normal
spanning tree T can be obtained by adding labels between the edges that are incident to 0.

In particular, a normal spanning tree-label pair both uniquely determines and can be recovered from a
decorated spanning tree.

Given T, suppose the vertex 0 has a degree of k1 + k2. Order the k1 + k2 − 1 vertices along a line by their
corresponding values. This creates k1+k2−1 intervals at T. Given a sequence u = uAuBuC of length k1+k2−1,
write uA(i) at the i-th interval for i = 1, 2, . . . , k1 − 1, write uC at the k1-th interval, and write uB(i) at the
(k1 + i)-th interval for i = 1, 2, . . . , k2 − 1. We say the labels of T ∗ is a sequence l∗ of length deg(0) − 1. This
process is illustrated in Example 6.2.

Example 6.2. The decorated tree T ∗ is obtained from tree T and u = 43551. In this example, k1 = 3, k2 = 3.
uA = 43, uB = 55, uC = 1.

T = v0

rA1 rA2 rA3

A B

rB1 rB2 rB3

T ∗ = v0

rA1 rA2 rA3

A B

4 3 1 5 5

rB1 rB2 rB3

Figure 15: T ∗ given T and u = 43551.

Before continuing with the proof, we first define φ1, φ2, ψ1, ψ2 by modifying φ and ψ so that the maps are
compatible with the interval labeling. In particular, φ1 and ψ1 handles inversion cuts; φ2 and ψ2 handles
non-inversion cuts.

Remark 6.1. For a tree T and sequence u = uAuBuC , the labels l∗ = uAuCuB if all entries in u are in T.

6.1 Define φ1(T
∗), ψ1(T

′∗)

Consider a separable permutation w = wAwB , where wA|wB is an inversion cut. Let w′ = wBwA.
The function φ1 maps decorated spanning trees T ∗ in the graph Gw to decorated trees T ′∗ in G′w. The

definition of φ1 leverages from φ : (T, u)→ T ′.
We can obtain an undecorated tree T and sequence u from T ∗. T can be obtained by erasing all interval

labels in T ∗.
Let l∗ be the labels in T ∗. For each entry l∗(i) that is not a vertex of T, we replace that entry with a 0 and

record l∗(i) in l′∗. We also record all 0’s in l∗ in l′∗. The permutation w allows us to identify all the components
and determine k1 and k2 — the number of components in A and B. As such,

u(i) =


l∗(i) i ≤ k1 − 1 and l∗(i) is in T ∗

l∗(i+ 1) k1 ≤ i < k1 + k2 − 1 and l∗(i) is in T ∗

l∗(k1) i = k1 + k2 − 1 and l∗(i) is in T ∗

0 otherwise

(4)

Find T ′ = φ(T, u). The degree of 0 in T ′ is one greater than the length t∗. Decorate T ′ with l∗ to obtain

T ′∗. Example 6.3 gives an example of T ∗
φ1−→ T ′∗.

Example 6.3. Suppose w = 43512, wA = 435, wb = 12. Given T ∗ on 6 vertices and l∗ = 8502. Since 8 is not
in T, we replace 8 with 0, and record 8 and 0 in l′∗. From Eq. (4), u = 0520.
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T ∗ =

v0

v1 v2 v3

A B

8 5 0 2

v4 v5

T ′ = φ(T, 0520)

v0

v1 v2 v3

A B

v4 v5

T ′∗ =

v0

v1 v2 v3

A B

8 0

v4 v5

Figure 16: T ′∗ obtained from φ(T, u) given T ∗.

The map ψ1 is the inverse of φ1, mapping decorated spanning trees T ′∗ in G′w to decorated spanning trees
T ∗ in Gw. Similarly, we use ψ to define ψ1.

We first remove the labels l′∗ on T ′∗ to obtain T ′. The degree of 0 in T ′∗ is exactly one more than the length
of l′∗. Obtain (T, u) from ψ(T ′). The number of 0’s in u is identical to the length of l′∗. Decorate T with u,
replacing replace the first 0 in u by l′∗(1), the second 0 by l′∗(2), and so on. The decorated spanning tree is the
image of ψ1(T ′∗).

6.2 Define φ2(T
∗
A, T

∗
B, u

∗), ψ2(T
′∗)

We similarly define how to execute and repair non-inversion cuts. Given separable permutation w = wAwB ,
where wA|wB is a non-inversion cut, we define φ2, ψ2 based on w.

