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Abstract: The symmetric group Sn (and more generally, any Coxeter group) admits an associative operation
known as the Demazure product. In this paper, we first extend the Demazure product to the (infinite) set
of all biwords on {1, . . . , n}, or equivalently, the set of all n × n nonnegative integer matrices. We define this
product diagrammatically, via braid-like graphs we call kelp beds, since they generalize the seaweeds introduced
by Tiskin (2015) for Sn. Our motivation for this extended Demazure product arises from optimization theory,
in particular, the semigroup of all (n+ 1)× (n+ 1) simple nonnegative integer Monge matrices equipped with
the distance (i.e., min-plus) product. As our main result, we show that this semigroup of Monge matrices
is isomorphic to the semigroup of biwords equipped with the extended Demazure product. Exploiting this
isomorphism, we grade the Monge matrices with respect to two natural matrix norms and then exhibit bijections
between these graded components and a variety of objects from the combinatorics literature.
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1 Introduction

1.1 The Demazure product on the symmetric group

The symmetric group Sn on n letters is generated by the adjacent transpositions σ1, . . . , σn−1, subject to the
relations

1. σ2
i = id,

2. σiσj = σjσi if |i− j| > 1,

3. σi σi+1 σi = σi+1 σi σi+1.

If we replace relation 1 with the relation σ2
i = σi, then we obtain an associative product on Sn known as the

Demazure product, often denoted by the symbol ?. (The Demazure product can be defined analogously for any
Coxeter system (W,S) with the generators in S playing the role of the σi.) The underlying set of Sn equipped
with the Demazure product is often called the 0-Hecke monoid associated to Sn; see [10, Chapter 7] and [4,
Section 6]. We refer the reader to Demazure’s original treatment [7, Section 5.6]; see also the contemporaneous
work by Bernstein–Gelfand–Gelfand [3] which made use of this product. The Demazure product typically arises
in algebraic geometry in connection with Schubert varieties; see, for example, its application in obtaining the
main result of [5].

1.2 Biwords and kelp beds

In this paper, we extend the Demazure product ? from the symmetric group Sn to the (infinite) set of all
biwords with entries in {1, . . . , n}. The present subsection describes our theoretical interest in this extension,
previewing Section 2. The next subsection (Section 1.3) describes the motivation arising from Monge matrices,
which previews Section 3. Our main result in Section 4 unites these two seemingly unrelated settings.

Fix a positive integer n. A biword (also called a generalized permutation, arising commonly in classical
algebraic combinatorics) is a two-row array (

a1 a2 . . . a`
b1 b2 . . . b`

)
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of positive integers ≤ n, such that a1 ≤ · · · ≤ a`, and if ai = ai+1 then bi ≤ bi+1. The length ` can be any
nonnegative integer. Note that Sn embeds naturally by identifying each σ ∈ Sn with the biword(

1 2 . . . n
σ(1) σ(2) . . . σ(n)

)
.

We define our extended Demazure product diagrammatically, by visualizing biwords as (n, n)-bipartite multi-
graphs in the obvious way, with ` edges drawn between two rows of n vertices, as in (1) below. In particular, we
obtain the product of two biwords by stacking their graphs one above the other and fusing certain edge pairs
to obtain a third graph. (See Definition 2.3 and Example 2.4 for details.)

Our graphs generalize the seaweed braids introduced by Tiskin [16, Section 3.2] in the original case of the
Demazure product on Sn. Tiskin represents each element of Sn by a 1-regular (n, n)-bipartite graph (i.e., a
braid diagram) in the natural way, calling the edges seaweeds; to multiply two such graphs, Tiskin stacks one
over the other and then “combs” the n seaweeds so that every pair crosses at most once (see [16, Page 869]). In
the present paper, we depict biwords in an analogous graphical way; the difference, of course, is the fact that
the graphs of two biwords can contain vastly different numbers of edges, and moreover the number of possible
edges is unbounded. To reflect the scale of this generalization from permutations to biwords, we call our graphs
by the name kelp beds, since they allow an arbitrary number of seaweeds (now called kelps) to grow at each
vertex, rather than exactly one. The following example for n = 4 shows our product of two biwords, along with
their kelp beds depicted beneath them:(

2 2 3 3 3 4
1 3 3 3 3 2

)
?

(
1 1 2 3
3 4 4 1

)
=

(
2 3 4
3 4 1

)
(1)

We will take up this example again in Example 2.4, where we explain the kelp bed manipulations in detail.
Our generalization of the Demazure product, as described above, may remind the reader of Knuth’s well-

known generalization [11] of the Robinson–Schensted correspondence [15]. Indeed, the analogy is a close one,
since both generalizations extend the symmetric group Sn to the set of all biwords. Combinatorially, the analogy
can be summarized as follows, where the set of objects above each underbrace is in bijective correspondence
with the set directly below:

pairs of same-shaped
standard tableaux

of size n︸ ︷︷ ︸
Sn

(Robinson–Schensted)

:

pairs of same-shaped
semistandard tableaux

with entries ≤ n︸ ︷︷ ︸
biwords
(Knuth)

::

seaweed braids
on n vertex pairs︸ ︷︷ ︸

Sn

(Tiskin)

:

kelp beds
on n vertex pairs.︸ ︷︷ ︸

biwords
(this paper)

(2)

In the analogy displayed above, the structure that is extended on the left-hand side is the row insertion algorithm
that endows the Robinson–Schensted correspondence with its many notable properties; the structure which is
extended on the right-hand side is, as we will show in this paper, the Demazure product on Sn, and along with
it a certain connection to the min-plus matrix product.

