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Abstract: A parking function of length n is a sequence π = (π1, . . . , πn) of positive integers such that if
λ1 ≤ · · · ≤ λn is the increasing rearrangement of π1, . . . , πn, then λi ≤ i for 1 ≤ i ≤ n. The index i is a fixed
point of the parking function π if πi = i. More generally, for m ≥ 1, the indices (i1, . . . , im) where the ij ’s
are all distinct constitute an m-cycle of the parking function π if πi1 = i2, πi2 = i3, . . . , πim−1 = im, πim = i1.
In this paper, we obtain some exact results on the number of fixed points and cycles of parking functions.
Our derivations are based on generalizations of Pollak’s argument and the symmetry of parking coordinates.
Extensions of our techniques are discussed.
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1. Introduction

Parking functions were introduced by Konheim and Weiss [9] in the study of the linear probes of random
hashing functions. In the classical parking function scenario, we have n parking spaces on a one-way street,
labelled 1, 2, . . . , n in consecutive order as we drive down the street. There are n cars C1, . . . , Cn. Each car
Ci has a preferred space 1 ≤ πi ≤ n. The cars drive down the street one at a time in order C1, . . . , Cn. The
car Ci drives immediately to space πi and then parks in the first available space. Thus if πi is empty, then
Ci parks there; otherwise Ci next goes to space πi + 1, πi + 2, etc., until it finds an available space to park
in (if no such space exists, then Ci leaves the street unparked). If all cars are able to park, then the sequence
π = (π1, . . . , πn) is called a parking function of length n. It is well-known and easy to see that if λ1 ≤ · · · ≤ λn
is the (weakly) increasing rearrangement of π1, . . . , πn, then π is a parking function if and only if λi ≤ i for
1 ≤ i ≤ n. Equivalently, π is a parking function if and only if

#{k : πk ≤ i} ≥ i, ∀i = 1, . . . , n.

This implies that parking functions are invariant under the action of the symmetric group Sn permuting the n
cars, that is, permuting the list of preferences π. Write PFn for the set of parking functions of length n.

The first significant result on parking functions, due to Pyke [11] in another context and then to Konheim
and Weiss [9], is that the number of parking functions of length n is equal to (n+1)n−1. A famous combinatorial
proof was given by Pollak (unpublished but recounted in [7] and [12]). It boils down to the following easily
verified statement: Let G denote the group of all n-tuples (a1, . . . , an) ∈ [n+ 1]n with componentwise addition
modulo n + 1 (where [n] is the standard shorthand for {1, . . . , n}). Let H be the subgroup generated by
(1, 1, . . . , 1). Then every coset of H contains exactly one parking function.

Nowadays the study of parking functions has found many applications in combinatorics, probability, com-
puter science, and beyond. Some recent work may be found in [1, 3, 6, 8, 18]. We refer to Yan [17] for a
comprehensive survey and to Carlson et al. [2] for the many generalizations of the classical parking function
scenario. In this paper, we explore the cycle structure of parking functions. Unlike the cycle structure of
permutations which has been well studied, not much is known about the cycle structure of parking functions,
especially in terms of exact enumerative results. A traditional direction is to standardize a parking function to a
permutation and then take the usual cycle structure. This was discussed in detail in Stanley [15] supplementary
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problems for Chapter 7, utilizing the powerful parking function symmetric function machinery. Our investiga-
tion makes an effort in another direction. See Diaconis and Hicks [4] for some open problems and Paguyo [10]
for some partial answers in this direction. For a parking function π = (π1, . . . , πn), we say i is a fixed point of
π if πi = i. More generally, for m ≥ 1, we say (i1, . . . , im) where the ij ’s are all distinct is an m-cycle of π if
πi1 = i2, πi2 = i3, . . . , πim−1

= im, πim = i1. Fixed points are simply 1-cycles and cyclic points are points that
lie on some m-cycle of π where m ≥ 1.