φ2 repairs the cut by putting combining two decorated trees. For decorated spanning trees T ∗A, T
∗
B of A,B,

and a length - 1 sequence u∗, φ2(T ∗A, T
∗
B , u

∗) = T ∗, T ∗ identifies the 0 vertex in T ∗A with the 0 vertex in T ∗B , and
writes u∗ on the interval in between them to obtain T ∗. An example is given in Example 6.4.

Example 6.4. Suppose w = 12435, wA = 12, wb = 435. Given T ∗A and T ∗B , and u∗ = 6, we can “glue” the two
v0’s together, and add 6 as the label to the interval in between.

T ∗ =

v0

v1 v2 v3

A B

8 5 2

v0

v4 v5

T ′∗ = φ2(T ∗)

v0

v1 v2 v3

A B

v4 v5

8 5 6 2

Figure 17: Adding u∗ = 6 to the interval between T ∗A and T ∗B to obtain T ∗.

Map ψ2 is the inverse of φ2 and executes on the cut. For a decorated tree T ∗, ψ2(T ∗) = (T ∗A, T
∗
B , u

∗), where
T ∗A is a spanning tree in A, T ∗B a spanning tree in B, and u∗ a length - 1 sequence. Given w, components in A
and B can be separated easily to obtain T ∗A and T ∗B . u

∗ is the label between these two trees.
Given w, we can obtain sets S1, S2, . . . . We proceed to define Φ and Ψ using φ1, φ2, ψ1, ψ2.

6.3 Define Φ : u→ T

Given separable permutation w of length n, Φ constructs the spanning tree T given a length-n sequence u by
applying φ1 and φ2 to repair the cuts.

1. First consider the last set of cuts: Sh = {ch1 , ch2 , . . . , chnh
}. Do φ1 or φ2 (depending on whether the last set

of cuts is inversion or not) at chnh
, . . . , ch2 , c

h
1 , in that order, with inputs uchnh

, . . . , uch2 , uch1 . This adds 2nh
edges to the tree.

2. Do Sh−1 with the other kind of cut, and continue. For every φ1(T ∗), suppose the cut entry is ci. Partic-
ularly, the first the first k1 − 1 entries of u∗ are labels in TA, the next k2 − 1 entries are labels in TB , and
the (k1 + k2 − 1)-th entry is wci .

3. Continue until all cuts have been repaired.

We provide an example of these steps with sequence u = 530172 for permutation w = 5762431 in Example 6.5.
At the end of this process, we should obtain a spanning tree whose corresponding monomial is x0x1x2x3x5x7.
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Example 6.5. To construct the spanning tree for w = 5762431 and u = 530172, we first determine the interval
sets: S1 = {3, 6}, S2 = {1, 4}, S3 = {2, 5}.

We start with T ∗0 :

T ∗0 =

v1 v2 v3 v4 v5 v6 v7

Figure 18: T ∗0 between the preparation process begins for a tree on 8 vertices.

To construct the tree T ′ with Φ, we repair cuts in order: 5, 2, 4, 1, 6, 3.
We start by repairing cuts in S3. Since S3 contains inversion cuts, we compute φ1(T ∗0 ) = T ∗1 , at the fifth

interval with u(5) = 7. This connects leaves 5 and 6. Since 7 is not in the set {5, 6}, we treat it as a 0 to obtain
the tree where both v5 and v6 are connected to v0, then write 7 on their interval. Next, we repair the cut at the
second interval with u(2) = 3. Fig. 19 is the tree after these two steps.

T ∗1 =

v1 v2 v3 v4 v5 v6 v7

7

Figure 19: T ∗1 after executing repairs in S3.

The second step is to repair cuts in S2 with φ2. With u(4) = 1 and u(1) = 5, we obtain Fig. 20

T ∗2 =

v1 v2 v3 v4 v5 v6 v7

5 1 7

Figure 20: T ∗2 after executing repairs in S2.

The third step is to repair cuts in S1 using φ1. We first repair the cut at the 6-th interval with u(6) = 2.
Since 1 and 2 are not in the set of vertices {5, 6, 7}, we replace them with 0 to get l = 070. Hence, by Eq. (4),
u = 007. We find φ(T4,5,6,7, 007).

T4,5,6,7 =

v0

v4 v5 v6

A B

v7

T ∗3a = φ(T4,5,6,7, 007)

v0

v4 v5 v6

A B

v7

Figure 21: Adding u∗ = 6 to the interval between T ∗A and T ∗B to obtain T ∗. The two labels that will go on T ∗3a
are 1 and 2.

