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Benny Sudakov received his Ph.D. from Tel Aviv University in 1999
under the supervision of Noga Alon. Over the course of his career,
he has held positions at Princeton University, the Institute for Ad-
vanced Studies, and the University of California, Los Angeles. Since
2013, Sudakov has been a professor of mathematics at ETH Zurich.
He has received several prestigious awards, including a Sloan
Fellowship, NSF CAREER Award, and the Humboldt Research
Award. Sudakov is a Member of the Academia Europaea and a Fel-
low of the American Mathematical Society. He was also an invited
speaker at the 2010 International Congress of Mathematicians.
With more than 300 scientific publications to his name, Sudakov

serves on the editorial board of 14 research journals. His primary scientific interests lie in
combinatorics and its applications to other areas of mathematics and computer science.

Mansour: Professor Sudakov, first of all, we
would like to thank you for accepting this in-
terview. Would you tell us broadly what com-
binatorics is?

Sudakov: Combinatorics is a fundamental
mathematical discipline that focuses on the
study of discrete objects and their properties.
Examples of such objects are graphs, hyper-
graphs, finite sets, subsets of integers or other
algebraic structures, and permutations.

Mansour: What do you think about the devel-
opment of the relations between combinatorics
and the rest of mathematics?

Sudakov: Combinatorics has experienced re-
markable growth in the past eighty years,
evolving into a vibrant and mature area with
its own distinctive set of problems, approaches,
and methodologies. This rapid expansion can
be attributed, in large part, to the develop-
ment of powerful techniques, based on ideas
from many mathematical fields such as prob-
ability, algebra, harmonic analysis, and topol-
ogy. These tools play an important organiz-
ing role in combinatorics, similar to the one
that deep theorems of great generality play in

more classical areas of mathematics. More-
over, the relationship between combinatorics
and other areas of mathematics is mutually
beneficial, with combinatorics finding signifi-
cant applications in various mathematical dis-
ciplines. These include number theory, proba-
bility, geometry, functional analysis, logic, and
theoretical computer science.

Mansour: What have been some of the main
goals of your research?

Sudakov: While my typical focus lies in re-
solving fairly specific combinatorial problems,
I tend to choose the ones where one can use
probabilistic and algebraic methods. More-
over, I try to choose questions whose solution
might potentially lead to the development of
new techniques that are relevant to a broad
array of other combinatorial problems.

Mansour: We would like to ask you about
your formative years. What were your early
experiences with mathematics? Did that hap-
pen under the influence of your family or some
other people?

Sudakov: My interest in mathematics was in-
fluenced by two individuals. First and fore-
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most, my father played a pivotal role. From a
very early age (as far back as I can remember),
he engaged me in discussions about mathemat-
ics and presented me with various captivat-
ing mathematical puzzles. Later on, he intro-
duced me to the journal “Kvant” (Russian for
“quantum”), a popular science magazine cov-
ering physics and mathematics for school stu-
dents in the USSR. My interest in mathemat-
ics was further nurtured by my middle school
math teacher. Recognizing that I was find-
ing the standard curriculum somewhat boring,
she provided me with intriguing and demand-
ing problems to solve instead.

Mansour: Were there specific problems that
made you first interested in combinatorics?

Sudakov: I believe that the first significant
combinatorial problem that captured my in-
terest was the well known Erdős-Faber-Lovász
conjecture1, which is a problem on graph color-
ing. I saw it in some popular article during my
initial year as an undergraduate. During that
time, I briefly thought about it and even man-
aged to prove some very special cases. How-
ever, due to the limited presence of combina-
torialists in Tbilisi, where I pursued my under-
graduate studies, I eventually transitioned to
exploring differential topology and geometry.

Mansour: What was the reason you chose Tel
Aviv University for your Ph.D. and your advi-
sor Noga Alon?

Sudakov: My reason for choosing Tel Aviv
University was very simple: I lived in Tel Aviv,
and it was nearby. During university, I be-
gan conversing with Gregory Gutin, who was
Noga’s student at the time. He recommended
that I take Noga’s course on the probabilis-
tic method. I enjoyed the subject greatly and
consequently asked Noga if I could pursue my
master’s thesis under his guidance.

Mansour: What would guide you in your re-
search? A general theoretical question or a
specific problem?

Sudakov: In my research, I typically begin
with a specific question. This makes it a bit

easier to initiate thinking. Having said that, I
always attempt to select a problem whose so-
lution I believe can shed some light on other
problems in the area. Indeed, there have been
several instances where solving one problem
has enabled me to develop techniques that had
applicability beyond the original question.

Mansour: When you are working on a prob-
lem, do you feel that something is true even
before you have the proof?