We should point out another, quite different, extension of the Demazure product which is introduced in a
recent preprint by Pflueger [13]. In that paper, the Demazure product is extended not to biwords, but to a
certain set of integer permutations σ : Z −→ Z called almost sign-preserving permutations. In all three papers,
however — namely, Tiskin [16], Pflueger [13], and the present paper — a major motivation for studying the
Demazure product is its connection to the distance product (i.e., the min-plus product) of matrices, as explained
below.

1.3 The distance product of Monge matrices

An important role in optimization theory is played by matrices A with the Monge property :

Aij +AIJ ≤ AiJ +AIj , for all i < I and j < J.

The term was coined by Hoffman in his work [8] proving that the transportation problem can be solved
by the greedy algorithm known as the “northwest corner rule” if and only if the associated cost matrix has
this Monge property; its namesake, the 18th-century geometer Gaspard Monge, was the first to consider the
transportation problem [12] and is widely regarded as the originator of optimal transport theory [17]. We refer
the reader to the excellent survey article [6] describing many applications of Monge matrices, along with the
more recent references contained in [16] relating to graph and string algorithms; see also [14], for example.
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In many applications of Monge matrices, it is most natural to consider the distance product, denoted by �,
rather than the ordinary matrix product. The distance product is also known as the tropical or the min-plus
product; this is obtained from the ordinary matrix product by replacing “+” with “min,” and replacing “×”
with “+”. The name “distance product” refers to the fact that if A is the adjacency matrix of a weighted graph,
then the entries of A�k give the distances between vertices using paths of length at most k. While studying
faster algorithms for computing the distance product of Monge matrices, Tiskin [16] observed that (Sn, ?) is
isomorphic as a monoid to a set of certain special Monge matrices equipped with the distance product �. In
particular, Tiskin associates to each element σ ∈ Sn a “simple unit-Monge matrix” which is its image under
this isomorphism of monoids.

The main result of our paper (Theorem 4.1) removes Tiskin’s “unit” condition, thus extending his isomor-
phism to a semigroup isomorphism Φ between the set of biwords equipped with the extended Demazure product
?, and the set of simple Monge matrices of a given dimension equipped with the distance product �. (We follow
Tiskin in calling a Monge matrix simple if its first column and last row are all zeros.) In other words, stacking
and fusing two of our kelp beds (as described above) is nothing other than computing the distance product of
their associated Monge matrices (i.e., their images under Φ). We emphasize, as with our Robinson–Schensted–
Knuth comparison before, that this generalization extends a finite set (the set of n! many simple unit-Monge
matrices) to an infinite one (the set of all (n + 1) × (n + 1) simple Monge matrices with nonnegative integer
entries). In fact, one can extend the analogy (2) as follows:

. . . (2) . . . :: simple unit-Monge matrices︸ ︷︷ ︸ :

Sn

(Tiskin)

simple Monge matrices.︸ ︷︷ ︸
biwords

(this paper)

Tiskin’s motivation in [16] was computational: viewing simple unit-Monge matrices as elements of Sn allows
him to give an algorithm for their distance product with runtime O(n log n), improving on the previously known
algorithm with runtime O(n2). We have not yet determined whether our extension to all simple Monge matrices
will retain a similar computational advantage in general — we are somewhat doubtful of this — and we would
be interested in the expertise of specialists in such algorithms.

As a secondary result (and actually as an application of our isomorphism Φ), we give closed-form generating
functions for the growth series of the simple Monge matrices, with respect to two typical matrix norms; see
Theorem 3.3. Computing these series leads to some interesting bijections with other objects in the combinatorial
literature, which we collect in Propositions 3.5 and 3.7.

Remark 1.1. Throughout the paper, to keep notation compact and concrete, we will usually view biwords as
n×n matrices X with nonnegative integer entries, where the entry Xij is the number of times the column (i, j)T

appears in the biword. (Equivalently, the matrix X is the biadjacency matrix of the kelp bed of the biword.)
Hence, glancing through the paper, the reader will primarily see us working with this set of matrices, which
we denote by Nn×n. In this incarnation, the group Sn embeds as the permutation matrices. Philosophically,
however, we somewhat prefer the language of “biwords” (i.e., generalized permutations), which is why we have
emphasized that perspective in this introduction.

2 The Demazure product extended to biwords

2.1 Matrices, biwords, and kelp beds

Fix a positive integer n, and let Nn×n denote the set of all n× n matrices with entries in N := Z≥0. As usual,
if X ∈ Nn×n, then we write Xij for the (i, j) entry of X. We write [n] := {1, . . . , n}. Of course, rather than
viewing Nn×n as the set of all N-valued functions on [n]× [n], one can instead view elements of Nn×n as (finite)
multisets with elements taken from [n]× [n]. From this perspective, X is the multiset

X =
{

(i, j), . . . , (i, j)︸ ︷︷ ︸
Xij copies

: 1 ≤ i, j ≤ n
}
. (3)

With the introduction (and Remark 1.1) in mind, we point out that if one lists off the elements of X in
lexicographical order, writing each copy of (i, j) as a column vector, then one obtains a biword in the classical
sense. Since from now on we will speak of matrices in Nn×n rather than “biwords,” we take the opportunity
now to remark that there is no essential difference between them.

An element X ∈ Nn×n can also be viewed as the biadjacency matrix of a labeled (n, n)-bipartite graph,
depicted as follows. We draw two rows of vertices, with each row labeled 1, . . . , n from left to right, and we
draw Xij many edges (i, j) from vertex i in the top row to vertex j in the bottom row. We depict an edge as a
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curve whose vertical projection is always directed downward. (See the diagrams in Example 2.4.) By analogy
with the work of Tiskin [16], explained in the introduction, we call the edges kelps, and we call the graph itself
the kelp bed of the matrix X.

