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David Conlon completed his Ph.D. at the University of Cambridge
in 2009 under the supervision of Tim Gowers. After a Junior
Research Fellowship at St John’s College, Cambridge, he moved to
the University of Oxford and was promoted to Professor in 2016.
Since 2019, he has been a Professor at the California Institute of
Technology. He has received several awards, including the European
Prize in Combinatorics in 2011 and the LMS Whitehead Prize in
2019, and was among the sectional speakers on combinatorics at the
International Congress of Mathematicians in 2014. He has broad
research interests within combinatorics and related fields.

Mansour: Professor Conlon, first of all, we
would like to thank you for accepting this in-
terview. Would you tell us broadly what com-
binatorics is?

Conlon: Combinatorics has become such a
broad area that I think it means many differ-
ent things to different people, be it extremal,
probabilistic, enumerative, algebraic, or some-
thing else besides. For me, it’s probably closest
to discrete analysis, the application of analytic
techniques to the study of finite discrete struc-
tures and in that has common ground with
probability, analytic number theory, and the-
oretical computer science. But if one looks at
the kinds of problems rather than the tech-
niques, extremal combinatorics is perhaps the
best description of my area of specialisation
and is concerned with estimating the maxi-
mum or minimum size of discrete structures
satisfying certain constraints.

Mansour: What do you think about the devel-
opment of the relations between combinatorics
and the rest of mathematics?

Conlon: I feel like all of mathematics moves
forward together. Like we’re all down in dif-
ferent parts of a coal mine, chipping away
at our particular seams. And sometimes the

seams run out and lead nowhere particular, but
sometimes we find that we’ve dug all the way
through to some unexpected place we couldn’t
have foreseen. There are now results in ex-
tremal combinatorics that draw on everything
from group theory to algebraic geometry and
topology to representation theory. And in
some cases, many cases, we’re still inside our
seams waiting to see where they will lead.

Mansour: What have been some of the main
goals of your research?

Conlon: The bulk of my research to date
has been concerned with finding conditions for
the appearance of substructures inside larger
structures. But these kinds of problems come
in many different guises and interact with a
variety of different areas, so I’ve found myself
pulled towards Ramsey theory, extremal graph
theory, random structures, additive combina-
torics, discrete geometry, theoretical computer
science, and more besides.

Mansour: We would like to ask you about
your formative years. What were your early
experiences with mathematics? Did that hap-
pen under the influence of your family or some
other people?

Conlon: I grew up in rural Ireland without
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much access to outside resources besides some
small local libraries, so I didn’t really come to
mathematics in any serious way until I was 15,
when I was invited to attend maths olympiad
training. Before that, I used to spend my sum-
mers playing with my siblings and reading.

One of the first notable mathematical mem-
ories that I have was from a state exam I sat
when I was 14. We had to study Euclidean
geometry at school and sometimes the exams
had interesting questions. One of these ulti-
mately boiled down to the observation that
the area of a triangle equals the inradius times
the semiperimeter. It’s a very simple fact of
course, but I remember the thrill of realising
how it worked very clearly. Though part of
the reason I think I remember it so clearly is
because it was my performance in that exam
that resulted in my being invited to olympiad
training in the first place.

Regarding early mentors, those who were
involved in maths olympiad training in Ireland
at the time, and particularly at Maynooth Uni-
versity, had more influence than they probably
realise themselves.

Mansour: Were there specific problems that
made you first interested in combinatorics?

Conlon: One of the first results they men-
tioned at olympiad training, as an illustration
of the pigeonhole principle, was Ramsey’s the-
orem. They showed us why r(3) = 6 and told
us that r(4) = 18, but then mentioned that
the value of r(5) wasn’t known. And I re-
member my mind being blown by this. How
on earth was it possible for something so ba-
sic about seemingly small numbers to not be
known? Well, at this point, having thought
about these types of problems for years, I have
a much better idea why!

Mansour: What was the reason you chose the
University of Cambridge for your Ph.D. and
your advisor Tim Gowers?

Conlon: As with so much in life, by acci-
dent. I was an undergraduate in Trinity Col-
lege Dublin and, a year or two before I moved
to Cambridge, a friend of mine had already
moved across to do Part III, their master’s
course, and I decided to follow suit. When I
arrived in Cambridge, I actually wasn’t quite
sure what I wanted to do. I had leanings to-

wards physics as well as pure maths and was
caught somewhere in the wide abyss between
algebraic number theory and particle physics.
But by far the best lectures I attended were
those in combinatorics, given by Imre Leader
and Tim Gowers, and that’s what drew me in.
It just seemed like so much fun! And I can now
attest that it really is.

Mansour: What guides you in your research?
A general theoretical question or a specific
problem?

Conlon: I tend to start with a particular prob-
lem. I think it’s good to have an anchor. But
then I let myself wander in whatever direction
it wants to take me. I’ve seen over time that
it helps to be flexible in your approach to a
problem and even with regard to what prob-
lem you’re actually thinking about. Sometimes
I’m not even quite sure myself what problem
I’m thinking about. I’m just sort of drifting
in the space around a problem and I think my
subconscious is doing a lot of the heavy lifting.
Like with a crossword. There I find it best to
run rapidly through the clues, answering those
I can, and then, on the second or third pass,
more of the answers will pop out as my sub-
conscious processes them. I think maths can
work a little like that sometimes, though over
longer timespans.

Mansour: When you are working on a prob-
lem, do you feel that something is true even
before you have the proof?

