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Micha Sharir is a distinguished mathematician and computer scien-
tist known for his groundbreaking contributions to computational
geometry and combinatorial algorithms in geometry. He completed
his Ph.D. at Tel Aviv University in 1976 under the supervision of
Aldo Lazar. He has held various positions at Tel Aviv University
since 1980 and was also a visiting research professor at the Courant
Institute, where he was the deputy head of the Robotics Lab (1985-
89). He is one of the co-founders of the Minerva Center for Ge-
ometry at Tel Aviv University. Awards he has won include a Max-
Planck research prize (1992, jointly with Emo Welzl), the Feher Prize
(1999), the Mif’al Hapais’ Landau Prize (2002), and the EMET Prize
(2007). In 1996 he was awarded an honorary doctorate degree from
the University of Utrecht (1996). He has been a member of the Israeli
Academy of Sciences and Humanities since 2018.

Mansour: Professor Sharir, first of all, we
would like to thank you for accepting this in-
terview. Would you tell us broadly what com-
binatorics is?
Sharir: This is a too broad question for me.
My research focuses on combinatorics in ge-
ometry, or combinatorial geometry as the field
is called. Here we have a problem that in-
volves a large number, n, of geometric objects,
and we are interested in some structure that
is defined on these objects. A simple example
would be n points in Rd, and the structure in
question is their convex hull, which is a con-
vex polytope whose vertices are some of the
points. The natural question is what is (an
upper and/or a lower bound on) the combi-
natorial complexity of the hull, which in this
case means the number of faces, of all dimen-
sions, that the hull has. This specific problem
has been studied, and solved, many years ago
by Richard Stanley1, and the result is given in
what is known as the Upper Bound Theorem,
a remarkable name, which does not mention
convex polytopes at all, and yet everybody in

the area knows what it means.
This is just one instance of an endless list

of problems, some of which I hope to mention
later in the interview.
Mansour: What do you think about the devel-
opment of the relations between combinatorial
geometry and the rest of mathematics?
Sharir: First, combinatorial geometry is, at
least in my opinion, a central portion of ge-
ometry at large. It has strong branches to
many other topics in geometry, such as com-
putational geometry, algebraic geometry, dif-
ferential geometry, topology, discrete geometry
(where one wishes to study discrete geomet-
ric structures without bothering about their
combinatorial complexity), and many more.
Combinatorial geometry has mainly imported
tools from these other topics, but has also in-
spired developments in some of these areas, of
which computational geometry is a prime ex-
ample, as my own research indicates. Com-
binatorial geometry is also strongly related to
probability theory, as many of the tools and
techniques that it employs are probabilistic
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in nature. Then, geometry at large branches
out to a very large range of application do-
mains, including robotics, mathematical op-
timization, statistics, geographic information
systems, computer graphics and computer vi-
sion, and whatnot, and the effect of combina-
torial geometry is felt in many of these appli-
cations.

Mansour: What have been some of the main
goals of your research?

Sharir: Bluntly, to solve problems in compu-
tational and combinatorial geometry. In retro-
spect, I would say that a major theme in my
work has been to establish deeper and broader
connections between the mathematical and al-
gorithmic sides of geometry. Many of my col-
leagues and friends have been doing the same,
quite successfully. I would say that, somehow,
having a computer science background gave us
an advantage over ‘pure’ mathematicians, and
many major results in combinatorial geometry
have indeed been obtained by computer scien-
tists.

Mansour: We would like to ask you about
your formative years. What were your early
experiences with mathematics? Did that hap-
pen under the influence of your family or some
other people?

Sharir: I started to get interested in math
in high school. At that time, Joseph Gillis,
a prominent mathematician at the Weizmann
Institute, was running a popular math quar-
terly, called Gilyonot le-Matematika (mathe-
matical pamphlets) for high school students. I
was an avid subscriber and a devoted solver of
the math problems that each issue included.
Later, the Weizmann Institute ran a science
summer camp for high school students, where
I learned to program, and later became an ap-
prentice, so to speak, of Amir Pnueli, then a
Ph.D. student at Weizmann, where my pro-
gramming experience and skills have been im-
proving. There were other people who ‘showed
me the light’, like Nira Dyn and Gideon Zwas,
each in her or his own way.

Mansour: Were there specific problems that
made you first interested in combinatorics?