When viewing matrices as their kelp beds, we will often use the multiset convention (3), whereby X is the
multiset of its kelps. For example, when we write “Let x ∈ X,” we mean “Let x be some kelp (i, j) appearing
in the kelp bed of X.” Thus there are Xij many distinguishable copies of each kelp (i, j). Equivalently, x ∈ X
means that x lies in the support of the matrix X. Likewise, X ∪ {(i, j)} is always understood as a union of
multisets, or equivalently, as the matrix obtained from X by adding 1 to the entry Xij . We write #X to denote
the cardinality of X as a multiset; equivalently, #X is the number of kelps in the kelp bed of X, and also the
sum of the entries of the matrix X.

2.2 The Demazure product extended to Nn×n

Recall the Demazure product ? on the symmetric group Sn, described in Section 1.1. In this subsection, we
will extend this Demazure product to all of Nn×n by manipulating kelp beds. Roughly speaking, we will stack
two kelp beds, reduce to a certain subdiagram of that stack, and then fuse certain pairs of kelps to obtain a
third kelp bed. We begin with two important definitions (Definitions 2.1 and 2.2) regarding the notion of an
up–down pair in a stack of two kelp beds.

Definition 2.1 (Up–down pairs). Let X,Y ∈ Nn×n. An up–down pair in (X,Y ) is a pair (x, y) ∈ X × Y ,
where x = (a, b) and y = (c, d), such that b ≤ c.

Given X,Y ∈ Nn×n, viewed as kelp beds, it will be convenient to visualize (X,Y ) as the “stacked” graph
obtained by identifying the bottom vertices of X with the top vertices of Y . The term “up–down pair” for (x, y)
is due to the fact that as one scans the middle row of vertices in (X,Y ) from left to right, one sees the kelp x
(which “grows” upward) before the kelp y (which “grows” downward).

Definition 2.2 (Weight). Let X,Y ∈ Nn×n. A system of up–down pairs for (X,Y ) is a multiset {(xi, yi)} of
up–down pairs, such that

⋃
i xi ⊆ X and

⋃
i yi ⊆ Y as multisets. The weight of (X,Y ), denoted by wt(X,Y ),

is the cardinality of the largest system of up–down pairs in (X,Y ).

We are now ready for the central definition of this paper.

Definition 2.3 (Demazure product on Nn×n). Let X,Y ∈ Nn×n. The Demazure product X ? Y ∈ Nn×n is
defined via kelp beds as follows:

1. Set X0 = Y0 = ∅.
Starting at ` = 1, construct the kelp sub-beds X` ⊆ X and Y` ⊆ Y iteratively as follows:

a. Let x` ∈ X be the rightmost kelp (with respect to the top vertex, then the bottom to break ties)
whose top vertex is weakly left of all the kelps in X`−1. If no such x` exists, then the construction
terminates at `− 1.

b. Let y` ∈ Y be the leftmost kelp (with respect to bottom vertex, then top to break ties) such that
wt(X`−1 ∪ {x`}, Y`−1 ∪ {y`}) > wt(X`−1, Y`−1). If no such y` exists, then return to step a, and
replace x` by the next kelp in X to its left.

c. Set X` = X`−1 ∪ {x`} and Y` = Y`−1 ∪ {y`}. Then increment ` by 1 and return to step a.

2. Let w be the index at which the construction above terminates. Then X ? Y is obtained from (Xw, Yw)
by deleting the middle row of vertices, and fusing each pair (x`, y`) into a single kelp.

Example 2.4. We reexamine the example (1) from the introduction, where n = 4. Let X and Y be the
following matrices (shown along with their kelp beds):

X =


0 0 0 0
1 0 1 0
0 0 3 0
0 1 0 0

 =

1 2 3 4

1 2 3 4

Y =


0 0 1 1
0 0 0 1
1 0 0 0
0 0 0 0

 =

1 2 3 4

1 2 3 4

We visualize the ordered pair (X,Y ) by stacking the kelp beds as follows (where we suppress the vertex labels
to reduce clutter):

(X,Y ) =

We now compute the product X ?Y by using Definition 2.3. Following step 1, we obtain the following sub-beds
(X`, Y`), for 1 ≤ ` ≤ w = 3. For each `, we highlight the kelps x` and y` in a distinct color (blue for ` = 1, red
for ` = 2, and green for ` = 3):
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` = 1 ` = 2 ` = 3

Note that it need not be true that each individual pair (x`, y`) is an up–down pair; for instance, the red pair
(x2, y2) is not an up–down pair. Rather, step 1b dictates that each sub-bed (X`, Y`) as a whole must contain a
system of ` many up–down pairs. Notice that the initial candidates for x3, namely (3, 3) followed by (2, 3), are
ultimately replaced by (2, 1), according to step 1b. This is because if x3 were (3, 3) or (2, 3), then there would
be no kelp y3 ∈ Y which could form a third up–down pair.

Now following step 2, we take the final pair (X3, Y3) shown above, delete its middle row of vertices, and fuse
together the kelp pairs of each color to obtain the product

X ? Y =

1 2 3 4

1 2 3 4

=


0 0 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .
Of course, in order to justify the term “extended Demazure product,” we should verify that upon restricting

Nn×n to the symmetric group Sn (realized here as the permutation matrices), the product ? does indeed recover
the Demazure product on Sn. This will follow directly from our main result (see the proof of Theorem 4.1),
combined with either Tiskin’s [16, Theorem 4] or Pflueger’s [13, Equation (2)] observation regarding the special
case of Sn.