Conlon: I try not to be too dogmatic about
whether something is true or not. At one point,
I convinced myself, for what seemed at the
time to be quite reasonable reasons, that the
Burr–Erdős conjecture, a famous question in
graph Ramsey theory, was probably false. And
then, soon after, it was proved by Choongbum
Lee1. So now I always try to leave room for
doubt. I tend to be particularly agnostic if
there’s no clear heuristic for why a conjecture
should be true. I have that, for instance, with
the Erdős–Hajnal conjecture2, another very fa-
mous problem at the interface of Ramsey the-
ory and structural graph theory. I think it
could go either way.

Mansour: What three results do you consider
the most influential in combinatorics during
the last thirty years?

1C. Lee, Ramsey numbers of degenerate graphs, Ann. of Math. 185 (2017), 791–829.
2P. Erdős and A. Hajnal, Ramsey-type theorems, Discrete Appl. Math. 25:1-2 (1989), 37–52.
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Conlon: I think, rather than individual re-
sults, I’d prefer to highlight trends in the field.
And for me, some of the most important trends
have been:

1. The push to extend results in graph theory
to hypergraphs, a push which has thrown up a
great number of interesting results and difficult
questions and led to solutions to many long-
standing problems. For example, Keevash’s
proof of the existence of designs3 is one offshoot
of the great advances that have been made in
this direction. His approach uses a clever alge-
braic variant of the absorption technique, origi-
nally developed to resolve other basic problems
such as that of finding an appropriate hyper-
graph extension of Dirac’s theorem on Hamil-
ton cycles. But this continues to be a very
active and, if you’ll forgive the pun, absorbing
area of study.

2. The attempt to extend classic results in
combinatorics to sparse settings. This is an
ongoing effort, but has led to a sequence of rev-
olutions in extremal combinatorics and related
areas, from the proof of the Green–Tao theo-
rem on progressions in primes4, which has at
its core a pseudorandom version of Szemerédi’s
theorem on arithmetic progressions in dense
sets of integers, to the development of the hy-
pergraph container method5,6, which was orig-
inally, at least in part, motivated by the study
of analogues of combinatorial theorems in ran-
dom sets, but has since proved useful far be-
yond this setting.

3. A less well-defined trend is the increased in-
teraction between extremal combinatorics and
algebra. One prominent, reasonably well-
understood, example is the work in additive
combinatorics leading on from Gowers’ proof
of Szemerédi’s theorem7, in particular the res-
olution by Green, Tao, and Ziegler of the Gow-
ers inverse conjecture8. But there are several
places in discrete geometry and extremal graph
theory where there are connections with alge-
braic geometry, finite geometry, and group the-
ory which are not yet fully understood. For in-

stance, what can we say about the structure of
planar point sets with many collinear triples?
Or C4-free graphs of near-optimal size? It may
be that questions like this are still a little too
difficult for us to answer, but we seem to be
brushing up against them repeatedly.
Mansour: What are the top three open ques-
tions on your list?
Conlon: 1. Until recently, I probably would
have said that my number one question was
the problem of giving an exponential improve-
ment to the upper bound for diagonal Ram-
sey numbers. But now that that has been
achieved by Campos, Griffiths, Morris, and Sa-
hasrabudhe9, my number one spot is held by
the problem of estimating the diagonal Ramsey
number of 3-uniform cliques. It’s perhaps the
problem that I’ve spent the most time think-

ing about. If we write K
(3)
t for the complete 3-

uniform hypergraph with t vertices, the Ram-
sey number r3(t) is the smallest n such that ev-

ery two-colouring of the edges of K
(3)
n contains

a monochromatic copy of K
(3)
t . The problem

then is to estimate r3(t). What’s known is that
there are positive constants c and c′ such that

2ct
2 ≤ r3(t) ≤ 22c

′t
.

So there’s an exponential gap and it’s a $500
problem of Erdős to show that the upper
bound is essentially correct. The funny thing
is that such a lower bound is known if we allow
four colours instead of two, so, instinctively, it
seems that the situation shouldn’t be so dif-
ferent for two colours. But we don’t know. If
anything, we are now more uncertain about
it, because we, by which I mean myself, Ja-
cob Fox and Vojta Rödl10, found examples of
hypergraphs, which we call hedgehogs, where
the two-colour Ramsey number is polynomial
in the number of vertices, but the four-colour
Ramsey number is exponential.
2. I’ve also spent far too much time think-
ing about the Euclidean Ramsey problem. The
problem is this: which finite sets X ⊂ Rd are
Ramsey, in the sense that for every natural

3P. Keevash, The existence of designs, arXiv:1401.3665.
4B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. 167 (2008), 481–547.
5J. Balogh, R. Morris, and W. Samotij, Independent sets in hypergraphs, J. Amer. Math. Soc. 28 (2015), 669–709.
6D. Saxton and A. Thomason, Hypergraph containers, Invent. Math. 201 (2015), 925–992.
7W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), 465–588.
8B. Green, T. Tao, and T. Ziegler, An inverse theorem for the Gowers Us+1[N ]-norm, Ann. of Math. 176 (2012), 1231–1372.
9M. Campos, S. Griffiths, R. Morris, and Julian Sahasrabudhe, An exponential improvement for diagonal Ramsey,