Sharir: This is not the right question to ask.
I have never been a combinatorics person per
se, but when I started to get interested in ge-

ometry, it was clear that many of the basic
problems that one had to deal with were com-
binatorial in nature, so combinatorial geome-
try became an integral and major part of my
work. As an illustration, one of the first prob-
lems I studied in this area was the (first) ‘Pi-
ano Movers’ problem2 of planning a collision-
free motion of a line segment e amid polyg-
onal obstacles. If the total number of ver-
tices of the obstacles is n, a major subprob-
lem is to estimate the combinatorial complex-
ity of (a suitable discrete representation of)
the free configuration space F of the moving
segment. Since the motion of e has three de-
grees of freedom, two of translation and one
of rotation, F can be represented as a portion
of three-dimensional space, whose boundary is
formed by O(n) contact surfaces, representing
placements at which e makes contact with the
boundary of some obstacle. As is often the
case in geometric problems, the real goal is to
construct F , but before doing so one needs to
estimate the complexity of the structure one
wants to compute, as this will serve as a lower
bound to the worst-case complexity of any al-
gorithm for its construction. It took some time
to show that the maximum complexity is close
to quadratic in n. Problems of this kind kept
piling up over the years. The main subprob-
lem here is to bound the number of free critical
placements of the moving segment, at which it
makes contact with three of the obstacles.

Mansour: What was the reason you chose Tel
Aviv University for your Ph.D. and your advi-
sor Aldo Lazar?

Sharir: No sensible reason. Tel Aviv was close
to where I lived, and Aldo was the first fac-
ulty person whom I approached for an M.Sc.
supervision, having sat in some of his classes.
The M.Sc. studies then evolved into Ph.D. re-
search. The topic was connected by extreme
operators in Banach spaces, a far cry from my
current work, but it was instrumental in get-
ting a broader math education and in develop-
ing mathematical reasoning tools.

Mansour: What would guide you in your re-
search? A general theoretical question or a
specific problem?

Sharir: I would say both. There are several
major themes that I have been following, each

2J. T. Schwartz and M. Sharir, On the “Piano Movers’” problem I. The case of a two-dimensional rigid polygonal body moving
amidst polygonal barriers, Comm. Pure Applied Math. 36 (1983), 345–398.
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sprinkled with its own set of open problems,
but there have also been many ‘isolated’ in-
teresting problems that popped up and caught
my attention.
Mansour: When you are working on a prob-
lem, do you feel that something is true even
before you have the proof?
Sharir: Yes, quite often, although my life ex-
perience has taught me to be very suspicious
of these intuitive jumps, and not to trust them
until they are rigorously written down. Indeed,
quite a few of these euphoric experiences, of a
result before a proof, have crashed, but many
others have sailed triumphantly to success.
Mansour: What three results do you consider
the most influential in combinatorics during
the last thirty years?
Sharir: I would beg to skip the question. As
I said, I am not a combinatorics person, and
the field is so huge that I am sure I don’t see
the whole picture. From my corner, though, I
would mention the development of probabilis-
tic tools as having had a tremendous impact
on geometry, both in the design of efficient ran-
domized algorithms and in the analysis of com-
binatorial structures.
Mansour: What are the top three open ques-
tions in your list?
Sharir: I am not sure I know how to count to
three. There is a variety of open issues that
I would like to study. One is the topic of in-
cidences between points and other geometric
objects3 (lines, curves, surfaces), on which I
hope to say a few words later. There has been
a lot of progress in this area during the past
40 years, but there are still many open prob-
lems. Another topic is the study of substruc-
tures in arrangements of geometric objects3.
Roughly, an arrangement is the way in which
space is partitioned into connected pieces by
the given objects. Without getting into pre-
cise definitions, the substructures in question
are lower envelopes, single cells, many cells,
zones, levels, union of objects, and many re-
lated constructs. Yet another research topic
is to push further the applications of the poly-
nomial partitioning technique4, on which I also
hope to say a few words later, both combinato-
rially and algorithmically. But there are many

other equally challenging open problems that
I would like to put on my list.

Mansour: Do you think that there are core or
mainstream areas in mathematics? Are some
topics more important than others?