We are interested in deriving some exact formulas for the number of fixed points and cycles of parking
functions. Our counting formulas are based on generalizations of Pollak’s argument and the symmetry of
parking coordinates. In Section 2 we study classical parking functions, in Section 3 we study prime parking
functions, and in Section 4 we discuss extensions of our techniques to (r, k)-parking functions (see Section 4.1)
and present connections of our current investigation to other research areas through OEIS entries (see Section
4.2). While some OEIS entries are easy to explain, many entries remain mysterious, waiting to be explored
deeper in the future.

Theorems 2.1 and 2.2 come as a particular surprise:

Theorem 2.1. Let 0 ≤ k ≤ n. The number of parking functions of length n with k fixed points is given by

1

(n+ 1)2

(
n+ 1

k

)(
nn−k+1 − (−1)n−k+1

)
.

Theorem 2.2. The generating function for parking functions of length n with respect to the number of fixed
points is given by

1

(n+ 1)2
(
(q + n)n+1 − (q − 1)n+1

)
.

In contrast, there is not such a nice and clean formula for permutations, which despite their simpler structure
are characterized by the intricate generating function

∞∑
n=0

n∑
k=0

F (k, n)znqk

n!
=

exp((q − 1)z)

1− z
,

where F (k, n) is the number of permutations of [n] with k fixed points.
Theorems 3.1 and 3.2 are the corresponding prime versions for parking functions:

Theorem 3.1. Let 0 ≤ k ≤ n − 1. The number of prime parking functions of length n with k fixed points is
given by (

n− 1

k

)
(n− 2)n−k−1.

Theorem 3.2. The generating function for prime parking functions of length n with respect to the number of
fixed points is given by (q + n− 2)n−1.

Extending the notion of fixed points to cycles, we obtain more general results for cycles in classical parking
functions in Theorem 2.3 and prime parking functions in Theorem 3.3. Our exact formulas for fixed points
and cycles furthermore provide insight into the asymptotic features of the cycle structure of random parking
functions, particularly in connection with random functions and random permutations whose cycle structures
have already been quite well understood.

• A random parking function is a random function in Fn = {f : [n]→ [n]} conditioned on being in PFn.

• At the other end of the spectrum, we have random permutations, which are special cases of random
parking functions where all cars have different preferred spaces.

As stated by Diaconis and Hicks [4], in analogy with equivalence of ensembles in statistical mechanics, it
is natural to expect that for some features, the distribution of the features in the “micro-canonical ensemble”
(PFn) should be close to the features in the “canonical ensemble” (Fn). We will show in Remark 2.1 that the
expected number of m-cycles in a random parking function is asymptotically 1/m for any m. This coincides
with the corresponding asymptotic result for random functions as well as random permutations. Nevertheless,
error terms from 1/m are not the same or uniform for the three different random objects.

• For random permutations in the symmetric group Sn, the asymptotic formula 1/m for the expected
number of m-cycles is also exact. Based on this fact, Shepp and Lloyd [13] employed a generating
function approach to show that the total number of cycles in a uniformly random permutation from Sn

is asymptotically normal with mean and variance log n.
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• For random functions in Fn, the exact formula for the expected number of m-cycles is (n)m/(mn
m), where

(n)m is a falling factorial. Building upon this, Flajolet and Odlyzko [5] applied generating function tech-
niques to show that the total number of cycles in a uniformly random function from Fn is asymptotically
normal with mean and variance 1

2 log n. Note that asymptotically, random functions have about half as
many total cycles as random permutations.

• Now comes our contribution. In Theorem 2.4, we present the exact formula for the expected number of
m-cycles in random parking functions in PFn, and it should be tractable to use this result to check against
the equivalence of ensembles heuristic. Theorem 3.4 provides the corresponding prime version.

2. Classical parking functions

Our first result identifies the number of parking functions with a prescribed number of fixed points.

Theorem 2.1. Let 0 ≤ k ≤ n. The number of parking functions of length n with k fixed points is given by

1

(n+ 1)2

(
n+ 1

k

)(
nn−k+1 − (−1)n−k+1

)
.