arXiv:2303.09521.
10D. Conlon, J. Fox, and V. Rödl, Hedgehogs are not colour blind, J. Comb. 8 (2017), 475–485.
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number r, if we r-colour the points of Rn for
n sufficiently large in terms of X and r, then
there is guaranteed to be a monochromatic iso-
metric copy of X? The key point is the isome-
try condition. If we allow dilates, the problem
becomes much easier and any X works. This
question was introduced in a series of papers by
a Who’s Who of extremal combinatorialists in
the 1970s, Erdős, Graham, Montgomery, Roth-
schild, Spencer, and Straus11, but it remains
wide open. Their main result was that any
such X has to be spherical, in that it has to be
contained in a sphere of some dimension, and
they also conjectured that the converse should
hold, that every spherical set is Ramsey. This
is incredibly attractive as a conjecture, but it’s
not at all clear that it’s true. In fact, it’s even
open for cyclic quadrilaterals. A tantalising
counterconjecture was made by Leader, Rus-
sell, and Walters12, that a set X is Ramsey if
and only if it is contained in a transitive set.
I’m honestly not sure which, if either, to be-
lieve.

3. The other thing that comes to mind is
Sidorenko’s conjecture13, which says that if we
fix a bipartite graph H, then the number of
copies of H in a graph with n vertices and
density p is asymptotically at least the num-
ber of copies of H in the random graph G(n, p).
There are more precise statements, but I won’t
get into them here. I’ve never quite believed
this conjecture, but every time I think about
it, I end up proving it for more cases. My first
serious result on the conjecture was with Ja-
cob Fox and Benny Sudakov14 and says that if
a bipartite graph has a vertex complete to the
opposite side, then it satisfies the conjecture.
I usually just say that the graph is Sidorenko
if this happens. Then, over about a decade,
this result was extended by myself, Jeong Han
Kim, Choongbum Lee, and Joonkyung Lee15

and also by Balász Szegedy16 to show that one
could glue graphs in various ways to produce
more graphs that were Sidorenko. I thought
that this might be everything until Joonkyung

and I17 managed to prove that every bipartite
graph has a blowup for which the conjecture
is true. What I mean by this is that if we
fix a bipartite graph H and one side A of its
bipartition, then we can take many copies of
this graph, glue them along A and the result-
ing graph is Sidorenko. Mainly because of this
result, I’m now a little more agnostic about the
conjecture. Maybe it is true after all.
Mansour: What kind of mathematics would
you like to see in the next ten-to-twenty years
as the continuation of your work?
Conlon: I’d really love to see the solutions to
any of the three problems that I mentioned
above! But, even without that, I’m quite ex-
cited about the future of extremal and proba-
bilistic combinatorics. The field has attracted
a huge number of incredibly strong, energetic
young mathematicians in recent years and it
seems that the possibilities are boundless. So
maybe we will see solutions to these problems,
but likely much more besides.
Mansour: Do you think that there are core or
mainstream areas in mathematics? Are some
topics more important than others?
Conlon: Well, yes, some things are more im-
portant and more central than others. One
can’t really deny that complex numbers are
more central than surreal ones. However, I do
think that there is interesting mathematics in
almost every direction. In the way that the
best 1% of almost any musical genre is gen-
uinely good, I think that the best mathemat-
ics in any given area or on any given theme is
bound to be interesting. One just has to have
an open mind about it.
Mansour: What do you think about the dis-
tinction between pure and applied mathemat-
ics that some people focus on? Is it mean-
ingful at all in your case? How do you see the
relationship between so-called “pure” and “ap-
plied” mathematics?
Conlon: I do think the distinction is a mean-
ingful one, though not always. Applied mathe-
maticians inevitably develop techniques of rel-

11P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems. I, J.
Combin. Theory Ser. A 14 (1973), 341–363.

12I. Leader, P. A. Russell, and M. Walters, Transitive sets in Euclidean Ramsey theory, J. Combin. Theory Ser. A 119 (2012),
382–396.

13A. F. Sidorenko, A correlation inequality for bipartite graphs, Graphs Combin. 9 (1993), 201–204.
14D. Conlon, J. Fox, and B. Sudakov, An approximate version of Sidorenko’s conjecture, Geom. Funct. Anal. 20 (2010),

1354–1366.
15D. Conlon, J. H. Kim, C. Lee, and J. Lee, Some advances on Sidorenko’s conjecture, J. Lond. Math. Soc. 98 (2018), 593–608.
16B. Szegedy, An information theoretic approach to Sidorenko’s conjecture, arXiv:1406.6738.
17D. Conlon and J. Lee, Sidorenko’s conjecture for blow-ups, Discrete Anal. (2021), Paper No. 2.
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evance to pure mathematics and vice versa. I
read once that all of Laplace’s work was moti-
vated by his study of celestial mechanics, but
ultimately led to breakthroughs across almost
all of pure and applied mathematics as it ex-
isted at the time. But I certainly see myself
as a pure mathematician and am motivated by
theoretical questions rather than practical ap-
plications. I’d be happy to have proved that a
function is linear, even if the multiplying con-
stant were astronomical.

Mansour: What advice would you give to
young people thinking about pursuing a re-
search career in mathematics?

Conlon: Like with any prolonged pursuit, you
have to be quite passionate about it. Maths
research can be quite frustrating at times, if
things aren’t going the way you might have
hoped, so you have to have a lot of persistence.
And I think having a deep love of your subject
can help with that. It can even help others.
During my own Ph.D., when I was feeling stuck
or unmotivated, I’d go see my supervisor Tim
Gowers, who was always full of enthusiasm for
mathematics, and I’d feel instantly recharged
by it.