Sharir: This is not a question I feel comfort-
able answering. On one hand, there are clearly
fundamental areas of this kind (algebra, anal-
ysis, and so on), but even there the basic in-
frastructure that is needed for their wide use in
other branches of mathematics has long been
developed over the centuries. Areas become
more important or less so depending on the
fashion, and on new applications that emerge.
A classical example is number theory, which
has become so important with the emergence
of cryptographic techniques in recent decades.
Combinatorics is another area that has gained
prominence in the past half century, due to
a large extent to the influential work of Paul
Erdős. The short answer is that I do not really
know what the answer is.

Mansour: What do you think about the dis-
tinction between pure and applied mathemat-
ics that some people focus on? Is it mean-
ingful at all in your case? How do you see the
relationship between so-called “pure” and “ap-
plied” mathematics?

Sharir: I am not sure I have an answer for the
problem at large. In geometry, the applied side
has also made significant progress, witnessed
by the emergence of large, well-maintained ge-
ometric software systems, of which I would like
to highlight Cgal5, mnemonics for Computa-
tional Geometry Algorithms Library, which is
not far from its 30th birthday, and which was
developed and maintained by a large interna-
tional group of researchers. Two related ba-
sic issues in geometric algorithms are those of
general position and exact computation. Geo-
metric algorithms have real-valued data as in-
put and perform operations on real numbers,
but their output, most often, is discrete. In
this case, small computational errors may lead
to incorrect, and sometimes logically inconsis-
tent output. This is where theory and practice
tend to diverge. In the design of theoretical
algorithms, one tends to assume both general
position and exact computation. For example,

3J. Pach and M. Sharir, Geometric incidences, in Towards a Theory of Geometric Graphs (J. Pach, ed.), Volume 342 of
Contemporary Mathematics, AMS, 185—223.

4A. Sheffer, Polynomial Methods and Incidence Theory, Cambridge University Press, 2022.
5See https://www.cgal.org/.
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for three input points in the plane, general po-
sition would mean that they are not collinear,
and exact computation would assure us that,
even when the triple is noncollinear but very
close to being collinear, we will be able to de-
termine (exactly) whether it makes a right turn
or a left turn. On the applied side of the fence,
though, general position cannot be assumed,
and exact computation must be provided (at a
significant cost) or bypassed in a theoretically
sound manner. There have been many studies,
on both sides of the fence, on how to handle
these issues, and I am glad to say that Cgal,
like many other systems, handles both issues
very successfully.
Mansour: As an advisor, you have influenced
the careers of many students. What advice do
you have for young mathematicians, who are
just starting their academic journeys?
Sharir: Sorry, no helpful advice. I am in com-
puter science, and we see how new emerging
and quickly shifting trends affect students’ in-
terests. Today everybody wants to study AI,
deep learning, or cyber security, and it is be-
coming more difficult to find students inter-
ested in an old (or at least older) fashioned
research in geometry. Mathematics sails on
calmer waters, as a truth remains a truth, re-
gardless of trends and fashions, which of course
do exist there too. In short, one should follow
his or her nose and scientific desires, work hard,
and hope for the best.
Mansour: Together with Jack Schwartz6 you
are known as pioneers of the study of algorith-
mic motion planning in robotics. Would you
please expand on this?
Sharir: I have already mentioned our first
work on this topic. Jack Schwartz was
my postdoc mentor at New York University
(NYU). I joined his group working on high-
level programming languages (in particular
SETL, the language that he invented and de-
veloped), with very little connection, if any,
to my current research interests. One day, in
1981, when I was already back in Tel Aviv,
I visited him, and, sitting in his office, all of
a sudden, he dropped on me (and on him-
self) the problem of algorithmically planning
a collision-free motion of a line segment amid
polygonal obstacles in the plane. This was how