3 The distance product of simple Monge matrices

In this section, we shift perspective to optimization theory, where we consider the set M 0
n consisting of all

(n+ 1)× (n+ 1) nonnegative integer matrices which have the (simple) Monge property. In applications, it is
typical to study the distance product of Monge matrices, denoted by �, and also known as the tropical product
or the min-plus product. This product endows (M 0

n ,�) with a semigroup structure. Since it is natural in
this setting to consider both the max norm and the L1,1 norm (which are N-valued on M 0

n), we write down
generating functions (Theorem 3.3) to enumerate the matrices in M 0

n with a given norm. Our main method
in doing this is to associate each Monge matrix to a matrix in Nn×n, namely its preimage under a certain
bijection Φ (which will be the subject of our main result in Theorem 4.1). These generating functions can be
viewed as a sort of growth series for M 0

n with respect to the given matrix norms. We also give several identities
(with bijective proofs) in Propositions 3.5 and 3.7, relating these matrix norms to a variety of objects in the
combinatorial literature.

3.1 Monge matrices

An (n+ 1)× (n+ 1) nonnegative integer-valued matrix is said to have the Monge property if it belongs to the
set

Mn :=
{
A ∈ N(n+1)×(n+1) : Aij +AIJ ≤ AiJ +AIj for all i < I and j < J

}
. (4)

(The reason for the n + 1 will become apparent in (7) below.) It is well known, and straightforward to see by
induction [6, Equation (6)], that A is Monge if and only if every 2×2 block is Monge; hence the condition in (4)
may be replaced by

Aij +Ai+1,j+1 ≤ Ai,j+1 +Ai+1,j for all 1 ≤ i, j ≤ n. (5)

We define the map ∆ : Mn −→ N(n+1)×(n+1) sending each Monge matrix A to its density matrix ∆(A) given
by

∆(A)ij =

{
Aij +Ai+1,j−1 −Ai,j−1 −Ai+1,j , i 6= n+ 1 and j 6= 1,

0 otherwise.

As a toy example where n = 2, we have  8 5 6
7 3 1
13 5 1

 ∆7−→

0 1 3
0 4 2
0 0 0

 .
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Note that the nonzero entries of ∆(A) lie in its n × n upper-right block. Nearly inverse to the map ∆ is the
map Σ : N(n+1)×(n+1) −→Mn which sends a matrix B to its distribution matrix Σ(B) given by

Σ(B)ij =
∑
i′≥i,
j′≤j

Bi′j′ . (6)

That is, each entry of Σ(B) is the sum of all the entries in B lying weakly southwest of the corresponding matrix
position. As another toy example where n = 2, we have3 0 2

1 4 0
2 3 1

 Σ7−→

6 13 16
3 10 11
2 5 6

 .
3.2 The semigroup (M 0

n ,�) of simple Monge matrices

We observe that ∆ and Σ are, in fact, mutually inverse if we restrict our attention to simple Monge matrices,
defined as follows. Following Tiskin [16, Definition 3], we say that a Monge matrix is simple if its leftmost
column and bottommost row consist of all zeros; we denote the subset of simple (n + 1) × (n + 1) Monge
matrices by

M 0
n :=

{
A ∈Mn : Aij = 0 if i = n+ 1 or j = 1

}
. (7)

In retrospect, this explains the subscript n (rather than n+1) which we used to decorate the notation in both (4)
and (7): a simple (n + 1) × (n + 1) Monge matrix may as well be viewed as an n × n matrix which is padded
with zeros along its lower-left boundary. To make this precise, define the embedding

L : Nn×n −→ N(n+1)×(n+1),

X 7−→


0
... X
0
0 0 · · · 0

 (8)

by padding an n × n matrix with zeros along its lower-left boundary (in the shape of an L). We then have
the four bijections in the following diagram, where (upon restriction to the (co)domains below) Σ and ∆ are
mutually inverse:

Nn×n

{
A ∈ N(n+1)×(n+1) : A =


0
... ∗
0
0 0 · · · 0


}

M 0
n

L Σ

∆

Φ := Σ ◦ L

(9)

The bijection Φ := Σ◦L will be the subject of our main result (Theorem 4.1), and so we record below an explicit
formula to obtain the simple Monge matrix Φ(X) from X.

Lemma 3.1. Let X ∈ Nn×n, and let Φ : Nn×n −→M 0
n be the bijection depicted in (9). We have

Φ(X) =

n∑
i,j=1

Xi,−j

[
0 1i×j
0 0

]
︸ ︷︷ ︸
(n+1)×(n+1)

,

where the index −j denotes the jth column from the right, and 1i×j is the i × j matrix in which every entry
is 1.

Proof. Let Eij denote the (n+ 1)× (n+ 1) matrix with 1 in the (i, j) position and zeros elsewhere. We have

Φ(X) =

n+1∑
i,j=1

Φ(X)ijEij

=

n+1∑
i,j=1

Σ (L(X))ij Eij since Φ := Σ ◦ L in (9)
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=

n+1∑
i,j=1

( ∑
i′≥i,
j′≤j

L(X)i′j′

)
Eij by (6)

=

n+1∑
i,j=1

( ∑
i′≥i,
j′≥j

L(X)i′,−j′

)
Ei,−j reversing the column index

=

n+1∑
i′,j′=1

L(X)i′,−j′

( ∑
i≤i′,
j≤j′

Ei,−j

)
interchanging the sums

=

n∑
i′,j′=1

Xi′,−j′

[
0 1i′×j′

0 0

]
,

where the last line follows from observing in (8) that L(X)i′,−j′ = Xi′,−j′ if 1 ≤ i′, j′ ≤ n, and 0 otherwise.