Sudakov: Many times, this is indeed the case
and it motivates me to work harder in an at-
tempt to prove something that I believe is true.
However, I should also acknowledge that I have
been wrong several times. Therefore, I have
learned over time not to be overly confident,
and if I cannot prove something for an ex-
tended period, I also search for counterexam-
ples.

Mansour: What three results do you consider
the most influential in graph theory during the
last thirty years?

Sudakov: There are undoubtedly more than
three such results that one could mention.
However, to be specific, here are three results
that I find extremely influential:

The Szemerédi regularity lemma2, which I
will discuss a bit later in this interview.

Graph minor theory and the Robertson-
Seymour theorem3, which states that every
family of graphs closed under taking minors
can be characterized by a finite set of excluded
minors.

My third choice will be the Lovász local
lemma4, which is a powerful probabilistic tool
for solving problems with dependencies be-
tween events.

Mansour: What are the top three open ques-
tions in your list?

Sudakov: The first question concerns Ramsey
numbers of 3-uniform hypergraphs. The Ram-
sey number r(3)(n) is the smallest positive inte-
ger N such that any 2-coloring of the edges of
the complete 3-uniform N -vertex hypergraph
contains a monochromatic set of size n, mean-

1D. Y. Kang, T. Kelly, D. Kühn, A. Methuku, and D. Osthus, A proof of the Erdős-Faber-Lovász conjecture, Ann. of Math.
198(2) (2023), 537–618.

2J. Komlós and M. Simonovits, Szemerédi’s, Regularity lemma and its applications in graph theory, Bolyai Society Mathemati-
cal Studies 2, Combinatorics, Paul Erdős is Eighty (Volume 2) (D. Miklós, V. T. Sós, T. Szönyi eds.), Keszthely (Hungary) (1993),
Budapest (1996), 295-352.

3N. Robertson and P. D. Seymour, Graph Minors. XX. Wagner’s conjecture, J. Combin. Theory, Ser. B 92(2) (2004), 325–357.
4N. Alon and J. Spencer, The probabilistic method, Chapter 5, Wiley, 4th Ed., 2015.
5D. Conlon, J. Fox, and B. Sudakov, Recent developments in graph Ramsey theory, in: Surveys in Combinatorics 2015, Cam-

bridge University Press, 2015, 49-118.
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ing a set in which all triples have the same
color. This problem has a long history5, dating
back many decades, with the central question
being whether these numbers grow exponen-
tially or doubly-exponentially. The best lower
bound we have is of the order of magnitude
2cn

2
, while the best upper bound is 22cn , where

c denotes an absolute constant.

Another problem6 I am interested in is re-
lated to Turán numbers of bipartite graphs.
Formally, the Turán number of a fixed graph
H, denoted by ex(n,H), is the maximum pos-
sible number of edges in an n-vertex graph
that does not contain H as a subgraph. When
H is bipartite, there are relatively few results
that determine the order of magnitude of these
numbers. Furthermore, we lack a good under-
standing of which graph parameters of H we
should examine to estimate ex(n,H). A well-
known conjecture by Erdős from 1967 suggests
that the local density of a graph should be one
of these parameters. A graph H is s-degenerate
if every one of its subgraphs contains a ver-
tex of degree at most s. Specifically, for an s-
degenerate bipartite graph H, this conjecture
says that ex(n,H) = O(n2−1/s).

My third favorite problem is attributed to
Brown, Erdős and Sós. We denote by f(n, v, e)
the maximum number of edges a 3-uniform hy-
pergraph with n vertices can have without con-
taining a set of v vertices that span at least e
edges. In 1973, Brown, Erdős and Sós7 initi-
ated the study of this function and conjectured
that f(n, e+ 3, e) = o(n2). A celebrated result
by Ruzsa and Szemerédi8, which has surprising
applications in number theory, settles the first
non-trivial instance of this conjecture, namely
the case v = 6, e = 3. However, even the next
case, when (v = 7, e = 4), remains completely
open.

Mansour: What kind of mathematics would
you like to see in the next ten to twenty years
as the continuation of your work?

Sudakov: In my research, I always strive to
emphasize methods rather than the specific
problems I am solving. Therefore, I am hopeful
that over the next ten to twenty years, we will
witness further development of general tech-

niques with broad applicability.

Mansour: Do you think that there are core or
mainstream areas in mathematics? Are some
topics more important than others?

Sudakov: I believe that at any given moment,
there are both more and less active areas in
mathematics. I think that fields experiencing
exciting developments become notably more
active and draw the attention of many young
researchers. As a result, one hears more about
the results emerging from these areas, which
might create an impression that these areas are
more important. However, with the passage of
time, the focus shifts, and different areas take
the lead in activity.