his and my interest in robotics was born, and
we worked out an algorithm, which has turned
into the first paper in the sequence of “On
the Piano Movers’ problem” papers. However,
the most influential paper7 in the sequence has
been number II, which presented a general al-
gorithmic approach, based on computational
real algebraic geometry, to solve any (reason-
ably defined) motion planning problem. This
was the starting point of a decade-long activ-
ity, in which Jack formed a Robotics Research
Lab at NYU, which I helped him run during
1985–1989. The lab was doing both theoretical
and applied research, and I have concentrated
mostly, albeit not exclusively, on the theoreti-
cal aspects. It was during these days that I got
drawn into computational geometry. This has
started as I was trying to implement our ini-
tial motion planning algorithm, and realized
how much more technical tools one needs to
achieve an efficient implementation.
Mansour: In computational geometry, algo-
rithms often have applications in areas such
as computer graphics, robotics, etc. Can you
highlight some real-world applications of your
research that have had a substantial impact?
Sharir: Not really. My work has been theoret-
ical in nature. Applications have always been
a major motivation for studying these prob-
lems, but my own work did not have any ob-
vious practical impact. Perhaps the closest I
can think of for a ‘positive’ example was my
work on motion planning (and other problems)
in robotics. Here too its main impact was to
show that the problems that arise in this con-
text are just too hard to solve precisely in prac-
tice. Some of these problems are PSPACE-
hard (like the coordinated motion of a large
number of simple robots), but even when they
have a polynomial-time solution, the resulting
algorithms are often too expensive to run in
practice. The practical effect of these works
was twofold. First, it introduced the right ter-
minology and framework in which such prob-
lems can be studied. Second, it ‘scared’ prac-
tical researchers into the design of efficient ap-
proximate solutions, like sampling-based tech-
niques that have made a lot of progress in the
past decade or two.
Mansour: Davenport-Schinzel sequences are a

6M. Sharir, Robot motion planning, Commun. Pure Appl. Math. 48(9) (1994), 1173–1186.
7J. T. Schwartz and M. Sharir, On the “Piano Movers’” problem: II. General techniques for computing topological properties

of real algebraic manifolds, Adv. in Appl. Math. 4 (1983), 298–351.
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recurring theme in many of your research ar-
ticles8,9. Could you explain the significance
of these sequences in computational geometry
and the broader context of your work?

Sharir: Davenport-Schinzel sequences are
strongly related, in fact equivalent, to lower
envelopes of curves in the plane, or of univari-
ate functions if you will. That is, let F =
{f1, . . . , fn} be a collection of n continuous to-
tally defined functions, each pair of which in-
tersect in at most s points, for some constant
parameter s. The lower envelope E of F is the
pointwise minimum of these functions, that is,
E(x) = mini=1,...,n fi(x). In general position,
the graph of E is a concatenation of portions
of the graphs of the fi’s, and we can associate
with E the sequence of the indices of the func-
tions fi in the left-to-right order in which they
appear on E. This is a Davenport-Schinzel se-
quence of order s on n symbols, and the con-
verse also holds. Concretely, it is a sequence S
on n symbols such that (a) no two consecutive
elements of S are equal, and (b) for no pair a, b
of distinct symbols does there exist a (not nec-
essarily contiguous) alternating subsequence of
s+ 2 symbols of the form a · · · b · · · a · · · b · · · .

Davenport and Schinzel10,11 had discovered
these sequences in the 1960s, in the context
of minima of a collection of solutions to cer-
tain differential equations, and it was Mike
Atallah12 who introduced them to computa-
tional (and combinatorial) geometry in the
early 1980s. Since then these sequences have
found a myriad of applications. Many of these
applications are in the study of the complexity
of various structures in arrangements of curves
and surfaces in two and higher dimensions,
such as single cells, zones, vertical decomposi-
tions, and more. Many other applications are
in geometric optimization, where we want to
keep track of the minimum of several quanti-

ties, where these quantities vary dynamically.
Keeping track of the closest pair among n mov-
ing points is a classical simple example.

What makes Davenport-Schinzel sequences
so interesting is that their maximum possi-
ble length, denoted as λs(n), behaves rather
strangely: it is of the form nβs(n), where
βs(n) is a near-constant extremely slowly grow-
ing function, related to the inverse Ackermann
function α(n)13,14. So it is almost linear, but
not quite linear.
Mansour: You have some experience with
mathematics competitions. Do you think that
mathematics competitions play a crucial role
in inspiring young students for a research ca-
reer?
Sharir: I think so. Although I don’t have
enough data to support this feeling, we see
quite often in CV’s of faculty members the item
that they have participated in and won prizes
in a variety of national and international math
olympiads and other competitions. How cru-
cial is this for advancing their careers I don’t
know, but it certainly provides a push in the
right direction, especially if you are a problem
solver by nature.
Mansour: In one of your papers Counting Tri-
angulations of Planar Point Sets15, coauthored
with Adam Sheffer, you studied the maximal
number of triangulations that a planar set of n
points can have, and showed that this number
is at most 30n, improving the known bound
of 43n. Would you say a few lines about this
work?
Sharir: This was Sheffer’s M.Sc. thesis, and
he deserves most of the credit for a careful and
meticulous (and fairly long) analysis that has
yielded this bound. The problem has a long
history, and the fact that the number of trian-
gulations is bounded by cn, for any constant c,
was a major open problem that took some time

8P. Agarwal and M. Sharir, Davenport-Schinzel sequences and their geometric applications, in Handbook of Computational
Geometry, J.R. Sack and J. Urrutia (Eds.), North-Holland, 2000, 1–47.