Remark 3.2. The simple Monge matrices are fundamental in the following sense. (The discussion here is
just a more detailed treatment following from well-known properties of Monge matrices; see [6, Lemma 2.1]
or [2, Lemma 1], for example.) Every Monge matrix A ∈Mn can be decomposed uniquely in the form

A = Σ
(
∆(A)

)︸ ︷︷ ︸
simple matrix

+ S(A)︸ ︷︷ ︸
sum matrix

,

where S(A) ∈ Z(n+1)×(n+1) is determined by the entries along the lower-left boundary of A:

S(A)ij = Ai,1 +An+1,j −An+1,1.

The matrix S(A) is called a sum matrix (following [6, Page 100]) because it is the addition table of the two
vectors (A1,1, . . . , An+1,1) ∈ Nn+1 and (0, An+1,2 − An+1,1, . . . , An+1,n+1 − An+1,1) ∈ Zn+1. In this sense, the
component S(A) contains relatively little information about a Monge matrix A. Indeed, it is the simple part of
A that contains most of the information, and which approximates A up to some combination of constant rows
and constant columns.

In applications of Monge matrices, it is common to study the distance product. This is just the standard
matrix product, where ordinary addition and multiplication are replaced by the operations

x⊕ y := min{x, y},
x⊗ y := x+ y,

respectively. We will use the symbol � for the distance product, defined by

(A�B)ij =
⊕
k

Aik ⊗Bkj = min
k
{Aik +Bkj}. (10)

It is well known that Mn is closed under the distance product �, which is associative; see, for example, [2,
Section 4], where the authors use the term “convex matrix” rather than “Monge matrix.” Therefore (Mn,�) is
a semigroup (but not a monoid, since the identity matrix would require 0’s on the diagonal and an “∞” element
everywhere else). Since 0� 0 = 0 (where 0 denotes the zero matrix in appropriate dimensions), it is easy to see
(by block matrix multiplication) that the subset M 0

n of simple Monge matrices is also closed under �, and so
(M 0

n ,�) also forms a semigroup.

3.3 Norm growth series of M 0
n

In applications of the distance product, it is natural to equip matrices in M 0
n with the max norm or the L1,1

norm, defined as follows:

‖A‖max := max
i,j

Aij ,

‖A‖1,1 :=
∑
i,j

Aij .

(Note that since each A ∈ M 0
n has nonnegative entries, there is no need for absolute values in the definitions

above.) It is straightforward to verify from the definition (10) that both norms above are submultiplicative with
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respect to the distance product, meaning that ‖A�B‖ ≤ ‖A‖ ⊗ ‖B‖. Since ⊗ here denotes ordinary addition,
this means that both the max norm and the L1,1 norm induce a filtration F 0 ⊆ F 1 ⊆ F 2 ⊆ · · · on M 0

n , in
the sense that

F k �F ` ⊆ F k+`,

where
F k = F k

• (n) :=
{
A ∈M 0

n : ‖A‖• ≤ k
}
, (11)

with the symbol • as a placeholder for either “max” or “1, 1.”
In order to understand the growth of these filtered components F k, it suffices to determine the number of

matrices whose norm equals a given integer, since then we can recover the growth of the F k by taking partial
sums. Hence for each k ∈ N we define

G k
• (n) :=

{
A ∈M 0

n : ‖A‖• = k
}
, (12)

where again the symbol • is a placeholder for either “max” or “1, 1.” (The notation G is meant to evoke the
associated graded ring of a filtration.) The cardinalities of the components G k

• (n) can be encoded in a formal
power series in the indeterminate q, where the coefficient of qk equals |G k

• (n)|. We will call this the growth
series of M 0

n with respect to the norm ‖ ‖•, as written out below in two equivalent forms:

∞∑
k=0

∣∣G k
• (n)

∣∣qk =
∑

A∈M0
n

q‖A‖• .

In the following theorem we give a closed-form generating function for the growth series of M 0
n with respect to

each of the two norms mentioned above.

Theorem 3.3. Let G k
• (n) be as defined in (12). We have the following growth series of M 0

n :

1.

∞∑
k=0

∣∣∣G k
max(n)

∣∣∣qk =
1

(1− q)n2 .

2.

∞∑
k=0

∣∣∣G k
1,1(n)

∣∣∣qk =

n∏
i,j=1

1

1− qij
.

Proof. In both cases, we will exploit the bijection Φ : Nn×n −→ M 0
n in (9), in order to pull Monge matrices

back to their preimages in Nn×n, where calculations are more straightforward.

1. Let X ∈ Nn×n. By (6) and (9), the maximum entry in Φ(X) is the upper-right entry, which is the sum of
all entries in X. Hence ‖Φ(X)‖max =

∑
i,j Xij . We therefore have

∞∑
k=0

∣∣∣G k
max(n)

∣∣∣qk =
∑

A∈M0
n

q‖A‖max

=
∑

X∈Nn×n

q‖Φ(X)‖max by (9)

=
∑

X∈Nn×n

q
∑

i,j Xij

=
∑

X∈Nn×n

 n∏
i,j=1

qXij


=

n∏
i,j=1

(∑
`∈N

q`

)

=

n∏
i,j=1

1

1− q

=
1

(1− q)n2 .