Proof. For 1 ≤ i ≤ n, let Ai = |{π ∈ PFn : πi = i}|. Recall that the number of parking functions of
length n is |PFn | = (n + 1)n−1. For temporarily fixed 1 ≤ i1 < · · · < ik ≤ n, by De Morgan’s law and the
inclusion-exclusion principle,∣∣∣∣∣∣

⋂
i 6=ij ∀1≤j≤k

Aci

∣∣∣∣∣∣ =

∣∣∣∣∣∣PFn−
⋃

i 6=ij ∀1≤j≤k

Ai

∣∣∣∣∣∣ = |PFn | −
n−k∑
`=1

(−1)`+1
∑

1≤s1<···<s`≤n
st 6=ij ∀1≤t≤` ∀1≤j≤k

∣∣∣∣∣⋂̀
t=1

Ast

∣∣∣∣∣
=

n−k∑
`=0

(−1)`
∑

1≤s1<···<s`≤n
st 6=ij ∀1≤t≤` ∀1≤j≤k

∣∣∣∣∣⋂̀
t=1

Ast

∣∣∣∣∣ .
The number of parking functions of length n with k fixed points is thus

∑
1≤i1<···<ik≤n

∣∣∣∣∣∣
 k⋂
j=1

Aij

⋂ ⋂
i 6=ij ∀1≤j≤k

Aci

∣∣∣∣∣∣
=

∑
1≤i1<···<ik≤n

n−k∑
`=0

(−1)`
∑

1≤s1<···<s`≤n
st 6=ij ∀1≤t≤` ∀1≤j≤k

∣∣∣∣∣∣
 k⋂
j=1

Aij

⋂(⋂̀
t=1

Ast

)∣∣∣∣∣∣
=

n−k∑
`=0

(−1)`
∑

1≤i1<···<ik≤n

∑
1≤s1<···<s`≤n

st 6=ij ∀1≤t≤` ∀1≤j≤k

∣∣∣∣∣∣
 k⋂
j=1

Aij

⋂(⋂̀
t=1

Ast

)∣∣∣∣∣∣
=

n−k∑
`=0

(−1)`
∣∣∣{π ∈ PFn :

π1<···<πk,πk+1<···<πk+`

π1,...,πk+` are pairwise distinct

}∣∣∣ ,
where the last equality follows by symmetry of parking coordinates since any permutation of a parking function
is a parking function.

For ease of notation, let

Ak+` =
{
π ∈ PFn :

π1<···<πk,πk+1<···<πk+`

π1,...,πk+` are pairwise distinct

}
.

Further, let

A′k+` = {π ∈ PFn : π1, π2, . . . , πk+` are pairwise distinct} ,
B′k+` = {f : [n]→ [n+ 1] : f(1), f(2), . . . , f(k + `) are pairwise distinct} .

It is clear that |A′k+`| = k!`!|Ak+`|. To obtain a simplified expression for Ak+`, we use an extension of Pollak’s
circle argument. Add an additional parking spot n+ 1, and arrange the spots in a circle. Allow n+ 1 also as a
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preferred spot. We first select k + ` spots for the first k + ` cars, which can be done in
(
n+1
k+`

)
ways. Then for

the remaining n− k − ` cars, there are (n+ 1)n−k−` possible preference sequences. Hence

|B′k+`| = (k + `)!

(
n+ 1

k + `

)
(n+ 1)n−k−`.

Out of the n + 1 rotations for any preference sequence, only one rotation becomes a valid parking function.
Standard circular symmetry argument yields

|A′k+`| =
1

n+ 1
|B′k+`| = (k + `)!

(
n+ 1

k + `

)
(n+ 1)n−k−`−1,

and so

|Ak+`| =
(

n+ 1

k, `, n− k − `+ 1

)
(n+ 1)n−k−`−1.