9M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press,
Cambridge-New York-Melbourne, 1995.

10H. Davenport, A combinatorial problem connected with differential equations II, Acta Arithmetica 17 (1971), 363–372.
11H. Davenport and A. Schinzel, A combinatorial problem connected with differential equations, Amer. J. Math. 87 (1965),

684–689.
12M. J. Atallah, Some dynamic computational geometry problems, Comput. Math. Appl. 11 (1985), 1171–1181.
13S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes, Combina-

torica 6 (1986), 151–177.
14P. K. Agarwal, M. Sharir, and P. Shor, Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences,

J. Combin. Theory Ser. A 52 (1989), 228–274.
15M. Sharir and A. Sheffer, Counting triangulations of planar point sets, Electron. J. Combinat. 18 (2011), P70.
16M. Ajtai, V. Chvátal, M. M. Newborn, and E. Szemerédi, Crossing-free subgraphs, Ann. Discrete Math. 12 (1982), 9–12.
17M. Sharir and E. Welzl, On the number of crossing-free matchings (cycles, and partitions), SIAM J. Comput. 36(3) (2006),

695–720.
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to settle. (The first upper bound16 for c was
1013.) Our work improved an earlier bound17

of 43n, and is still, to the best of my knowl-
edge, the best-known upper bound, although
it has been noted by Sheffer that, with addi-
tional hard work, the constant 30 is likely to
be improved. The lower bound (of point sets
with many triangulations) was Ω(n8.65), but it
has been improved this year, by Rutschmann
and Wettstein18, to Ω(n9.08). So there is still
a long way to go. This initial work with Shef-
fer has later developed into a series of works,
mostly joint with Emo Welzl19, which have
produced sharp bounds on the number of var-
ious other crossing-free structures on n points
in the plane, such as perfect matchings and
spanning cycles.

Mansour: Erdős’s distinct distances and re-
peated distances problems20,21 for the plane
kept many researchers sleepless for years. Fi-
nally, researchers came up with elegant solu-
tions for the first problem with the help of alge-
braic methods. Would you tell us about these
problems and their solutions? How about the
higher-dimensional versions?

Sharir: Although both problems appeared in
the same short article of Erdős in 1946, they
have quite different histories. Let P be a given
set of n points in the plane. The distinct dis-
tances problem seeks a lower bound on the
number of distinct distances that any such set
must have, and the repeated distances prob-
lem seeks an upper bound on the number of
times the same distance can occur in such a
set. For the number of repeated distances, the
best known upper bound is O(n4/3), due to
Spencer, Szemerédi, and Trotter22, 1984, and
the lower bound, already noticed by Erdős,
is only slighly superlinear. This problem has
been stuck for 40 years, with no progress what-
soever, and some people are still trying to crack
it. What makes the problem more intriguing
is that the upper bound O(n4/3) is tight in the
worst case if one uses other (simple) metrics

instead of the Euclidean one, so an improve-
ment of this bound, if one exists, must strongly
depend on subtle properties of the Euclidean
metric.

The distinct distances problem has a dif-
ferent story. For the vertices of a

√
n ×
√
n

integer lattice, Erdős showed that the num-
ber of distinct distances is Θ(n/

√
log n), and

conjectured that this is a lower bound for any
set of n points. Traditional methods have pro-
gressively pushed the known lower bound up-
wards, up to a bound of Ω(n0.8641). Then a ma-
jor breakthrough occurred in 2010, when Larry
Guth and Nets Hawk Katz23 have established
the nearly tight lower bound Ω(n/ log n) (the
slight gap between the upper and lower bounds
is still unresolved to this date).