Finally, we repair the cut at interval 3 with u(3) = 0. In this case, the labels are 5012, hence u = 5021.
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T ∗ =

v0

v1 v2 v3

A B

v4 v5 v6 v7

5 0 2 1

T ′∗ = φ1(T ∗)

v0

v1 v2 v3

A B

v4 v5 v6 v7

Figure 22: Final repair at the third interval to complete Φ(530172) to obtain the tree representing monomial
x0x1x2x3x5x7.

6.4 Define Ψ

Take tree T with labeled vertices. Order the labeled vertices in a line. This creates deg(x0)− 1 intervals. Label
all of them 0.

1. Do ψ1 at c11, c
1
2, . . . , c

1
n1
, in that order. This determines the c11th, c12th, . . . , c1n1

th entry in u. At each cut,
separate the tree into two.

2. Do ψ2 at c21, c
2
2, . . . , c

2
n1
. This determines the c21th, c22th, . . . , c2n1

th entry in u. At each cut, separate the
tree into two.

3. Repeat Steps 1 and 2 for each tree until the entire sequence w is obtained.

Note that this process changes 0 to other vertices without causing conflicts. This is because at each inversion,
according to Theorem 1.1, the linear factor associated with all intervals to the right of the inversion has every
vertex to the left of the inversion, and the linear factor associated with all intervals to the left of the inversion
has every vertex to the right of the inversion.

7. Non-Separable Permutations

In this section, we prove that fw for non-separable permutations w are not linearly factorizable with two lemmas.

Lemma 7.1. Let G be a graph on [n] where the vertex i has degree ki. Then the monomial xn−r0 xri in the
polynomial fG has coefficient

(
ki
r

)
.

Proof. Consider a spanning tree T where m(T ) = xn−r0 xri . T has at most two non-leaf vertices: 0 and i, which
are connected to each other. For the remaining n−1 vertices, r−1 are connected to i, and the rest are connected
to 0 in T. Therefore, it suffices to count the number of ways of selecting the r vertices to connect to i. Since
ki vertices are connected to i, and all vertices are connected to 0 in G, there are

(
ki
r

)
ways to choose such r

vertices.

Lemma 7.2. For any graph G = (V,E) where fG̃ is linearly factorizable, any induced subgraph of G̃ is also

linearly factorizable. That is, for a subset of vertices S ⊂ V, let G̃S be the induced subgraph on S̃. Then fS̃ can
also be linearly factored.

Proof. Consider the restriction fR = fG|xi=0,vi /∈S , which must still be linearly factorizable. fR is the sum of

the spanning trees of G̃ trees where all vertices except v0 and those in S is a leaf. Since fS̃ gives us all spanning

trees of G̃S , to complete fR, it suffices to consider the parents of the leaves. As such, fR = fS̃ · h(V ), where
each monomial in h(V ) is the product of the vertices of the parent of all vertices in V \S. as illustrated by
Example 7.1. Given fR has linear factorization, fS̃ must likewise.

Example 7.1. Let S contain 4 vertices in G. All vertices in V \S are leaves and connected to the spanning tree
via either v0 or S, as illustrated in Fig. 23.
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v0

vS1

vS2 vS3

vS4

Figure 23: An example of a monomial in h(V ), where v0 and vertices in S are in black and vertices in V \S and
edges incident to them are in blue. In this case, the corresponding monomial in h(V ) is x0x

2
S1
xS2

, as the 4 blue
vertices are connected to vS1

, vS1
, vS2

, v0, respectively.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Suppose fw has linear factorization. Since each spanning tree connects n+1 vertices, fw
is of degree n. Let fw = (x0+a1x1+b1x2+c1x3+. . . )(x0+a2x1+b2x2+c2x3+. . . ) . . . (x0+anx1+bnx2+cnx3+. . . ).
Specifically, the coefficient for x0 is 1 for all linear factors, because there is exactly one spanning tree of Gw
where the degree of vertex 0 is n+ 1 and the degree of every other vertex is 1.

Let ki denote the degree of vertex i in the graph Gw. Consider the product of these linear factors and apply
Lemma 7.1 to x0 to obtain the system of equations as follows, where r = 1, 2, . . . , n.∑

S⊆V
|S|=r

∏
s∈S

as =

(
k1
r

)
= 1

As such, for some subset s1 ⊂ S of size k1,{
ai = 1 i ∈ s1
ai = 0 otherwise

By symmetry, this result applies to other vertices as well.
For a 2413 or 3142-pattern containing permutation w, let the first occurrence of the pattern be wa, wb, wc, wd

for a < b < c < d and apply Lemma 7.2 to v0, va, vb, vc, vd. Thus, it suffices to show that fw1 and fw2 for
w1 = 2413, w2 = 3142 cannot be linearly factored.