So what we need to compute is

n−k∑
`=0

(−1)`
(

n+ 1

k, `, n− k − `+ 1

)
(n+ 1)n−k−`−1

=

(
n+ 1

k

) n−k∑
`=0

(−1)`
(
n− k + 1

`

)
(n+ 1)n−k−`−1

=

(
n+ 1

k

)
1

(n+ 1)2

(
n−k+1∑
`=0

(−1)`
(
n− k + 1

`

)
(n+ 1)n−k+1−` − (−1)n−k+1

)

=

(
n+ 1

k

)
((n+ 1)− 1)n−k+1 − (−1)n−k+1

(n+ 1)2
.

Theorem 2.2. The generating function for parking functions of length n with respect to the number of fixed
points is given by

1

(n+ 1)2
(
(q + n)n+1 − (q − 1)n+1

)
.

Proof. Utilizing Theorem 2.1, we perform generating function calculations.

n∑
k=0

qk
1

(n+ 1)2

(
n+ 1

k

)(
nn−k+1 − (−1)n−k+1

)
=

1

(n+ 1)2

(
n+1∑
k=0

(
n+ 1

k

)
qknn−k+1 −

n+1∑
k=0

(
n+ 1

k

)
qk(−1)n−k+1

)

=
1

(n+ 1)2
(
(q + n)n+1 − (q − 1)n+1

)
.

Extending the notion of fixed points to cycles, we have a more general result.

Theorem 2.3. Let m ≥ 1 and k ≥ 0 with km ≤ n. The number of parking functions of length n with k
m-cycles is given by

∑
`:(k+`)m≤n

(−1)`
((m− 1)!)

k+`

k!`!

(
n+ 1

m, · · · ,m
k+` m’s

, n− (k + `)m+ 1

)
(n+ 1)n−(k+`)m−1.

Proof. The proof follows similarly as in Theorem 2.1. We will not include all the technical details but instead
walk through the key ideas.

For distinct 1 ≤ i1, . . . , im ≤ n, let

A(i1,...,im) = |{π ∈ PFn : πi1 = i2, πi2 = i3, . . . , πim−1 = im, πim = i1}|.

We still apply De Morgan’s law and the inclusion-exclusion principle. In analogy with Theorem 2.1, we need to
compute

∑
`:(k+`)m≤n

(−1)` ((m− 1)!)
k+`

∑
(ij1,...,i

j
m):1≤j≤k

∑
(st1,...,s

t
m):1≤t≤`

∣∣∣∣∣∣
 k⋂
j=1

A(ij1,...,i
j
m)

⋂(⋂̀
t=1

A(st1,...,s
t
m)

)∣∣∣∣∣∣ ,
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where the middle sum is over all possible k m-cycles and the last sum is over all possible ` m-cycles, and all
the k+ ` m-cycles are pairwise non-overlapping. To avoid overcounting, we arrange the m-cycles (ij1, . . . , i

j
m) so

that for each 1 ≤ j ≤ k, ij1 < · · · < ijm and further i11 < · · · < ik1 , and similarly for each 1 ≤ t ≤ `, st1 < · · · < stm
and further s11 < · · · < s`1. This hence introduces an additional scalar factor (m − 1)! for each such m-cycle,
which accounts for the number of ways of arranging an m-cycle with distinct entries.

Next, we use symmetry of parking coordinates and apply an extension of Pollak’s circle argument. The
major difference from Theorem 2.1 is that instead of selecting k+ ` spots on a circle with n+ 1 spots, we select
k + ` m-cycles on the circle. Again in analogy with Theorem 2.1,

∑
(ij1,...,i

j
m):1≤j≤k

∑
(st1,...,s

t
m):1≤t≤`

∣∣∣∣∣∣
 k⋂
j=1

A(ij1,...,i
j
m)

⋂(⋂̀
t=1

A(st1,...,s
t
m)

)∣∣∣∣∣∣
=
∣∣∣{π ∈ PFn :

π1
1<···<π

k
1 ,π

k+1
1 <···<πk+`

1

(π1
1 ,...,π

1
m),...,(π

(k+`)
1 ,...,π(k+`)

m ) are pairwise non-overlapping

}∣∣∣
=

1

k!`!