Mansour: You have some experience with sig-
nificant mathematics competitions such as In-
ternational Mathematics Olympiads. What do
you think about the importance of such com-
petitions in inspiring young students for a re-
search career?

Conlon: Being selected for the Irish Olympiad
Team honestly changed the whole direction of
my life. Before that, I hadn’t really had much
interest in mathematics. I enjoyed it and was
good at it, but hadn’t thought about it beyond
what we did in school. To the point where I
was a little surprised when I was eventually se-
lected for the team. But I never really looked
back after that. And I’m sure many others
have had similar experiences. There is also, at
least sometimes, correlation between success at
olympiads and success in research. Combina-
torics seems to have been particularly favoured
by the attentions of many of the very best per-
formers at these competitions, from Béla Bol-
lobás and László Lovász in its early days down
to Sergey Norin, Christian Reiher, Lisa Sauer-
mann, and many more in recent years, includ-
ing my own current student Jeck Lim, though
I could easily name a dozen more.

Mansour: Would you tell us about your inter-
ests besides mathematics?

Conlon: I read very broadly, both fiction and
non-fiction, though the amount I read tends to
have a reciprocal relationship with how much
research I’m engaged in at the time. I also walk
a great deal, almost as a form of meditation. I
can both focus better and let my mind wander
more freely when walking and I think both are
important to research. I keep meaning to walk
from Caltech down to the coast, which is about
20 miles, just to get a real feel for the size of
Los Angeles under my feet, but I still haven’t
gotten around to it!

Mansour: You have given talks at numerous
conferences, workshops, and seminars. How
important do you find such activities?

Conlon: I think the process of preparing for
research talks can often help clarify your think-
ing about a problem, even after you think
you’ve finished working on it. There’s some-
thing about having to explain your work to
others that really forces you to understand it
yourself! I also quite enjoy the process of find-
ing the right way to present something. But I
think the most important aspect of these ac-
tivities is the social one, the group and net-
work building that happens at conferences and
workshops that leads to collaborations and,
often, close friendships. There’s something
about coming up through the ranks of mathe-
matics together and seeing each other at con-
ferences year after year that really cements a
friendship. As another wise friend once put it,
a fund of common experience is what friend-
ships are built on.

Mansour: You spent most of your education
and academic career at prestigious research in-
stitutes in the UK, but you moved to Caltech
in 2019. How do you compare the two research
cultures and institutions in the UK and USA?
Which gives ambitious researchers more oppor-
tunities, freedom, and resources to pursue their
interests?

Conlon: I’ve been very fortunate to spend my
entire research career at exceptional institu-
tions, Cambridge as a Ph.D. student and re-
search fellow, Oxford as a lecturer, and now
Caltech. They are each, in their own ways,
special places. The physical environment in
Cambridge and Oxford, the sheer beauty of the
towns, while also being within easy reach of
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London, make them wonderful places to live.
When I moved from Dublin to Cambridge, I
think I spent the first year just staring up at
all the amazing buildings. On the other hand,
the thing that I have found at Caltech is a
huge amount of time and space for research, in
part because the university is so small. And
the weather in California doesn’t hurt. Wak-
ing up to sunshine every day can really help
one’s motivation!
Mansour: Ramsey numbers appear in numer-
ous of your recent research articles. How-
ever, there is one article that mentions Ramsey
games18. What is a Ramsey game? How is it
connected to Ramsey numbers? Would you
please expand on this?
Conlon: The game in the paper you refer
to is a variant of what’s called the online
Ramsey game, but let me talk instead about
the original version of the game. Here we
have two players, Builder and Painter, work-
ing on a board which starts out as the empty
graph on the natural numbers. At each step,
Builder adds an edge to this graph and Painter
must immediately colour in one of two colours.
Builder’s goal is to force Painter to complete
a monochromatic copy of some fixed graph H,
while Painter wants to avoid doing so for as
long as possible. How well can they do? For-
mally, the online Ramsey number r̃(H) is de-
fined as the smallest number of moves in which
Builder can force a monochromatic copy of H.
This is an interesting function, which has at-
tracted considerable attention. For example, a
result of mine19 shows that for infinitely many
t, the online Ramsey number r̃(t) := r̃(Kt)
is exponentially smaller than the trivial upper
bound

(
r(t)

2

)
, trivial because Builder can just

draw a complete graph on r(t) vertices and
then Painter is clearly guaranteed to draw a
monochromatic Kt. On the other hand, a re-
sult by myself, Jacob Fox, Andrey Grinshpun,
and Xiaoyu He20 gives an exponential improve-

ment to the lower bound r̃(t) ≥
√

2
t

coming
from the analogous bound for ordinary Ram-

sey numbers.

Mansour: In one of your publications, Ratio-
nal exponents in extremal graph theory21, coau-
thored with Boris Bukh, you proved that for
every rational number r between 1 and 2, there
is a family of graphs Hr such that ex(n,Hr) =
Θ(nr), where ex(n,H) is the largest m for
which there exists a graph with n vertices and
m edges containing no graph from the family
H as a subgraph. Would you explain your ap-
proach to the proofs?

Conlon: The starting point was a beautiful
idea of Boris’22, who showed how to use ran-
dom varieties over finite fields to prove that for
every s there exists t such that ex(n,Ks,t) =
Θ(n2−1/s). This technique turned out to be
much more malleable than previous construc-
tion methods for extremal numbers. The first
sign of this was a result of mine23 where I
adapted his technique to show that for every s
there exists t such that ex(n, θs,t) = Θ(n1+1/s),
where θs,t is the graph consisting of t internally
disjoint paths of length s that share their two
endpoints (the cycle C2s is just θs,2). We then
decided to work together to try and prove an
old conjecture of Erdős and Simonovits say-
ing that for every r ∈ Q ∩ [1, 2] there exists a
graph Hr with ex(n,Hr) = Θ(nr). We almost
succeeded, showing that this is true if one al-
lows a finite family rather than just a single
graph.