Moreover, although the Guth–Katz result
was truly sensational, the real interest was in
the new machinery that they have brought to
bear, which was the polynomial partitioning
technique4. This technique is based on the
polynomial ham-sandwich theorem of Stone
and Tukey24, mixed with real algebraic geom-
etry. It provides a powerful mechanism for di-
vide and conquer of geometric problems that
involve points, algebraic curves, or surfaces in
any fixed dimension, which extends and sur-
passes earlier techniques of this sort. Con-
cretely, for a set P of n points in Rd, and for
any specified degree D, one can construct a
real d-variate polynomial f of degree at most
D, so that each of the O(Dd) connected com-
ponents of Rd \ Z(f) (where Z(f) is the zero
set of f) contains at most O(n/Dd) points of
P . Extensions of this result to the case of al-
gebraic varieties of any dimension (instead of
points) have also been established.

This technique has mushroomed in the past
15 years into a myriad of works, some involv-
ing special cases and variants of the distinct
distances problem, and others involving inci-
dences between points and curves or surfaces
in three and higher dimensions. Many other

18D. Rutschmann and M. Wettstein, Chains, Koch chains, and point sets with many triangulations, J. ACM 70 (2023), 18:1–
18:26.

19M. Sharir and E. Welzl, Random triangulations of planar point sets, Proc. 22nd Ann. ACM Symp. on Computational
Geometry (2006), 273–281.

20P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53(5) (1946), 248–250.
21J. Garibaldi, A. Iosevich, and S. Senger, The Erdős Distance Problem, Student Mathematical Library, volume 56, Providence,

RI: American Mathematical Society, 2011.
22J. Spencer, E. Szemerédi, and W. T. Trotter, Unit distances in the euclidean plane, in: Graph Theory and Combinatorics (B.

Bollobás, ed.), Academic Press, London, 1984, 293–303.
23L. Guth and N. H. Katz, On the Erdős distinct distances problem in the plane, Ann. of Math. 181:1 (2015), 155–190.
24A. H. Stone and J. W. Tukey, Generalized “sandwich” theorems, Duke Math. J. 9(2) (1942), 356–359.
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works have obtained bounds on other kinds of
combinatorial structures.

Let me end by noting that the higher-
dimensional versions of the distinct distances
problem25 are still wide open, already in three
dimensions. The set of vertices of the n1/3 ×
n1/3 × n1/3 grid determines only O(n2/3) dis-
tinct distances, and it is conjectured that this
is indeed the lower bound for any set of n
points. But no sufficiently close bound is
known.

Mansour: Could you please expand upon
some of these applications of the polynomial
partitioning technique?

Sharir: Gladly. Let me say a few words about
problems involving incidences. In fact, the
original Guth–Katz23 paper was a paper about
incidences in three dimensions. An incidence
between a point p and some geometric object
(line, plane, curve, surface) λ is another way of
saying that p ∈ λ. Obtaining sharp upper (and
more rarely lower) bounds on the maximum
possible number of incidences between a set of
m points and a set of n objects of these kinds
has been, and still is, a major research area in
combinatorial geometry, and I have been work-
ing on it for the past 30+ years3. The sub-
ject has started with the seminal 1983 paper of
Szemerédi and Trotter26, who studied the sim-
plest case of m points and n lines in the plane,
and showed that the maximum number of in-
cidences between them is Θ(m2/3n2/3 +m+n).
(This is one of the rare instances where we have
an asymptotically tight bound.) What Guth
and Katz have shown was that the number of
incidences between m points and n lines in R3

is Θ(m1/2n3/4 + m + n), which is better than
the Szemerédi-Trotter bound, provided that no
plane contains more than O(

√
n) lines. With-

out such an assumption, we could have put all
the points and lines in a common plane, and
get stuck with the Szemerédi–Trotter bound.
This improved bound was the main ingredient
that Guth and Katz23 needed to prove a con-
jecture of Elekes27, from which an ingenious
transformation, also due to Elekes, leads to the
lower bound Ω(n/ log n) on distinct distances.

Scores of additional papers (and I have been
a coauthor of quite a few of them) have been
written on incidences. It is an interesting cu-
riosity that the first influential paper on in-
cidences, beyond the Szemerédi–Trotter work,
was written in 1990 by Ken Clarkson, Herbert
Edelsbrunner, Leo Guibas, myself, and Emo
Welzl28, all computer scientists! This is just
another manifestation of the strong connection
and cross-fertilization between combinatorial
and computational geometry. In fact, our in-
terest in incidences was due, to a large extent,
to the fact that the tools for obtaining inci-
dence bounds are very similar to, and in fact
are taken from, tools for solving algorithmic
problems in geometry.