∣∣∣{π ∈ PFn : (π1
1 , . . . , π

1
m), . . . , (π

(k+`)
1 , . . . , π(k+`)

m ) are pairwise non-overlapping
}∣∣∣

=
1

k!`!

(
n+ 1

m, · · · ,m
k+` m’s

, n− (k + `)m+ 1

)
(n+ 1)n−(k+`)m−1.

Our conclusion follows.

As is standard, we denote the probability distribution and expectation with respect to the uniform measure
on the set of classical parking functions of length n by Pn and En, respectively. The following theorem provides
an exact result on the expected number of m-cycles in a classical parking function drawn uniformly at random.

Theorem 2.4. Take 1 ≤ m ≤ n. Let π ∈ PFn be a parking function chosen uniformly at random and Cm(π)
be the number of m-cycles of π. The expected number of m-cycles is given by

En(Cm(π)) = (m− 1)!

(
n+ 1

m

)
/(n+ 1)m.

Remark 2.1. From Theorem 2.4, we may readily derive that for fixed m, as n gets large, the expected number
of m-cycles in a random parking function is asymptotically 1/m. This asymptotic result was obtained earlier by
Paguyo [10] using other techniques.

Proof. For distinct 1 ≤ i1, . . . , im ≤ n, let

A(i1,...,im) = |{π ∈ PFn : πi1 = i2, πi2 = i3, . . . , πim−1
= im, πim = i1}|.

By linearity of expectation and symmetry of parking coordinates,

En(Cm(π)) =
∑

1≤i1<···<im≤n

(m− 1)!Pn(A(i1,...,im)) =
∑

1≤i1<···<im≤n

(m− 1)!Pn(π1 = i1, . . . , πm = im)

=
(m− 1)!

(n+ 1)n−1
|{π ∈ PFn : π1 < π2 < · · · < πm}| ,

where the additional scalar factor (m − 1)! in the first equation accounts for the number of ways of arranging
an m-cycle with distinct entries i1, . . . , im.

For ease of notation, let
Am = {π ∈ PFn : π1 < π2 < · · · < πm} .

Further let
A′m = {π ∈ PFn : π1, π2, . . . , πm are pairwise distinct}

and
B′m = {f : [n]→ [n+ 1] : f(1), f(2), . . . , f(m) are pairwise distinct} .

It is clear that |A′m| = m!|Am|. To obtain a simplified expression for Am, we use an extension of Pollak’s circle
argument as in the proof of Theorem 2.1. Add an additional parking spot n + 1, and arrange the spots in a
circle. Allow n + 1 also as a preferred spot. We first select m spots for the first m cars, which can be done in(
n+1
m

)
ways. Then for the remaining n−m cars, there are (n+ 1)n−m possible preference sequences. Hence

|B′m| = m!

(
n+ 1

m

)
(n+ 1)n−m.
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Out of the n + 1 rotations for any preference sequence, only one rotation becomes a valid parking function.
Standard circular symmetry argument yields

|A′m| =
1

n+ 1
|B′m| = m!

(
n+ 1

m

)
(n+ 1)n−m−1,

and so

|Am| =
(
n+ 1

m

)
(n+ 1)n−m−1.

Our conclusion follows.

Corollary 2.1. Let π ∈ PFn be a parking function chosen uniformly at random. The expected number of cyclic
points is given by

n∑
m=1

m!

(
n+ 1

m

)
/(n+ 1)m.

Proof. As stated in the introduction, cyclic points are points that lie on some m-cycle of π where m ≥ 1. We
apply Theorem 2.4 and note that every m-cycle contains m cyclic points.