2. We have
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∞∑
k=0

∣∣∣G k
1,1(n)

∣∣∣qk =
∑

A∈M0
n

q‖A‖1,1

=
∑

X∈Nn×n

q‖Φ(X)‖1,1 by (9)

=
∑

X∈Nn×n

q

∥∥∥∑i,j Xi,−j

[
0 1i×j
0 0

]∥∥∥
1,1 by Lemma 3.1

=
∑

X∈Nn×n

q
∑

i,j ij·Xi,−j since
∥∥∥[ 0 1i×j

0 0

]∥∥∥
1,1

= ij

=
∑

X∈Nn×n

(
n∏

i,j=1

(qij)Xi,−j

)

=

n∏
i,j=1

(∑
`∈N

(qij)`

)

=

n∏
i,j=1

1

1− qij
.

Corollary 3.4. Let F k
• (n) be as defined in (11). We have the following generating functions:

1.

∞∑
k=0

∣∣∣F k
max(n)

∣∣∣qk =
1

(1− q)n2+1
.

2.

∞∑
k=0

∣∣∣F k
1,1(n)

∣∣∣qk =
1

1− q

n∏
i,j=1

1

1− qij
.

Proof. By the definition (11), it is clear that |F k
• (n)| =

∑k
i=0 |G i

•(n)|. Hence the generating functions in this
corollary are obtained by taking the partial sums of the coefficients in Theorem 3.3. It is a standard fact that
the generating function for partial sums is obtained by multiplying the original generating function by 1

1−q .

3.4 Combinatorial interpretations

The generating functions in part 1 of Theorem 3.3 and Corollary 3.4 make it immediately clear that the max
norm cardinalities in M 0

n , along with their partial sums, are given by binomial coefficients:∣∣∣G k
max(n)

∣∣∣ =

(
n2 + k − 1

k

)
,

∣∣∣F k
max(n)

∣∣∣ =

(
n2 + k

k

)
.

Moreover, there is an elegant way to interpret the elements of F k
max(n) in terms of (n, n, k)-boxed plane par-

titions. Recall that in general, an (a, b, c)-boxed plane partition is a Young tableau with at most a rows and
at most b columns, where the entries are taken from the set {1, . . . , c} and weakly decrease along rows and
columns. Let

P(a, b, c) :=
{

(a, b, c)-boxed plane partitions
}
.

A plane partition can also be depicted as a three-dimensional arrangement of unit cubes, where the entry in
each box of the plane partition is the number of cubes stacked on that box; via this depiction, an (a, b, c)-boxed
plane partition is one that fits inside a rectangular prism of length a, width b, and height c. The example
below shows a plane partition in its two guises described above, namely the two-dimensional (tableau) and
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three-dimensional (unit cube) depiction:

8 5 2 1 1

5 3 1

3 2

1 1

south east

(13)

In the three-dimensional depiction, each row of a plane partition becomes a wall running from west to east
(and weakly decreasing in height as it does). To an observer standing to the south, each wall partially blocks
the wall behind it (i.e., the wall immediately to its north, i.e., the row directly above it in the two-dimensional
diagram). For each wall, we say that its southern face is the collection of squares that are visible to this observer,
i.e., the squares that are not blocked by the wall in front of it. In (13), we have shaded each of the four southern
faces in a different color. We say the southern face of a wall is weakly decreasing if the heights of its columns
form a weakly decreasing sequence from west to east. In (13), all four southern faces are weakly decreasing; in
particular, the four sequences of heights are

(3, 2, 1, 1, 1), (2, 1, 1), (2, 1), (1, 1).

Proposition 3.5. Let F k
max(n) be as defined in (11). The number of matrices in F k

max(n), namely
(
n2+k

k

)
,

equals the number of (n, n, k)-boxed plane partitions whose southern faces are all weakly decreasing.

Proof. We give a bijective proof. Note that each plane partition π ∈ P(n, n, k) can be viewed as a matrix in
Nn×n with entries in {0, . . . , k}, where the entries of π are the matrix entries in the corresponding positions
(with zeros elsewhere). Let ψ : P(n, n, k) −→ N(n+1)×(n+1) be the injective map that takes a plane partition,
reflects it horizontally, and then pads it with zeros along the lower-left boundary (via the map L in (8)). Then
we have ψ(P(n, n, k)) ⊇ F k

max(n), since by Lemma 3.1 every simple Monge matrix is the horizontal reflection
of some plane partition.

It remains to show that ψ(π) ∈M 0
n if and only if the southern faces of π are all weakly decreasing. Let πij

denote the entry in the jth box of the ith row of π (in its standard depiction as a two-dimensional tableau),
where πij = 0 if π does not contain a box in position (i, j). The columns in the southern face of the ith wall in
π are simply the differences πij − πi+1,j , for each 1 ≤ j ≤ n. Therefore, the southern faces of π are all weakly
decreasing if and only if, for all 1 ≤ i, j ≤ n, we have

πij − πi+1,j ≥ πi,j+1 − πi+1,j+1.

Due to horizontal reflection, this condition is equivalent to the following condition on the matrix A := ψ(π):

Ai,j+1 −Ai+1,j+1 ≥ Aij −Ai+1,j ,

which in turn is equivalent to
Aij +Ai+1,j+1 ≤ Ai,j+1 +Ai+1,j ,

which by (5) is equivalent to A having the Monge property.

Example 3.6. Let n = 5 and k ≥ 8, and let π be the plane partition shown in (13). Then we have π ∈
P(n, n, k), and we have already observed above that the southern faces of π are all weakly decreasing. Moreover,
its image

ψ(π) =

 0 1 1 2 5 8
0 0 0 1 3 5
0 0 0 0 2 3
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0


has the Monge property, and thus lies in F k

max(n).