For instance, consider the state of additive
combinatorics about 40 years ago. At that
time, I think only a few people were working
in this field. However, the situation changed
rapidly, and today, it is a highly central area
with extensive connections to numerous other
domains of mathematics.

Mansour: What do you think about the dis-
tinction between pure and applied mathemat-
ics that some people focus on? Is it mean-
ingful at all in your case? How do you see the
relationship between so-called “pure” and “ap-
plied” mathematics?

Sudakov: I believe it depends on the specific
subject within applied mathematics. Certain
areas of applied mathematics closely resemble
pure mathematics. In these domains, scien-
tists also engage in theorem proving and es-
tablish rigorous results. However, there are
equally significant areas of applied mathemat-
ics where the focus lies on developing heuristics
and practical algorithms. These approaches
might not always provide definitive solutions,
but they perform well in real-world instances
and enable efficient simulation of natural phe-
nomena. In my research, I primarily focus
on proving theorems, although some problems
that capture my interest can be motivated by
applications.

Mansour: You have supervised several in their
Ph.D. thesis. What do you think about the im-
portance of working with Ph.D. students and
passing knowledge to them? Do you follow

6B. Sudakov, Recent developments in extremal combinatorics: Ramsey and Turan type problems, Proc. International Congress
of Mathematicians, Hyderabad, India, 2010, Volume 4, 2579–2606.

7W. G. Brown, P. Erdős, and V. Sós, Some extremal problems on r-graphs, New directions in the theory of graphs, 53–63, 1973.
8I. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, in Combinatorics (Keszthely, 1976),

Coll. Math. Soc. J. Bolyai 18, Volume II, 939–945.
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your students after they complete their thesis?

Sudakov: I find it extremely important to
have Ph.D. students and to collaborate with
them. Firstly, this collaboration plays a cru-
cial role in passing the existing knowledge
within our field to the next generation of scien-
tists. Additionally, Ph.D. students often intro-
duce new and innovative viewpoints to the re-
search projects. Their unique ideas and enthu-
siasm frequently result in fresh methods and
problem-solving approaches, ultimately driv-
ing progress in our area. Many of my Ph.D.
students have become my frequent collabora-
tors, and our collaborations often extend well
beyond the completion of their theses.

Mansour: What advice would you give to
young researchers thinking about pursuing a
research career in mathematics?

Sudakov: I believe that the most crucial as-
pect is to pursue a research career only if one
genuinely derives pleasure from contemplating
problems, meaning that the enjoyment should
come also from the process itself, not only from
the eventual outcome. Mathematics demands
a considerable amount of patience. It is akin
to a marathon rather than a sprint, and it is
important not to lose hope if progress seems
slow at the outset, especially when observing
others who appear to possess greater knowl-
edge or accomplish tasks more quickly. Just as
in a marathon, it does not matter what is hap-
pening after the first five kilometers. What’s
important is the sustained effort and dedica-
tion over the entire course.

Mansour: Would you tell us about your inter-
ests besides mathematics?

Sudakov: I enjoy going hiking; this is an espe-
cially convenient hobby to have when one lives
in Switzerland. Additionally, I have an interest
in opera and classical music, and I take plea-
sure in reading good books.

Mansour: You gave talks at numerous confer-
ences, workshops, and seminars. What do you
think about the importance of such activities
for researchers?

Sudakov: I believe that both giving and listen-
ing to talks at conferences are very important.
It often occurs that while the idea behind the

solution to a problem is conceptually simple,
this simplicity can be lost when one writes the
formal proof. Conference talks provide a good
platform to communicate and learn such ideas
directly from the author of the paper.

Mansour: Ramsey numbers for various fam-
ilies of graphs are discussed in your articles.
Would you tell us about some significant re-
cent results in this direction? What are your
favorite open problems in Ramsey Theory?

Sudakov: Several remarkable achievements in
Ramsey theory have been made even this year
alone. To recap, the Ramsey number r(t, n)
is the smallest positive integer N such that
any red/blue edge-coloring of the complete N -
vertex graph contains either a red set of size t
or a blue set of size n. A fundamental result
by Erdős and Szekeres9 states that r(n, n) ≤ 4n

in the diagonal case, and r(t, n) ≤ nt−1 in the
off-diagonal case.

A major open problem that I find very
intriguing is to determine the limit of c :=
R(n, n)1/n. Until very recently, the best-known
bounds were

√
2 ≤ c ≤ 4. However, Campos,

Griffiths, Morris, and Sahasrabudhe10 made a
dramatic improvement by establishing an up-
per bound of c ≤ 3.999.