Consider inseparable permutation w1 = 2413. Suppose fw1
can be factored into linear factors. The degrees

of the vertices in Gw1
are k1 = 1, k2 = 2, k3 = 2, k4 = 1. Hence, by Lemma 7.1, we assign 0’s and 1’s to

coefficients a1, a2, a3, . . . , d1, d2, d3 in the expression for fw1 .

fw1
=(x0 + a1x1 + b1x2 + c1x3 + d1x4) · (x0 + a2x1 + b2x2 + c2x3 + d2x4)

· (x0 + a3x1 + b3x2 + c3x3 + d3x4)

Without loss of generality, let a1 = 1 and a2 = a3 = 0. Since the tree in Fig. 24 is a spanning tree of
Gw1

, x0x1x4 is a monomial in fw1
. Since only one of d1, d2, d3 is equal to 1, d1 = 0. Again, without loss

of generality, let d2 = 1, d3 = 0 is the only valid assignment for the remaining coefficients. Notice that
x1x2x2, x1x3x3, x4x2x2, x4x3x3 are not spanning trees of Gw1 , hence b1 = b2 = c1 = c2 = 1 and b3 = c3 = 0.
Therefore, fw1

= (x0 + x1 + x2 + x3 + x4) · (x0 + x1 + x2 + x3 + x4) · x0.
However, fw1

does not contain the monomial x1x2x3, which is a spanning tree of Gw1
as shown in Fig. 24.

This invalidates the only coefficient assignment and concludes the proof that fw1
cannot be factored linearly.

v0

v1

v2 v3

v4

v0

v1

v2 v3

v4

Figure 24: Trees corresponding to the monomial x0x1x4 and x1x2x3 in G2413.
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A similar strategy proves that fw2 cannot be factored linearly. The graph Gw2 has degrees k1 = k4 = 2, k2 =
k3 = 1. Assume linearly factorizability and set up

fw2
=(x0 + a1x1 + b1x2 + c1x3 + d1x4) · (x0 + a2x1 + b2x2 + c2x3 + d2x4)

· (x0 + a3x1 + b3x2 + c3x3 + d3x4)

Given the monomial x0x2x3 is a valid tree where the degree on v2 and v3 are both 2, without loss of generality,
let b1 = c2 = 1, b2 = b3 = c1 = c3 = 0 and a3 = b3 = c3 = d3 = 0. Since a1 + a2 + a3 = d1 + d2 + d3 = 2, we
must assign a1 = a2 = d1 = d2 = 1. Therefore, fw2

= (x0 + x1 + x2 + x4) · (x0 + x1 + x3 + x4) · x0.
However, fw2 does not contain the monomial x1x1x4, which is a spanning tree of Gw2 as shown in Fig. 25.

This contradiction concludes the proof that fw2 cannot be factored linearly.

v0

v1

v2 v3

v4

v0

v1

v2 v3

v4

Figure 25: Trees corresponding to the monomial x0x2x3 and x1x2x3 in G3142.

By Lemma 7.2, fw for all permutations w containing pattern 2413 and 3142 cannot be factored into linear
factors.

8. Further Discussions

Definition 8.1. For a non-separable permutation w, let gw be the polynomial derived according to Theorem 1.1.

Remark 8.1. Since gw is a product of linear factors and that Theorem 1.2 asserts that fw is not linearly
factorizable for non-separable permutations, fw 6= gw when w is not separable.

Define dw = fw − gw. We deduce the following conjecture for 25314 and 41352-avoiding inseparable permu-
tations.

Conjecture 8.1. The polynomial dw has positive coefficients for permutations w, where w contains patterns
2413 or 3142, but avoids 25314 and 41352.

We prove a weaker version of this conjecture.

Proposition 8.1. The polynomial dw has positive coefficients for permutations w, if w contains exactly one
occurrence of 2413 or 3142 and avoids 25314 and 41352.

Lemma 8.1. For permutation w with exactly one occurrence of 2413 that avoids 3142, 25314, and 41352.
Suppose it occurs at a, b, c, d — that is, a < b < c < d and w(c) < w(a) < w(d) < w(b). Then we must have
a+ 3 = b+ 2 = c+ 1 = d and w(c) + 3 = w(a) + 2 = w(d) + 1 = w(b).

Lemma 8.1 similarly applies to permutations w that contain exactly one occurrence of 3142 and avoid 2413,
25314, and 41352. The 3142 pattern must occur at some a, b, c, d, where b = a + 1, c = a + 2, d = a + 3, with
w(b) + 3 = w(d) + 2 = w(a) + 2 = w(c).