We now turn from the max norm cardinalities to the L1,1 norm cardinalities, which are somewhat more
interesting, especially if we consider simple Monge matrices of arbitrary dimension (by letting n→∞). In fact,
it turns out that these L1,1 norm cardinalities arise in several interesting combinatorial settings, seemingly far
removed from Monge matrices.
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Given two matrices A and B with possibly different dimensions, consider the equivalence relation whereby
A ∼ B if A = [ 0 B

0 0 ] or B = [ 0 A
0 0 ]. Then we can define the set of all simple Monge matrices of arbitrary

dimension:

M 0
∞ :=

( ∞⋃
n=0

M 0
n

)/
∼ .

If A ∈ M 0
n for some n, then let A ∈ M 0

∞ denote the equivalence class of A. Note that ‖A‖1,1 := ‖A‖1,1 is
well-defined, since every matrix in the equivalence class of A has the same nonzero entries as A. Therefore, it
makes sense to define the set

G k
1,1(∞) :=

{
A ∈M 0

∞ : ‖A‖1,1 = k
}
. (14)

Note that for fixed k ∈ N, the set G k
1,1(n) eventually stabilizes (modulo ∼) exactly when n ≥ k:

G k
1,1(k − 1) ( G k

1,1(k) = G k
1,1(k + `), for all ` ∈ N.

This is because the matrix A (or its antitranspose) consisting of a 1 × k block of 1’s in the upper-right, with
zeros elsewhere, is such that ‖A‖1,1 = k, and A occurs in M 0

n if and only if n ≥ k. The upshot is that for each
k ∈ N, the set

G k
1,1(∞) =

{
A : A ∈ G k

1,1(k)
}

(15)

is indeed finite. Moreover, the generating function of the L1,1 growth series for M 0
∞ is obtained by letting

n→∞ in part 2 of Theorem 3.3:

∞∑
k=0

∣∣∣G k
1,1(∞)

∣∣∣qk =

∞∏
i,j=1

1

1− qij
= 1 + q + 3q2 + 5q3 + 11q4 + 17q5 + 34q6 + 52q7 + 94q8 + · · · . (16)

This sequence (|G k
1,1(∞)|)∞k=0 = (1, 1, 3, 5, 11, 17, 34, 52, 94, 145, 244, 370, 603, . . .) arises in several surprising com-

binatorial settings. We record these interpretations in the following proposition, along with explicit bijective
proofs. Immediately following the proposition, we illustrate these bijections in Example 3.8.

Proposition 3.7. Let G k
1,1(∞) be as defined in (14). The cardinality of G k

1,1(∞) equals

1. the number of partitions of k, when there are d(a) different copies of each part a = 1, 2, . . ., where d(a) is
the number of divisors of a.

2. the number of factorization patterns of k, in the sense of Hultquist–Mullen–Niederreiter [9].

3. the number of partitions of k where there are unlimited distinguishable but unlabeled parts of each size.

4. the number of unital *-subalgebras of the k × k complex matrices, up to unitary similarity. (A unital
*-subalgebra is a subspace that is closed under multiplication and conjugate transpose, and which contains
the identity matrix.)

Proof. Let A ∈M 0
∞. By (9) and Lemma 3.1, we have

‖A‖1,1 = ‖A‖1,1 =
∑
i,j

ij ·∆(A)i,−j ,

where again we write −j to denote the jth column counting from the right. Hence ‖A‖1,1 is a weighted sum of
the (finitely many) nonzero entries of the density matrix ∆(A). Therefore, by the bijections in (9), and by (15),
we have a bijection

Dk :=

M ∈ Nk×k :

k∑
i,j=1

ij ·Mi,−j = k

 Σ−→ G k
1,1(∞), (17)

where Σ is defined exactly as Σ is defined in (6), but with the dimension n+ 1 replaced by k, and its image sent
to its equivalence class modulo ∼. Hence in this proof it will suffice to construct bijections between the objects
in items 1–4 and the set Dk of density matrices on the left-hand side of (17).

1. Let Pk denote the set of partitions π ` k, where the parts can be chosen from the set

∞⋃
a=1

{
a[1], . . . , a[d(a)]

}
,
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with the bracketed subscripts designating the d(a) many different copies of each part a. Let di(a) denote
the number of divisors of a which are ≤ i. For example, we have d4(20) = 3 because there are three
divisors of 20 which are ≤ 4 (namely 1, 2, and 4). Clearly di(a) ≤ d(a) for all i.

We now exhibit a bijection Pk ←→ Dk. To each partition π ∈Pk we associate the matrix M , in which
each entry Mi,−j equals the number of occurrences of the part (ij)[di(ij)] in π. This map is one-to-one
and the fact that π ` k guarantees that M ∈ Dk. In the opposite direction, to each matrix M ∈ Dk,
we associate the partition π which contains exactly Mi,−j many occurrences of the part (ij)[di(ij)], for all
1 ≤ i, j ≤ k. Again, this map is one-to-one, and the defining condition on Dk in (17) guarantees that
π ∈Pk. Therefore we have a bijection Pk ←→ Dk.

2. We refer the reader to [1, Pages 121–2], where a factorization pattern is defined (first introduced in [9]),
and where an explicit bijection is given between Pk and the set of factorization patterns of k. Composing
this with the bijection in part 1 then produces the desired bijection with Dk.

3. Let Rk denote the set of partitions ρ ` k, where there are unlimited distinguishable but unlabeled parts of
each size. This means that for each part a occurring in ρ, we decorate the occurrences of a with subscripts
(1), (2), . . ., such that the number of a(j)’s is greater than or equal to the number of a(j+1)’s for all j (this
is the “unlabeled” condition).