As for the off-diagonal case, the best gen-
eral lower bound at the moment is r(t, n) ≥
Ω̃(n(t+1)/2), where the Ω̃-notation accounts for
a polylogarithmic factor. This bound is tight
when t = 3, and until this year, it was the
only case where tight bounds were known.
In a major breakthrough, Mattheus and Ver-
straete11 recently proved that r(4, n) = Ω̃(n3),
matching the Erdős and Szekeres upper bound.
This provides strong evidence for the possibil-
ity that r(t, n) = Θ̃(nt−1) for every t, which is
another one of my favorite questions in graph
Ramsey numbers.

Mansour: In a joint paper with Asaf Ferber
and Michael Krivelevich, Counting and packing
Hamilton cycles in dense graphs and oriented
graphs12, you presented a general method for
counting and packing Hamilton cycles in dense
graphs and oriented graphs based on perma-
nent estimates. Please explain the main ideas
behind this method and the results.

9P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935), 463–470.
10M. Campos, S. Griffiths, R. Morris, and J. Sahasrabudhe, An exponential improvement for diagonal Ramsey, arXiv:2303.09521.
11S. Mattheus and J. Verstraete, The asymptotics of r(4, t), arXiv:2306.04007.
12A. Ferber, M. Krivelevich, and B. Sudakov, Counting and packing Hamilton cycles in dense graphs and oriented graphs, J.

Combin. Theory, Ser. B 122 (2017), 196–220.
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Sudakov: Suppose we have a d-regular graph
G on n vertices, with d ≥ n/2. A celebrated
theorem by Dirac then states that G has a
Hamilton cycle. It appears that one can ac-
tually demonstrate much more: such a graph
G contains d/2 edge-disjoint Hamilton cycles
and exponentially many distinct Hamilton cy-
cles. In their most robust forms, these results
were proven by Csaba, Kühn, Lo, Osthus, and
Treglown13, as well as by Cuckler and Kahn14.
Our paper, co-authored with Ferber and Kriv-
elevich, introduces an alternative approach for
establishing similar results.

Given a d-regular graph, we consider
Per(AG), where AG is the adjacency matrix
of G. For an n × n matrix B, its permanent
Per(B) is defined as Per(B) =

∑
σ

∏n
i=1 biσ(i),

where the sum is taken over all permutations
of [n]. From the definition of the permanent,
one can observe that for the matrix AG, the
permanent counts the number of 2-factors in
G, which are collections of vertex-disjoint cy-
cles covering all the vertices. Since G is reg-
ular, we can use well-known estimates for the
permanent, such as the Van der Waerden and
Minc conjectures (now theorems, due to Ego-
rychev15–Falikman16 and Brégman17, respec-
tively), to obtain very precise estimates of
Per(AG). These estimates readily imply that
G has, for example, exponentially many 2-
factors. By leveraging these estimates more
rigorously, we can demonstrate that G pos-
sesses exponentially many 2-factors, each of
which contains very few cycles, say fewer than
n2/3 cycles.

Given that the degree of the graph, d, is
greater than or equal to n/2, we can employ
standard rotation techniques, similar to those
used in proving Dirac’s theorem18, to convert
each such 2-factor into a genuine Hamilton cy-
cle. While these cycles may not necessarily be
distinct, we can utilize the fact that only a few
edges are altered in the process to demonstrate
that the number of distinct Hamiltonian cycles
we obtain is exponentially large. Using these

techniques, we can also find approximately d/2
edge-disjoint 2-factors with only a few cycles in
each. This can be achieved even if we initially
set aside a small number of random edges from
G. We then proceed to transform each of these
2-factors into a Hamilton cycle, utilizing a few
freshly reserved random edges that were set
aside at the beginning of the process.
Mansour: In a joint paper Graph Products,
Fourier Analysis, and Spectral Techniques19,
coauthored with Noga Alon, Irit Dinur, and
Ehud Friedgut, by using Fourier analysis on
abelian groups and spectral techniques, you
studied powers of regular graphs defined by the
weak graph product and provided a character-
ization of maximum-size independent sets for
a wide family of base graphs. Would you tell
us about it?
Sudakov: Consider a road junction equipped
with k switches that control the traffic lights.
Each switch has three states, and the states of
the switches determine the color of the traffic
lights: red, yellow, or green. You’ve been in-
formed that whenever you adjust the position
of all the switches simultaneously, the color of
the traffic lights changes. Prove that, in fact,
the traffic lights are controlled by only one of
these switches.

This problem represents a specific case re-
lated to our research, where we focused on
characterizing optimal colorings and maximal
independent sets in powers of regular graphs.
In this context, the “weak k-th power” of a
given graph G, denoted as Gk, is a graph
whose vertex set consists of all possible vec-
tors (u1, . . . , uk), where ui ∈ G. Two vertices,
(u1, . . . , uk) and (v1, . . . , vk), are connected in
Gk if and only if uivi forms an edge in G for
all 1 ≤ i ≤ k. The configuration space of the
switches described above can be modeled by
the k-fold product of a triangle K3.