There has been a lot of subsequent work on
trying to nail down the conjecture in its origi-
nal form, in part because Erdős offered $300 for
a solution, but we still seem some way off. One
funny thing about it is that the lower bound,
which has always been the main issue for ex-
tremal numbers of bipartite graphs, follows di-
rectly from our methods, so the problem lies
in proving the right upper bounds for the ex-
tremal numbers of certain graphs. To date, the
best results24,25 are that the conjecture holds
close to 1, by which I mean for r of the form
1 + a/b with b > a2, and close to 2, for all r of
the form 2− a/b with b > a2.

18D. Conlon, S. Das, J. Lee, and T. Mészáros, Ramsey games near the critical threshold, Random Struct. Algorithms 57 (2020),
940–957.

19D. Conlon, On-line Ramsey numbers, SIAM J. Discrete Math. 23 (2009/10), 1954–1963.
20D. Conlon, J. Fox, A. Grinshpun, and X. He, Online Ramsey numbers and the subgraph query problem, Building bridges II –

Mathematics of László Lovász, 159–194, Bolyai Soc. Math. Stud., 28, Springer, Berlin, 2019.
21B. Bukh and D. Conlon, Rational exponents in extremal graph theory, J. Eur. Math. Soc. 20 (2018), 1747–1757.
22B. Bukh, Random algebraic construction of extremal graphs, Bull. Lond. Math. Soc. 47 (2015), 939–945.
23D. Conlon, Graphs with few paths of prescribed length between any two vertices, Bull. Lond. Math. Soc. 51 (2019), 1015–1021.
24T. Jiang and Y. Qiu, Many Turán exponents via subdivisions, Combin. Probab. Comput. 32 (2023), 134–150.
25D. Conlon and O. Janzer, Rational exponents near two, Adv. Comb. (2022), Paper No. 9.
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Mansour: You won the European Prize in
Combinatorics in 2011 for your work in Ram-
sey theory and progress on Sidorenko’s conjec-
ture. Please tell us more about this work.

Conlon: In some part, I received the award
for my improvement on the bounds for diago-
nal Ramsey numbers26. The diagonal Ramsey
number r(t) is the smallest n such that every
two-colouring of the edges of Kn contains a
monochromatic Kt. It was shown by Erdős
and Szekeres27 in 1935 that r(t) ≤ c4t/

√
t

and it took more than fifty years for this to
be improved at all, first by Rödl28 and then
by Thomason29 to r(t) ≤ c4t/t. During my
Ph.D., I gave the superpolynomial improve-
ment r(t) ≤ 4t/tc log t/ log log t. I won’t say too
much about the proof, but in some ways it
was a rendering of the methods of additive
combinatorics in a graph-theoretical context.
My method was recently optimised by Ash-
win Sah30, who showed that r(t) ≤ 4t/tc log t,
which is the best one can possibly do using
this method. The approach used in the re-
cent breakthrough9, giving an exponential im-
provement, is fundamentally (and necessarily)
different.

I’ve already talked a little about my early
work on Sidorenko’s conjecture, which was also
cited in the award, but let me add that this
was, at the time, part of an exciting body of
work applying the method of dependent ran-
dom choice. This is a fairly simple, but re-
markably powerful, lemma, originating in the
work of Tim Gowers on Szemerédi’s theorem,
showing that any dense bipartite graph con-
tains an induced subgraph where all or al-
most all t-tuples on one side of the biparti-
tion have many neighbours on the other side.
It was realised somewhat gradually how useful
this lemma is, but in the late 2000s a num-
ber of people, including myself, Jacob Fox,
and Benny Sudakov, made progress on a num-
ber of problems using the technique. Jacob
and Benny ultimately wrote a very nice sur-

vey about it31, which I’d highly recommend.
But, getting back to the award, one of the ap-
plications we found was to Sidorenko’s conjec-
ture, where we showed that any bipartite graph
with one vertex complete to the other side sat-
isfies the conjecture14. This was then enough
to prove an approximate version of the con-
jecture. I should add that dependent random
choice has continued to be very important. For
example, it’s a central component in the recent
breakthrough of Kelley and Meka32 improving
the bounds for Roth’s theorem.

Mansour: You were one of the invited speak-
ers at the International Congress of Mathe-
maticians in 2014. Are there any recent break-
throughs related to the problems you discussed
at the congress?

Conlon: My ICM survey was largely con-
cerned with discussing analogues of combina-
torial theorems relative to sparse random and
pseudorandom graphs. This is an extremely
active area of research, as it has been for
over thirty years. For example, the celebrated
Green–Tao theorem4, that the primes contain
arbitrarily long arithmetic progressions, is a re-
sult in this direction. At heart, what they ac-
tually prove is that Szemerédi’s theorem33, the
statement that every dense subset of the inte-
gers contains arbitrarily long arithmetic pro-
gressions, continues to hold relative to a cer-
tain set of pseudoprimes. Then, because the
primes are themselves dense in this set of pseu-
doprimes, the primes contain the required pro-
gressions. Rather than focusing just on pseu-
doprimes, Green and Tao actually prove a gen-
eral statement saying that Szemerédi’s theo-
rem continues to hold relative to any suffi-
ciently pseudorandom set of integers. With Ja-
cob Fox and Yufei Zhao34,35, we later found a
simpler proof of this relative Szemerédi theo-
rem which required weaker pseudorandomness
assumptions. This simplification has been an
important factor in several subsequent devel-
opments.