Getting back to the polynomial partitioning
technique, it provided a novel algebraic context
in which one could study incidences between
points and all kinds of curves and surfaces, in
the plane but mostly in higher dimensions. As
one reviewer put it, this has become a cottage
industry, but it has solved an amazing num-
ber of hard problems. Many of these problems
were considered, before the so-called algebraic
revolution, to be extremely difficult, unlikely
to be solved in our lifetime.

Mansour: Were incidences the main applica-
tion of the polynomial technique?

Sharir: Initially yes, incidences and variants
of the distinct distances problem, but slowly
other kinds of problems were also successfully
tackled using the new machinery. One ma-
jor development was the algorithmic aspect
of the method. Originally, the construction
of partitioning polynomials has been existen-
tial in nature, and no efficient algorithms were
known. This is still the case for partitioning
polynomials of large degree, but for constant
degree, we have by now efficient constructions,
developed more recently. With these tools
available, many new algorithmic results have
emerged, dealing mainly with semi-algebraic
range searching.

As another development, close to my heart,
I would like to mention the problem of elimi-
nating cycles in the depth relation of lines in

25B. Aronov, J. Pach, M. Sharir, and G. Tardos, Distinct distances in three and higher dimensions, Combin. Prob. Comput.
13(3) (2004), 283–293.

26E. Szemerédi and W. T. Trotter, Extremal problems in discrete geometry, Combinatorica 3 (1983), 381–392.
27G. Elekes and M. Sharir, Incidences in three dimensions and distinct distances in the plane, Proc. 26th Annu. Sympos. on

Computational Geometry, 2010, 413–422.
28 K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl, Combinatorial complexity bounds for arrangements of

curves and spheres, Discrete Comput. Geom. 5 (1990), 99–160.
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3-space. In a set L of n lines in R3 in general
position, we say that `1 ≺ `2, for `1, `2 ∈ L,
if the unique vertical line that touches both
`1 and `2 meets `1 at a point that lies below
its intersection with `2. The relation ≺ can
have cycles, and the goal is to cut the lines
of L into a small number of pieces (segments,
rays, and full lines) such that the depth re-
lation among the pieces is acyclic, a depth or-
der. Easy constructions show that in the worst
case, the number of cuts has to be Ω(n3/2), and
the prevailing conjecture was that this bound
is tight: for every set L of n lines in 3-space,
its lines can be cut into O(n3/2) pieces with
an acyclic depth order. This problem was mo-
tivated by an application in computer graph-
ics, in the so-called Painter’s algorithm, and is
more than 30 years old.

Polynomial partitioning turned out to be
the pivotal tool that enabled us finally to al-
most completely solve the problem, a few years
ago. Together with Boris Aronov29, we showed
that one can always cut a set of n lines in 3-
space into O(n3/2polylog(n)) pieces that have
an acyclic depth order.

Mansour: Would you tell us about your
thought process for the proof of one of your
favorite results? How did you become inter-
ested in that problem? How long did it take
you to figure out a proof? Did you have an
“eureka moment”?

Sharir: Perhaps my most favorite result13

is the analysis of the maximum length of
Davenport-Schinzel sequences of order 3. To
remind us, the problem is to write a sequence
S using n symbols so that no two consec-
utive elements of S are equal, and so that
S does not contain any (not necessarily con-
tiguous) subsequence of length 5 of the form
a · · · b · · · a · · · b · · · a, for any two distinct sym-
bols a and b. The question is how long can
S be. As we know now, the maximum length
of S is close to 2nα(n), where α(n) is the ex-
tremely slowly growing near-constant inverse
Ackermann function. Together with my col-
league Sergiu Hart13 (a game theory person
who got interested in this ‘puzzle’), we worked
on the problem for nearly a year, with basi-
cally no progress. We were trying to prove