With Lemma 8.1, we return to the proof for Proposition 8.1.

Proof. As a result of Lemma 7.2, for an induced subgraph on vertices S ∈ V of G = (V,E), fG = fS · h(G),
where h(G) is some polynomial that specifies the connection for vertices in V \S.

For a permutation w that contains the pattern 2413, we compare the factored polynomial g obtained from
w and w′, where w′(i) = w(i) for i 6= a, a+ 3, and w′(a+ 3) = w(a), w′(a) = w(a+ 3). h(w) is a product of the
linear factors at all other intervals. Let S = {va, vb, vc, vd} denote this set of vertices in both Gw and Gw′ .

Lemma 8.1 asserts that for all vertices vj /∈ S and vertices vi ∈ S, if (vi, vj) is an edge in Gw, it must also
be an edge in Gw′ . As such, the same polynomial h(G) holds for both the expression for w

fGw
= fSw

· h(G) (5)

and the expression for w′

fGw′ = fSw′ · h(G) (6)
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By Theorem 1.1, the linear factor at each interval for w and w′ are identical with the except of between
a-th and (a + 2)-th interval. In g(w′), these two intervals have an additional term due to the added inversion
by interchanging the w(a) with w(c). Therefore, let

g(Sw) = (x0 + xc)(x0 + xa + xb + xc + xd)(x0 + xb), (7)

and
g(Sw′) = (x0 + xc + xd)(x0 + xa + xb + xc + xd)(x0 + xa + xb). (8)

Locally, GSw and GSw′ correspond to the following graphs.

G̃Sw
=

va

vb vc

vd

v0

G̃Sw′ =

v0

va

vb vc

vd

Figure 26: The induced graph on vertices va, vb, vc, vd for Gw and Gw′ .

The only edge added by interchanging the entries a and d is the edge (va, vd), hence all spanning trees that
are in f(w′) but not f(w) must contain this edge.

However, expanding Eq. (7) and Eq. (8), g(Sw′)− g(Sw) =

(x0 + xa + xb + xc + xd)(x0xa + x0xd + xaxc + xbxd + xaxd) (9)

We notice that, g(Sw′) − g(Sw), which is a monomial that corresponds to the tree Fig. 27 which does not
have (va, vd) as an edge. All other monomials in g(Sw′) − g(Sw) correspond to trees that contain the edge
(va, vd).

va

vb vc

vd

v0

Figure 27: The induced subtrees on vertices v0, va, vb, vc, vd for trees that are in f(w) but not g(w).

As such, d(w) = f(w)− g(w) must have positive coefficients.
For the second part, we consider permutations that contain pattern 3142. Let w be the permutation whose

only occurrence of 3142 at positions a, b, c, d and avoid patterns 25314 and 41352. Consider permutation w′,
where w′(i) = w(i) for i 6= a, d and w′(a) = w(d), w′(d) = w(a). By Lemma 8.1, b = a+ 1, c = a+ 2, d = a+ 3
and w(b), w(d), w(a), w(c) are consecutive integers. Since GSw contains one additional edge, (va, vd), than GSw′ ,
the spanning trees that terms in fSw − fSw′ must contain this edge.

Similarly, by Theorem 1.1, the linear factor at each interval for w and w′ are identical with the except of
between a-th and c-th interval. In g(Sw), these two intervals have an additional term due to the added inversion
by interchanging the w(a) with w(c).

Specifically,
g(Sw) = (x0 + xa + xb + xd) · x0 · (x0 + xa + xc + xd) (10)

and
g(Sw′) = (x0 + xa + xb) · x0 · (x0 + xc + xd). (11)

GSw
and GSw′ correspond to the following graphs.
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G̃Sw
=

va

vb vc

vd

v0

G̃Sw′ =

v0

va

vb vc

vd

Figure 28: The induced graph on vertices v0, va, vb, vc, vd for Gw and Gw′ .

Expanding Eq. (10) and Eq. (11) finds that there are 7 spanning trees in G̃Sw′ , which correspond to the
monomials in the difference

g(Sw)− g(Sw′) = x0(x0xd + xcxd + x2d + x0xa + x2a + xaxb + xaxd) (12)

However, we find 12 spanning trees of G̃Sw that contain the edge (va, vd) via enumeration. In addition to
the 7 monomials in g(Sw)− g(Sw′), the 5 trees that contain (va, vd) correspond to the monomials in

xaxd(x0 + xa + xb + xc + xd).

As such, the factored polynomial g(Sw) undercounts its spanning trees. d(w) = f(w) − g(w) have positive
coefficients.
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