In our paper, we study the powers of reg-
ular graphs, including complete graphs, line
graphs of regular graphs with perfect match-
ings, and Kneser graphs, among others. We

13B. Csaba, D. Kühn, A. Lo, D. Osthus, and A. Treglown, Proof of the 1-factorization and Hamilton decomposition conjectures,
Memoirs AMS 244 (2016), Monograph 1154.

14B. Cuckler and J. Kahn, Hamiltonian cycles in Dirac graphs, Combinatorica 29(3) (2009), 299–326
15G. Egorychev, The solution of the Van der Waerden problem for permanents, Dokl. Akad. Nauk SSSR 258 (1981), 1041–1044.
16D. Falikman, A proof of the Van der Waerden problem for permanents of a doubly stochastic matrix, Mat. Zametki 29 (1981),

931–938.
17L. M. Brégman, Some properties of non-negative matrices and their permanents, Sov. Mat. Dokl. 14 (1973), 945–949
18R. Diestel, Graph theory, Chapter 10, Springer 5th Ed., 2017.
19N. Alon, I. Dinur, E. Friedgut, B. Sudakov, Graph products, Fourier analysis and spectral techniques, Geom. Funct. Anal. 14

(2004), 913–940.
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provide a comprehensive characterization of
maximum-size independent sets and, in many
cases, determine optimal colorings for these
products. Our findings reveal that the inde-
pendent sets induced by the base graph are
the only maximum-size independent sets. Fur-
thermore we give a qualitative stability state-
ment: any independent set of size close to the
maximum is close to some independent set of
maximum size.

Our approach relies on Fourier analysis ap-
plied to Abelian groups and makes use of spec-
tral techniques. To facilitate this, we develop
fundamental lemmas concerning the Fourier
transform of functions on the set {0, 1, . . . , r−
1}n, extending and generalizing useful results
from the {0, 1}n case.

Moreover, our paper suggests that many
tools from harmonic analysis hold for general
tensor products of some fixed orthogonal set of
vectors, and not only for characters of abelian
groups. Although this fact is not difficult and
its proof essentially amounts to a change of ba-
sis, it seems very powerful and may well lead
to additional interesting consequences.

Mansour: One of your research interests in-
cludes Application of Combinatorics to Theo-
retical Computer Science. Would you tell us
about some specific problems that originated
in theoretical computer science but became
popular among combinatorialists?

Sudakov: I may not have a specific problem in
my mind that originated in computer science
and transitioned to combinatorics, but there
are many problems that are central to both
fields. In some of these cases, interesting meth-
ods developed by computer scientists later find
valuable applications in proving combinatorial
results.

One such problem is the Max-Cut problem,
which involves finding a partition of a graph’s
vertices into two complementary sets, S and
T , such that the number of edges between S
and T is maximized. Finding the exact solu-
tion to the Max-Cut problem is known to be
NP-hard, which means that we do not antici-
pate the existence of a polynomial-time algo-
rithm that can guarantee finding the optimal

solution for all instances of the problem. Con-
sequently, in computer science, substantial ef-
forts have been devoted to developing efficient
approximation algorithms for Max-Cut. The
most well-known algorithm for this purpose is
attributed to Goemans and Williamson20, and
it is based on semidefinite programming.

In combinatorics, there is a long history
of research aimed at providing the best lower
bounds for the Max-Cut of various families
of graphs. One extensively studied family is
the set of H-free graphs for some fixed, small
graph H. Many such extremal results for the
Max-Cut problem rely on intricate probabilis-
tic arguments. Recently, in collaboration with
Carlson, Kolla, Li, Mani, and Trevisan21, we
proposed a different approach to establishing
lower bounds on the Max-Cut of sparse H-free
graphs using approximation through semidefi-
nite programming (SDP).

This approach is intuitive and computa-
tionally straightforward. The main inspira-
tion came from the celebrated approximation
algorithm by Goemans and Williamson, men-
tioned above. In this approach, given a graph
G with m edges, we initially construct an ex-
plicit solution for the standard Max-Cut SDP
relaxation of G, which has a value of at least
(1/2+W )m for some positive surplus W . Sub-
sequently, we apply Goemans–Williamson ran-
domized rounding, based on the sign of the
scalar product with a random unit vector, to
extract a cut in G whose surplus is within a
constant factor of W .

Mansour: In a survey paper Dependent ran-
dom choice22 coauthored with Jacob Fox, you
bring attention to what you call a simple
and yet surprisingly powerful probabilistic tech-
nique that shows how to find in a dense graph a
large subset of vertices in which all (or almost
all) small subsets have many common neigh-
bors. Would you tell us more about this work?