26D. Conlon, A new upper bound for diagonal Ramsey numbers, Ann. of Math. 170 (2009), 941–960.
27P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935), 463–470.
28R. L. Graham and V. Rödl, Numbers in Ramsey theory, Surveys in combinatorics 1987 (New Cross, 1987), 111–153, London

Math. Soc. Lecture Note Ser., 123, Cambridge University Press, Cambridge, 1987.
29A. Thomason, An upper bound for some Ramsey numbers, J. Graph Theory 12 (1988), 509–517.
30A. Sah, Diagonal Ramsey via effective quasirandomness, Duke Math. J. 172 (2023), 545–567.
31J. Fox and B. Sudakov, Dependent random choice, Random Struct. Algorithms 38 (2011), 68–99.
32Z. Kelley and R. Meka, Strong bounds for 3-progressions, arXiv:2302.05537.
33E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199–245.
34D. Conlon, J. Fox, and Y. Zhao, A relative Szemerédi theorem, Geom. Funct. Anal. 25 (2015), 733–762.
35D. Conlon, J. Fox, and Y. Zhao, The Green–Tao theorem: an exposition, EMS Surv. Math. Sci. 1 (2014), 249–282.
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A more recent line of work in this direc-
tion is about proving analogues of combina-
torial theorems relative to C4-free graphs or,
since we are talking about arithmetic prob-
lems, Sidon sets. For us, a Sidon set is a subset
of {1, 2, . . . , n} with no non-trivial solution to
the equation x+ y = z + w. These are known
to have size at most O(

√
n). In a recent pa-

per with Jacob Fox, Benny Sudakov, and Yufei
Zhao36, we showed that the property of be-
ing Sidon is enough to sometimes allow us to
prove sparse analogues of combinatorial theo-
rems. For example, a variant of Szemerédi’s
theorem says that any set with no non-trivial
solution to the equation x + y + 2z = u + 3v
has at most o(n) elements. It turns out that
an analogue of this result continues to hold
relative to Sidon sets, saying that if a Sidon
set has no non-trivial solution to the equation
x+y+2z = u+3v, then it has o(

√
n) elements.

This also disproves what’s called the compact-
ness conjecture for equations, because it gives
two equations where it is easier to find solu-
tions to one of the two equations than either
of the two equations separately.

Mansour: Is graph theory a purely mathemat-
ical research interest for you or are you also
interested in its applications to other fields?
Can you give some examples of applications of
graph theory that led to a solution to a chal-
lenging question in another research area?

Conlon: Graph theory is often unreasonably
effective for solving problems in discrete ge-
ometry and additive combinatorics. The first
example that comes to mind is the elemen-
tary bound of O(n3/2) for the unit distance
problem of estimating the maximum number
of unit distances between n points in the plane.
This follows from just observing that the unit
distance graph contains no copy of K2,3 and
then using a bound for the extremal num-
ber of this graph. A more modern exam-
ple that comes to mind is the recent work on
equiangular lines by Bukh37, Balla–Dräxler–
Keevash–Sudakov38, and Jiang–Tidor–Yao–

Zhang–Zhao39, which culminated in very pre-
cise answers for the question of how many
lines there can be passing through the origin
in Rn, where any two lines have angle α be-
tween them. Ultimately, this question can be
rephrased in terms of graphs and then it boils
down to understanding the maximum multi-
plicity of the second eigenvalue of their adja-
cency matrices.

Mansour: A joint paper by you, An approxi-
mate version of Sidorenko’s conjecture14, coau-
thored with Jacob Fox and Benny Sudakov,
has some interesting connections to a broad
range of topics, such as matrix theory, Markov
chains, graph limits, and quasirandomness.
Would you tell us more about this work?

Conlon: I’ve already brushed up against this
paper a couple of times, but let me say a
little about the connections. The first re-
sults on Sidorenko’s conjecture go back to the
1960s and were matrix inequalities such as
the Blakley–Roy inequality40, which is essen-
tially equivalent to Sidorenko’s conjecture for
paths. The connection to Markov chains also
lies there. To bring in quasirandomness, let
me mention a stronger conjecture, the forc-
ing conjecture of Skokan and Thoma41, which
says that equality holds in Sidorenko’s con-
jecture if and only if the graph in which we
are counting is quasirandom. In the language
of graph limits, a quasirandom graph corre-
sponds to a graphon which is constant almost
everywhere, so, in this context, the forcing con-
jecture just says that the homomorphism den-
sity for a fixed bipartite graph H in a graphon
W of given density is minimised only by the
constant graphon. This is such a clean state-
ment that I would claim the natural language
for Sidorenko’s conjecture, or graph homomor-
phism inequalities in general, is that of graph
limits.

Mansour: In one of your most cited research
papers, Combinatorial theorems in sparse ran-
dom sets42, coauthored with W. T. Gowers,
you give a very general method for proving

36D. Conlon, J. Fox, B. Sudakov, and Y. Zhao, The regularity method for graphs with few 4-cycles, J. Lond. Math. Soc. 104
(2021), 2376–2401.