a linear upper bound, which was doomed to
fail, in view of the aforementioned bound. We
managed to transform the problem to a prob-
lem involving generalized path compressions
on trees, but got stuck there too. Then a mir-
acle happened: I told my colleagues at NYU
about the problem, and when Paul Erdős vis-
ited NYU, they asked him about the problem,
and he told them that Szemerédi had obtained
the upper bound O(n log∗ n) for the maximum
length (but no matching lower bound). They
called me (there was no internet at the time),
in the middle of the night, to break the news.
Hart and I read Szemerédi’s paper, and I told
him: If Szemerédi’s bound is tight, we have
had it—all our work was in vain. On the other
hand, if the great Szemerédi did not manage
to prove linearity, the true bound is likely non-
linear. So our only hope is that the true bound
is ‘in between’ linear and Szemerédi’s bound.
The only such bound I could think of was Tar-
jan’s bound30 in his analysis of the running
time of the Union-Find algorithm, which was
Θ(nα(n)), for the cost of n operations on n in-
put elements. This “eureka moment”, if you
will, gave us a push in the right direction, and
after a few more months of hard work we man-
aged to show that our generalized path com-
pression scheme also has the same lower bound
as Tarjan’s bound. Obtaining later the upper
bound was very exciting too, but already an
anti-climax.

Mansour: Is there a specific problem you
have been working on for many years? What
progress have you made?

Sharir: There are quite a few such problems,
some of which have already been mentioned,
but one of the most ‘annoying’ ones, although
not one of the main problems on my list, is
the k-set problem, one of my favorite open
problems in combinatorial geometry. In this
problem we are given a set S of n points in
the plane, say in general position, and a pa-
rameter k < n. A k-set S ′ is a subset of S
of size k that can be separated from its com-
plement by a line (that is, S ′ is the intersec-
tion of S with a halfplane). The question is
what is the maximum number fk(n) of k-sets
that a set of n points can have. In a beau-

29B. Aronov and M. Sharir, Almost tight bounds for eliminating depth cycles in three dimensions, Discrete Comput. Geom.
59(3) (2018), 725–741.

30R. E. Tarjan, Efficiency of a good but not linear set union algorithm, J. ACM. 22(2) (1975), 215–225.
31T. Dey, Improved bounds for planar k-sets and related problems, Discrete Comput. Geom. 19 (1998), 373–382.
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tiful breakthrough result, Dey31 has obtained,
in 1998, the upper bound fk(n) = O(nk1/3),
but the best known lower bound, obtained by
Geza Tóth32 and later improved by Nivasch33,
is fk(n) = n · 2Ω(

√
logn). This gap is quite tan-

talizing (for me and others), and I have been
trying, on and off, to narrow it, mainly to im-
prove the upper bound. To this day, 25 years
later, no progress has been achieved. A lot of
progress has been made, by many researchers,
including myself, on many variants and exten-
sions of the problem, to higher dimensions, and
to dual variants of the problem, but the basic
problem is still with us.
Mansour: In a very recent short article34,
published in the Newsletter of the European
Mathematical Society, Professor Melvyn B.
Nathanson, while elaborating on the ethical
aspects of the question “Who Owns the The-
orem?”, concluded that “Mathematical truths
exist and mathematicians only discover them.”
On the other side, there are opinions that
“mathematical truths are invented”. As a
third way, some people claim that it is both

invented and discovered. What do you think
about this old discussion? More precisely, do
you believe that you invent or discover your
theorems?

Sharir: One cannot help thinking of Erdős and
his Book: According to Erdős, God has a Book
that contains all the elegant, beautiful, and
simple proofs of theorems in mathematics, but
he hides the book from us. Only rarely does
he allow some lucky person to have a glance
at the Book. This was a major reason why
Erdős did not like God, and used to refer to
him as the Supreme Fascist (SF). Interested
persons can find solace in the beautiful earthly
version “Proofs from the Book”, by Aigner and
Ziegler35. So Erdős seems to believe that the-
orems (at least those with a nice proof) are
discovered. I tend to agree with him.

Mansour: Professor Sharir, I would like to
thank you for this very interesting interview
on behalf of the journal Enumerative Combi-
natorics and Applications.

Sharir: You are most welcome.

32G. Tóth, Point sets with many k-sets, Discrete Comput. Geom. 26 (2001), 187–194.
33G. Nivasch, An improved, simple construction of many halving edges, in Surveys on Discrete and Computational Geometry:

Twenty Years later (J. E. Goodman et al., editors), Contemporary Mathematics vol. 453, pp. 299–305, AMS, 2008.
34M. B. Nathanson, Who Owns the Theorem? The best writing on Mathematics 2021, Princeton: Princeton University Press,

2022, 255–257.
35M. Aigner and G. Ziegler, Proofs from THE BOOK (4th ed.). Berlin, New York: Springer-Verlag, 2009.
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