Sudakov: The basic idea of the dependent
random choice technique is very simple. In or-
der to find a large subset U of graph G in which
every set of, say, d vertices has many common
neighbors, one can take U to be the set of all
common neighbors of an appropriately chosen

20M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using
semidefinite programming, J. ACM 42(6) (1995), 1115–1145

21C. Carlson, A. Kolla, R. Li, N. Mani, B. Sudakov, and L. Trevisan, Lower Bounds for Max-Cut in $H$-Free Graphs via
Semidefinite Programming, SIAM J. Discrete Math. 35:3 (2021), 1557–1568.

22J. Fox and B. Sudakov, Dependent random choice, Random Struct. Algor. 38:1-2 (2010), 68–99.
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random subset of vertices R. Intuitively, it is
clear that if some set of d vertices has only a
few common neighbors, then it is unlikely that
all the members of R will be chosen among
these neighbors. Hence, we do not expect U to
contain any such subset of d vertices. More-
over, if G has many edges then one can expect
U to be large.

The main idea of this methodology is that
in the course of a probabilistic proof, it is
often more effective not to make the choices
uniformly at random, but to try and make
them depend on each other in a way tailored
to the specific argument needed. While this
sounds somewhat ambiguous, this simple rea-
soning and its various extensions have already
found many applications in extremal graph
theory, additive combinatorics, Ramsey theory
and combinatorial geometry. Jacob and I de-
tail many of these applications in our survey.
Mansour: Are there any results in graph the-
ory that you consider very surprising or unin-
tuitive?
Sudakov: The result that I consider extremely
surprising and not a priori intuitive is the Sze-
merédi regularity lemma. It roughly states
that the vertices of any sufficiently large graph
can be partitioned into a bounded number of
parts, so that the edges between most pairs of
different parts exhibit behavior that is nearly
random. This result has revolutionized the
field of graph theory and has many applica-
tions in other areas of mathematics. I find it
truly amazing that such a useful result, appli-
cable to arbitrary graphs, can be proven.
Mansour: An interesting article A New Path
to Equal-Angle Lines23, published in Quanta
Magazine, a popular science magazine, ex-
plains some of your research works. Please tell
us more about the topics mentioned in that
article.
Sudakov: A basic result in geometry states
that the maximum number of equidistant
points in d-dimensional Euclidean space is d+
1, a configuration realized by a simplex. A
closely related question is to find the maxi-
mal number of lines through the origin such

that any pair of lines defines the same angle.
We call such lines equiangular. This natural
question appears to be very difficult. It is
easy to show that in the plane we can have
at most 3 lines. But for large dimensions we
do not know exact or even asymptotic esti-
mates. We only know that the maximum num-
ber of equiangular lines is quadratic in the di-
mension d. Intriguingly, in all constructions
with quadratically many lines, the cosine of
the common angle between the lines tends to
zero when d tends to infinity. On the other
hand, all known constructions of equiangular
lines with a fixed common angle have signifi-
cantly smaller sizes. Therefore, about 50 years
ago, Lemmens and Seidel24 asked to determine
the maximum number of equiangular lines with
a fixed common angle which does not depend
on the dimension.

Interestingly, this geometric problem can
be attacked using spectral graph theory and
Ramsey theory. Indeed, together with Balla,
Dräxler and Keevash25, we answered this ques-
tion and showed that the maximum number of
equiangular lines with a fixed angle is 2d − 2.
Moreover, this can only be achieved for the
angle with cosine 1/3. More recently, follow-
ing our work, Jiang, Tidor, Yao, Zhang, and
Zhao26 wrote a beautiful paper, where they
determine how the maximum number of lines
varies based on each given fixed angle.

Mansour: In a very recent paper Counting H-
free orientations of graphs27, co-authored with
Matija Bucić and Oliver Janzer, you provided
an answer to one of Erdős’ problems (1975),
asking to determine or estimate the maximum
possible number of H-free orientations of an
n-vertex graph for a given oriented graph H.
Would you elaborate more on this result?

Sudakov: Given a fixed directed graph H and
an undirected graph G, an orientation of G is
called H-free if it does not contain H as a di-
rected subgraph. Let D(n,H) denote the max-
imum possible number of H-free orientations
that n-vertex graph G might have. Erdős’
question was to estimate D(n,H). For an
undirected graph F , let ex(n, F ) be the max-

23See, https://www.quantamagazine.org/a-new-path-to-equal-angle-lines-20170411/.
24P. W. H. Lemmens and J. J. Seidel, Equiangular lines, J. Alg. 24:3 (1973), 494–512.
25I. Balla, F. Dräxler, P. Keevash, and B. Sudanov, Equiangular lines and spherical codes in Euclidean space, Invent. math.