37B. Bukh, Bounds on equiangular lines and on related spherical codes, SIAM J. Discrete Math. 30 (2016), 549–554.
38I. Balla, F. Dräxler, P. Keevash, and B. Sudakov, Equiangular lines and spherical codes in Euclidean space, Invent. Math.

211 (2018), 179–212.
39Z. Jiang, J. Tidor, Y. Yao, S. Zhang, and Y. Zhao, Equiangular lines with a fixed angle, Ann. of Math. 194 (2021), 729–743.
40G. R. Blakley and P. Roy, A Hölder type inequality for symmetric matrices with nonnegative entries, Proc. Amer. Math.

Soc. 16 (1965), 1244–1245.
41J. Skokan and L. Thoma, Bipartite subgraphs and quasi-randomness, Graphs Combin. 20 (2004), 255–262.
42D. Conlon and W. T. Gowers, Combinatorial theorems in sparse random sets, Ann. of Math. 184 (2016), 367–454.
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sparse random versions of combinatorial the-
orems. Would you say a few lines about this
work?

Conlon: This is part of a long line of work,
going back to the 1980s, studying analogues
of combinatorial theorems relative to random
sets. For example, when does the binomial
random graph G(n, p) have the property that
every two-colouring of its edges contains a
monochromatic triangle? That is, when is
the structure rich enough, when does it have
enough triangles, to guarantee that there’s al-
ways a monochromatic one? The answer is
essentially when p = C/

√
n. This was origi-

nally proved by Frankl and Rödl43 and their re-
sult was later generalised from triangles to any
fixed graph H in important work of Rödl and
Ruciński44, but open problems still remain.

Our work, and concurrent independent
work by Mathias Schacht45, which used very
different techniques, gives a general method
for transferring combinatorial theorems about
fixed structures from the dense setting to the
sparse setting. Given a sparse graph, our tech-
nique gives a dense model graph with similar
properties. For example, if the sparse graph
has cpn2 edges and c′p3n3 triangles, then its
dense model has roughly cn2 edges and c′n3

triangles. In particular, if the sparse graph has
more than (1

4
+ε)pn2 edges, the dense graph has

more than (1
4

+ ε
2
)n2 edges and so, by Turán’s

theorem, must contain many triangles, at least
c′n3 for some c′. But then the sparse graph has
at least c′

2
p3n3 triangles, so we get an analogue

of Turán’s theorem inside the sparse graph.
The same thing works if triangles are replaced
by other fixed graphs, so we get a very gen-
eral, and long conjectured, version of Turán’s
theorem within random graphs.

I should remark that the more recent work
on hypergraph containers by Balogh, Morris,
and Samotij5 and, independently, Saxton and
Thomason6 also gives an approach to these
problems. I say much more about all of this,
and the strengths and weaknesses of the differ-
ent approaches, in my ICM survey paper46.

Mansour: In your work, you have extensively

used combinatorial reasoning to address im-
portant problems. How do enumerative tech-
niques engage in your research?

Conlon: I wouldn’t say that I make very
strong use of enumerative techniques. Most of
the problems that I think about have bounds
that are very far apart, so much so that we
are always applying analytic cutoff techniques
to throw away parts of our structure that are
badly behaved. For instance, there’s that sim-
ple folklore lemma saying that any graph has
a subgraph whose minimum degree is at least
half the average degree of the original graph.
Once you’ve applied that, you never need to
worry about vertices of low degree.

On the other hand, enumerative problems
figure constantly in extremal combinatorics.
Sidorenko’s conjecture is obviously an enumer-
ation problem, but there are many fundamen-
tal enumeration questions which arise natu-
rally in the area, especially when one is study-
ing random structures. For instance, if you
want to study random d-regular graphs, a first
step is to understand, at least approximately,
how many d-regular graphs there are. The
same is true of studying, for example, random
Steiner systems, on which great progress has
been made recently.

Mansour: Would you tell us about your
thought process for the proof of one of your
favorite results? How did you become inter-
ested in that problem? How long did it take
you to figure out a proof? Did you have a “eu-
reka moment”?

Conlon: I’ve occasionally had what might be
described as eureka moments, a couple while
staggering tired onto a bus after a long flight
and another while laid low by a stomach ache.
So maybe I just need to be at my lowest for any
true epiphanies! But generally I don’t believe
in them. I think you have to do a lot of hard
work first to understand a problem, to get at
the heart of the issues involved, and then some
background process starts ticking away at it.
But perhaps to spell out one of these examples,
it was about the Ramsey number of books47.
A book is a collection of copies of Kk+1 glued

43P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without K4, Graphs Combin. 2 (1986), 135–144.
44V. Rödl and A. Ruciński, Threshold functions for Ramsey properties, J. Amer. Math. Soc. 8 (1995), 917–942.
45M. Schacht, Extremal results for discrete random structures, Ann. of Math. 184 (2016), 333–365.
46D. Conlon, Combinatorial theorems relative to a random set, Proceedings of the International Congress of Mathematicians –

Seoul 2014, Vol. IV, 303–327.
47D. Conlon, The Ramsey number of books, Adv. Comb. (2019), Paper No. 3.
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along a common Kk. These are surprisingly
important objects in graph Ramsey theory. In-
deed, every upper bound on diagonal Ramsey
numbers, including the recent breakthrough9,
proceeds through first finding monochromatic
books. I had been thinking about the Ramsey
numbers of books on and off for a few months
and had figured out how to prove an old conjec-
ture of Erdős, Faudree, Rousseau, and Schelp48

on their asymptotic behaviour up to a constant
factor, but I was still trying to pin down the
correct constant. And then, sitting at home
one day in my flat in Oxford, sick enough that
I couldn’t attend the annual one-day meeting
in combinatorics and certainly not feeling like
I could do any serious thinking, the correct ap-
proach just popped into my head unbidden.