3. Prime parking functions

A classical parking function π = (π1, . . . , πn) is said to be prime if for all 1 ≤ j ≤ n − 1, at least j + 1 cars
want to park in the first j places. (Equivalently, if we remove some term of π equal to 1, then we still have a
parking function.) Denote the set of prime parking functions of length n by PPFn. Note that for prime parking
functions, it is impossible to have n fixed points or to have an n-cycle.

As with classical parking functions, we can also study prime parking functions via circular rotation. The
modified circular symmetry argument was first due to Kalikow [15, pp. 141-142], who provided the following
observation: Let G denote the group of all n-tuples (a1, . . . , an) ∈ [n−1]n with componentwise addition modulo
n − 1. Let H be the subgroup generated by (1, 1, . . . , 1). Then every coset of H contains exactly one prime
parking function. The results we present in this section are thus largely parallel to the results for classical
parking functions in our previous section.

Theorem 3.1. Let 0 ≤ k ≤ n − 1. The number of prime parking functions of length n with k fixed points is
given by (

n− 1

k

)
(n− 2)n−k−1.

Proof. We proceed as in the proof of Theorem 2.1. The only difference is that the circular symmetry argument
is now for a circle with n− 1 spots. So we have

n−k−1∑
`=0

(−1)`
(

n− 1

k, `, n− k − `− 1

)
(n− 1)n−k−`−1 =

(
n− 1

k

) n−k−1∑
`=0

(−1)`
(
n− k − 1

`

)
(n− 1)n−k−1−`

=

(
n− 1

k

)
(n− 2)n−k−1.

Theorem 3.2. The generating function for prime parking functions of length n with respect to the number of
fixed points is given by (q + n− 2)n−1.

Proof. Utilizing Theorem 3.1, we perform generating function calculations.

n−1∑
k=0

qk
(
n− 1

k

)
(n− 2)n−k−1 = (q + n− 2)n−1.

As in the case of classical parking functions, a more general theorem exists for prime parking functions when
we extend the notion of fixed points to cycles.

Theorem 3.3. Let m ≥ 1 and k ≥ 0 with km ≤ n − 1. The number of prime parking functions of length n
with k m-cycles is given by

∑
`:(k+`)m≤n−1

(−1)`
((m− 1)!)

k+`

k!`!

(
n− 1

m, · · · ,m
k+` m’s

, n− (k + `)m− 1

)
(n− 1)n−(k+`)m−1.
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Proof. We proceed as in the proof of Theorem 2.3 and note that the circular symmetry argument is now for a
circle with n− 1 spots.

As is standard, we denote the probability distribution and expectation with respect to the uniform measure
on the set of prime parking functions of length n by Pn and En, respectively. The following theorem provides
an exact result on the expected number of m-cycles in a prime parking function drawn uniformly at random.

Theorem 3.4. Take 1 ≤ m ≤ n− 1. Let π ∈ PPFn be a prime parking function chosen uniformly at random
and Cm(π) be the number of m-cycles of π. The expected number of m-cycles is given by

En(Cm(π)) = (m− 1)!

(
n− 1

m

)
/(n− 1)m.

Remark 3.1. From Theorem 3.4, we may readily derive that for fixed m, as n gets large, the expected number
of m-cycles in a random prime parking function is asymptotically 1/m.

Proof. We proceed as in the proof of Theorem 2.4. The only difference is that the circular symmetry argument
is now for a circle with n− 1 spots. So we have

En(Cm(π)) =
(m− 1)!

(n− 1)n−1

(
n− 1

m

)
(n− 1)n−m−1 = (m− 1)!

(
n− 1

m

)
/(n− 1)m.

Corollary 3.1. Let π ∈ PPFn be a prime parking function chosen uniformly at random. The expected number
of cyclic points is given by

n−1∑
m=1

m!

(
n− 1

m

)
/(n− 1)m.

Proof. As in the proof of Corollary 2.1, we apply Theorem 3.4 and note that every m-cycle contains m cyclic
points.