211 (2018), 179–212.
26Z. Jiang, J. Tidor, Y. Yao, S. Zhang, and Y. Zhao, Equiangular lines with a fixed angle, Ann. of Math. 194 (2021), 729–743.
27M. Bucić, O. Janzer, and B. Sudakov, Counting H-free orientations of graphs, Math. Proc. Cambridge Philosophical Soc.

174(1) (2023), 79–95.
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imum number of edges in an n-vertex F -free
graph. Writing F for the underlying undi-
rected graph of H, we have a trivial lower
bound D(n,H) ≥ 2ex(n,F ) since if G is an F -
free graph, then any orientation of G is H-free.
When H is a tournament or H is a directed odd
cycle, this simple lower bound gives the correct
answer, which was shown by Alon and Yuster28

and by myself and my coauthors respectively.
Using a short and beautiful argument involving
a version of the classical Sauer–Shelah lemma
on the VC dimension of set systems, Kozma
and Moran29 proved that the number of orien-
tations of a fixed graph G without H is always
at most the number of F -free subgraphs of G,
where as usual F is the underlying graph of
H. Hence, one can obtain upper bounds for
D(n,H) from known results on the number of
n-vertex F -free graphs, which is an extensively
studied subject on its own.

The above results provide us with a good
understanding of D(n,H) whenever the under-
lying graph of H contains a cycle. This leads
to the natural question of what happens in the
remaining case, namely when H is an orien-
tation of a forest F . The previous pargarph
also suggests that D(n,H) should always be
2Θ(ex(n,F )). However, perhaps surprisingly, it
turns out that this is not the case. Together
with Matija and Oliver we managed to resolve
all remaining cases by showing that for every
oriented forest H with at least two edges, ei-
ther D(n,H) = 2Θ(n) or D(n,H) = 2Θ(n logn).
We also provide a precise characterisation for
when each case occurs.

We call an oriented graph H 1-almost an-
tidirected if there exists a bipartition V (H) =
A ∪B of the vertex set such that there are no
edges inside H[A] and H[B], every u ∈ A has
at most one incoming edge and every v ∈ B
has at most one outgoing edge. For example,
the path with the usual orientation is 1-almost
antidirected, but there are other orientations
of the path that are not. We showed that for
an oriented forest H with at least two edges,
D(n,H) = 2Θ(n) if H is 1-almost antidirected
and 2Θ(n logn) otherwise.

Mansour: If you were asked to list three or
four famous results on finite sets, what would

be on your list and why?
Sudakov: I would begin with Sperner’s theo-
rem30, which characterizes the largest possible
collection of finite sets, none of which contains
any other set within the collection. This is
likely the oldest result in extremal set theory.
It has several unexpected applications, for ex-
ample, to the theory of random discrete ma-
trices. There even exists an entire book titled
“Sperner Theory” dedicated to this theorem
and its numerous variations and extensions.

The next result I want to mention is the
celebrated Erdős–Ko–Rado theorem30, which
bounds the number of k-element subsets of an
n-element ground set, such that any two sets
share at least one element. This theorem has
been extended to various types of mathemat-
ical objects other than sets, including linear
subspaces, permutations, and strings. There
exist several proofs of this theorem, employing
important tools such as probabilistic methods
and spectral techniques.

Finally, I would also like to mention
Lovász’s theorem31, which determines the
chromatic number of Kneser graphs. These
graphs have vertices represented by the k-
element subsets of an n-element set, and two
vertices are connected if and only if the cor-
responding sets are disjoint. This theorem
stands out as one of the most elegant and sur-
prising applications of topological methods in
combinatorics. It laid the foundation for the
field of topological combinatorics.
Mansour: In your work, you have extensively
used combinatorial reasoning to address im-
portant problems. How do enumerative tech-
niques engage in your research?
Sudakov: I work on enumerative problems
from time to time. The previously mentioned
result concerning the counting of H-free orien-
tations serves as an example. However, in my
research, I don’t extensively rely on classical
enumerative techniques like bijective proofs or
generating functions. In the problems I have
studied, the typical approach involves prov-
ing that the majority of objects I intend to
count possess a very specific structure. Once
this structure is established, the counting pro-
cess becomes relatively straightforward. For

28N. Alon and R. Yuster, The number of orientations having no fixed tournament, Combinatorica 26:1 (2006), 1—16.
29L. Kozma and S. Moran, Shattering, graph orientations, and connectivity, Electron. J. Combin. 20:3 (2013), P.44.
30P. Frankl and N. Tokushige, Extremal problems for finite sets, AMS, 2010.
31J. Matoušek, Using the Borsuk-Ulam theorem, Chapter 3, Springer, 2003.
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example, one can prove that the majority of
triangle-free graphs are bipartite. Providing
a good estimate on the number of bipartite
graphs is already not a particularly challeng-
ing problem.