Mansour: Is there a specific problem you
have been working on for many years? What
progress have you made?

Conlon: I think I’ve already mentioned several
such problems and there are many more, but
let me mention one: what is the size-Ramsey
number r̂(H) of a graph H with n vertices
and maximum degree three? This is the min-
imum number of edges, rather than vertices,
in a graph G with the property that any two-
colouring contains a monochromatic copy ofH.
I have no idea what the answer should be. It’s
fairly easy to show that n ≤ r̂(H) ≤ c′n2, but
both bounds are quite hard to improve. Until
recently, the state of the art was that n logc n ≤
r̂(H) ≤ n5/3+o(1), with the lower bound a
clever argument of Rödl and Szemerédi49 and
the upper bound an argument of Kohayakawa,
Rödl, Schacht and Szemerédi50 showing that
the random graph G(Cn, n−1/3+o(1)) has the
property. Recently, with Rajko Nenadov and
Milos Trujić51, we improved the upper bound
to c′n8/5, which is the best a random graph can
do, and Konstantin Tikhomirov52 improved
the lower bound to nec

√
logn using a clever vari-

ation on Rödl and Szemerédi’s construction.
Even more recently, Nemanja Draganić and

Kalina Petrova53 pushed our bound down to
n3/2+o(1), using a random graph with certain
dense subgraphs laid on top. Going further
seems very difficult. Most researchers in the
area, including myself, are inclined to believe
that the answer should be at least n1+ε for
some ε > 0, but it would be much more in-
teresting if it were not.

Mansour: In a very recent short article54,
published in the Newsletter of the European
Mathematical Society, Professor Melvyn B.
Nathanson, while elaborating on the ethical
aspects of the question “Who Owns the The-
orem?”, concluded that “Mathematical truths
exist and mathematicians only discover them.”
On the other side, there are opinions that
“mathematical truths are invented”. As a
third way, some people claim that it is both
invented and discovered. What do you think
about this old discussion? More precisely, do
you believe that you invent or discover your
theorems?

Conlon: My own viewpoint on this is proba-
bly closest to the third option. I think that we
decide on which axioms to use, and they may
or may not have some objective truth, but the
only thing that really matters is their consis-
tency. And then, once we decide on our axioms
and assume their truth, the rest is discovery,
chipping our way through all of the possible
consequences of those axioms to find the inter-
esting ones. The question of whether or not the
axioms are themselves invented or discovered is
a more difficult one, but, if I don’t quite come
down on the side of saying they’re invented,
I would still say that they’re chosen. I see no
particular reason why, if we were to start anew,
we would begin with the same axioms. Should
we really follow Euclid in thinking of a line as a
‘breadthless length’? After all, it turned out to
be seriously counterproductive to assume that
there is exactly one line through every point
which is parallel to a given line.

Mansour: Ireland has made notable contribu-
48P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, The size Ramsey number, Period. Math. Hungar. 9 (1978),

145–161.
49V. Rödl and E. Szemerédi, On size Ramsey numbers of graphs with bounded degree, Combinatorica 20 (2000), 257–262.
50Y. Kohayakawa, V. Rödl, M. Schacht, and E. Szemerédi, Sparse partition universal graphs for graphs of bounded degree, Adv.

Math. 226 (2011), 5041–5065.
51D. Conlon, R. Nenadov, and M. Trujić, The size-Ramsey number of cubic graphs, Bull. Lond. Math. Soc. 54 (2022),

2135–2150.
52K. Tikhomirov, On bounded degree graphs with large size-Ramsey numbers, arXiv:2210.05818.
53N. Draganić and K. Petrova, Size-Ramsey numbers of graphs with maximum degree three, arXiv:2207.05048.
54M. B. Nathanson, Who Owns the Theorem? The best writing on Mathematics 2021, Princeton: Princeton University Press,

2022, 255–257.
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tions to literature, music, and cinema. Can
you recommend some of your favorite books,
music, or movies to our readers?
Conlon: There was a very beautiful recent film
made in Ireland, ‘The Quiet Girl’ or ‘An Caiĺın
Ciúin’ as it is in Irish. And I honestly couldn’t
recommend it highly enough. It’s mostly in
Irish, with some English, but it really captures
Ireland as it was in the 1970s and 80s. I believe
it was the first Irish film to be nominated for
Best International Film at the Oscars.

It’s not hard to think of great Irish writers,
but I’ve always been particularly partial to the
works of Oscar Wilde. I had one of those huge
Complete Works when I was a kid, 1000 pages
long, and I read the whole thing cover to cover.

Though rather different in tone to his delight-
ful comedic plays, his long poem ‘The Ballad
of Reading Gaol’ is the thing I return to most
often.

With music, I’ve recently found myself lis-
tening to a lot of Sinéad O’Connor, who died
this past summer. Her biggest hit was her
beautiful cover of ‘Nothing Compares 2 U’, but
she made a lot of wonderful, passionate music.
The world is a poorer place without her.
Mansour: Professor Conlon, I would like to
thank you for this very interesting interview
on behalf of the journal Enumerative Combi-
natorics and Applications.
Conlon: And thank you, I very much enjoyed
it!

ECA 4:2 (2024) Interview #S3I5 11