4. Further discussions

4.1 Extensions of our techniques

Fix some positive integers k and r. Define an (r, k)-parking function of length n [16] to be a sequence (π1, . . . , πn)
of positive integers such that if λ1 ≤ · · · ≤ λn is the (weakly) increasing rearrangement of π1, . . . , πn, then
λi ≤ k + (i− 1)r for 1 ≤ i ≤ n. Denote the set of (r, k)-parking functions of length n by PFn(r, k). There is a
similar interpretation for such (r, k)-parking functions in terms of the classical parking function scenario: One
wishes to park n cars on a street with k+ (n−1)r spots, but only n spots are still empty, which are at positions
no later than k, k + r, . . . , k + (n− 1)r.

Pollak’s original circle argument [7] may be further extended to (r, k)-parking functions. Let G denote the
group of all n-tuples (a1, . . . , an) ∈ [k + nr]n with componentwise addition modulo k + nr. Let H be the
subgroup generated by (1, 1, . . . , 1). Then every coset of H contains exactly k (r, k)-parking functions. See [14]
for more details.

The following proposition is then immediate.

Proposition 4.1. Let 0 ≤ s ≤ n. We have

|{π ∈ PFn(r, k) : π1 < π2 < · · · < πs}| = k

(
k + nr

s

)
(k + nr)n−s−1.

Proof. We apply the generalized circle argument as described above. Arrange k + nr spots in a circle. We first
select s spots for the first s cars, which can be done in

(
k+nr
s

)
ways. Then for the remaining n − s cars, there

are (k+ nr)n−s possible preference sequences. Out of the k+ nr rotations for any preference sequence, exactly
k rotations become valid (r, k)-parking functions. The rest is a standard circular symmetry argument as in the
proof of Theorems 2.1 and 2.4.

4.2 Connections to other research areas

By setting k = 0, . . . , n in Theorem 2.1, a plethora of findings emerge, particularly through OEIS entries.

• For k = 0, our sequence is included as [FindStat, St001903] with explanation and coincides with [OEIS,
A081215].
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• For k = 1, our sequence coincides with [OEIS, A081216] and is related to the dimension of the primitive
middle cohomology of Dwork hypersurfaces.

• For k = n−2, our sequence coincides with [OEIS, A006325] which is the 4-dimensional analog of centered
polygonal numbers.

• For k = n− 1, our sequence coincides with [OEIS, A000217] which counts many interesting combinatorial
objects, including the number of edges in a complete graph of order n+ 1 as well as the number of legal
ways to insert a pair of parentheses in a string of n letters.

• For k = n, our sequence is the constant sequence {1, 1, . . . , }, which is straightforward as there is only one
parking function with all points fixed, namely π = (1, 2, . . . , n).

We have not found a match on OEIS for other more general k values, but the above list already presents
many intriguing research directions, which we hope to explore in future work.

Likewise, setting k = 0, . . . , n − 1 in Theorem 3.1 reveals mysterious coincidences that motivate further
investigations.

• For k = 0, our sequence coincides with [OEIS, A007778] which is the number of ways of writing an n-cycle
as the product of n+ 1 transpositions.

• For k = 1, our sequence coincides with [OEIS, A055897] which is the total number of leaves in all labeled
rooted trees with n nodes.

• For k = 2, our sequence coincides with [OEIS, A081132] which is the sum of all the fixed points in the set
of endofunctions on {1, 2, . . . , n+ 1}.

• For k = n− 3, our sequence coincides with [OEIS, A019582] which counts many interesting combinatorial
objects, including half the number of colorings of 4 points on a line with n colors as well as the number
of ways to place two dominoes horizontally in different rows on an n× n chessboard.

• For k = n−2, our sequence coincides with [OEIS, A002378] which are commonly referred to as the oblong
numbers.

• For k = n− 1, our sequence is the constant sequence {1, 1, . . . , }, which is straightforward as there is only
one prime parking function with all points but one fixed, namely π = (1, 2, . . . , n− 1, 1).
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