Mansour: In the BennyFest, a combinatorial
meeting celebrating your 50th birthday, dur-
ing your thank you speech, you said: “There
is a very wise saying that for a successful life,
you need four things: a loving family, good
friends, wise teachers, and talented students.”
How does each of them play an essential role
in our lives?

Sudakov: Let me begin with the importance
of having wise teachers. Among the many
things I learned from my teachers, two stand
out in terms of their significance. Firstly, they
helped me develop a refined taste in mathe-
matics. I learned how to recognize elegant and
beautiful proofs and statements, as well as how
to select interesting problems worthy of study.
Secondly, I gained an understanding of the cal-
iber of research I should aspire to. It’s evi-
dent that not every result one produces will
be groundbreaking, but having a clear under-
standing of the level of achievement to strive
for is crucial.

Having students has been incredibly impor-
tant to me, as I derive great satisfaction from
collaborating with them. Since early on in my
career, students have served as my primary col-
laborators, and I’ve been fortunate over the
years to work with exceptionally talented in-
dividuals. I believe that a significant portion
of the research I take pride in has been ac-
complished alongside my Ph.D. students and
postdocs.

Finally, I was fortunate to have a loving
family and good friends who provided a foun-
dation of support, care, and emotional well-
being that significantly contributed to my suc-
cess and overall happiness.

Mansour: Would you tell us about your
thought process for the proof of one of your
favorite results? How did you become inter-
ested in that problem? How long did it take
you to figure out a proof? Did you have a “eu-
reka moment”?

Sudakov: I will tell below a story that I believe
answers this and the next questions together.

Mansour: Is there a specific problem you
have been working on for many years? What
progress have you made?

Sudakov: One of my favorite problems, which
I worked on intermittently for about ten years,
was a conjecture by Erdős about Ramsey num-
bers of graphs with a fixed size. Recall that
the Ramsey number of a graph G is the small-
est positive integer n such that, in any 2-edge
coloring of the complete graph on n vertices,
contain a monochromatic copy of G. This
conjecture states that if G has m edges and
no isolated vertices, then its Ramsey number
is at most 2O(

√
m). In other words, up to a

constant factor in the exponent, the complete
graph with m edges has the maximum Ramsey
number among all m-edge graphs.

Together with Noga Alon and Michael Kriv-
elevich, we proved this result with an extra log-
arithmic factor in the exponent. However, the
general case eluded me for quite some time.
I remember being at a conference with David
Conlon where we discussed this problem again.
On the plane back home from the conference, I
started thinking about this problem once more.
Suddenly, I had indeed a “eureka moment”.
I realized that one could attempt to use an
old result of Erdős-Szemerédi to tackle this
problem. By the time the flight was over, I
had managed to improve the logarithmic factor
from logm to log logm and was quite confident
that one could push this even further. Indeed,
very soon after, using the same approach, I
was able to prove the entire conjecture. Later,
Jacob Fox suggested to me a very elegant ap-
proach for writing the proof of the result.

Mansour: In a very recent short article32

published in the Newsletter of the Euro-
pean Mathematical Society, Professor Melvyn
B. Nathanson, while elaborating on the eth-
ical aspects of the question “Who Owns
the Theorem?” concluded that “Mathematical
truths exist, and mathematicians only discover
them.” On the other side, there are opinions
that “mathematical truths are invented”. As
a third way, some people claim that it is both
invented and discovered. What do you think
about this old discussion? More precisely, do
you believe that you invent or discover your
theorems?

32M. B. Nathanson, Who Owns the Theorem? The best writing on Mathematics 2021, Princeton: Princeton University Press,
2022, 255–257.
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Sudakov: I believe that depending on the re-
sult, either perspective can be valid. For in-
stance, when one successfully proves an old
conjecture that has been discussed for a while,
it is accurate to say that a mathematical truth
has been established. Conversely, there are sit-
uations when someone uncovers a surprising
connection between previously unrelated con-
cepts or establishes a fact that nobody had sus-
pected before (as in the case of the Regularity

Lemma I previously mentioned). In such in-
stances, I would suggest that the mathematical
truth has been invented.
Mansour: Professor Sudakov, I would like to
thank you for this very interesting interview
on behalf of the journal Enumerative Combi-
natorics and Applications.
Sudakov: Thank you for this interesting dis-
cussion. I appreciate the opportunity to share
some of my thoughts.
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