We now exhibit a bijection Rk ←→ Dk. To each ρ ∈ Rk we associate the matrix M , with entries defined
via

Mi,−j =
(

number of i(j)’s in ρ
)
−
(

number of i(j+1)’s in ρ
)
.

This map is one-to-one, and the fact that ρ ` k guarantees that M ∈ Dk. In the opposite direction, to a
matrix M ∈ Dk, we associate the partition ρ which contains exactly

∑
`≥j Mi,−` many occurrences of the

part i(j). This map is also one-to-one and the fact that M ∈ Dk guarantees that ρ ` k. Hence we have a
bijection Rk ←→ Dk.

4. We refer the reader to the exposition written by Nathaniel Johnston for OEIS entry A215905. The key fact,
for our purposes, is that every *-subalgebra of the k×k complex matrices Mk := Mk(C) is unitarily similar
to a direct sum of full matrix algebras of smaller dimension, where summands of the same dimension may
or may not be forced to be identical (and if they are so forced, then we obtain the diagonal subalgebra of
their direct sum). The unital condition forces the square roots of the dimensions of the summands to sum
to k. Hence, the set of equivalence classes of unital *-subalgebras of Mk is parametrized by the set Rk

from part 3 above, namely, the set of partitions of k which allow for distinguishable but unlabeled parts.
For example, if k = 20, then the partition

ρ =
(
6(1), 3(1), 2(1), 2(1), 2(2), 1(1), 1(1), 1(1), 1(2), 1(3)

)
corresponds to the equivalence class of the unital *-subalgebra

M6 ⊕M3 ⊕∆(M2 ⊕M2)︸ ︷︷ ︸
∼=M2

⊕M2 ⊕∆(M1 ⊕M1 ⊕M1)︸ ︷︷ ︸
∼=M1

⊕M1 ⊕M1,

where ∆ denotes the diagonal subalgebra consisting of tuples of identical elements.

Example 3.8. We give an example illustrating the bijections in the proofs of Proposition 3.7. Since parts 2
and 4 are straightforward modifications of 1 and 3, respectively, it suffices to give an example of the following
bijections:

Dk

Pk

Rk

G k
1,1(∞)

1

3

Σ

For our example, we take k = 77, and we start with the density matrix M ∈ D77 whose entries are all zero
except for its 4× 4 upper-right block 

2 0 0 1
0 1 1 2
1 1 3 1
0 0 0 3

 .
One can see that indeed M ∈ D77 because the L1,1 norm of its image Σ(M) is 77:

Σ(M) =


3 5 9 16
1 3 7 13
1 2 5 9
0 0 0 3

 ∈ G 77
1,1(∞).
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Via the bijective proof of part 1 of Proposition 3.7, M corresponds to the partition π ∈P77 given by

π =
(

12[3], 9[2], 6[2], 6
3
[3], 4

2
[1], 4[2], 4

3
[3], 3[2], 2

2
[2], 1[1]

)
,

where exponents denote multiple occurrences of a part. For example, π contains three occurrences of 4[3] because
of the entry M4,−1 = 3: in particular, the product 4 · 1 = 4 determines the part 4, the fact d4(4) = 3 determines
the copy given by the subscript [3], and the entry 3 gives the number of occurrences of 4[3] in π. Likewise, via
the bijective proof of part 3 of Proposition 3.7, M corresponds to the partition ρ ∈ R77 given by

ρ =
(

43
(1), 3

6
(1), 3

5
(2), 3

2
(3), 3(4), 2

4
(1), 2

2
(2), 2(3), 1

3
(1), 1

2
(2), 1

2
(3), 1

2
(4)

)
.

For example, ρ contains five occurrences of 3(2) because the sum of the entries in the 3rd row of M , lying weakly
left of the 2nd column from the right, is five.

Remark 3.9. All four interpretations in Proposition 3.7 are listed in OEIS entry A006171. The partitions in
item 1, along with several variants, were studied by Agarwal–Mullen [1], who used an equivalent form

∞∏
a=1

1

(1− qa)d(a)

of our generating function (16) to study its asymptotic behavior. In item 4, if one relaxes the unital condition
(see OEIS entry A215925), then the number of *-subalgebras of Mk equals the cardinality of F k

1,1(∞) := {A ∈
M 0
∞ : ‖A‖1,1 ≤ k}.

4 Main result: (Nn×n, ?) ∼= (M 0
n ,�)

Our main result unifies Sections 2 and 3, by stating that our extension of the Demazure product is actually
just the distance product of simple Monge matrices in disguise. In other words, the procedure of stacking and
fusing two kelp beds (Definition 2.3) actually computes the distance product of the two corresponding simple
Monge matrices. We state the main theorem below, along with the running example from earlier in the paper;
we defer the proof of the theorem to the end of the section after we have proved two key lemmas.

Theorem 4.1. The map Φ defined in (9) is an isomorphism of semigroups (Nn×n, ?) ∼= (M 0
n ,�).

Example 4.2. We return once more to our running example from both (1) and Example 2.4. Recall that we
took n = 4, and we had

X =


0 0 0 0
1 0 1 0
0 0 3 0
0 1 0 0

 , Y =


0 0 1 1
0 0 0 1
1 0 0 0
0 0 0 0

 , X ? Y =


0 0 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .
Recall from (9) that Φ = Σ ◦ L first pads a matrix with zeros around the southwest border, then replaces
each entry with the sum of the entries weakly southwest of it. (Stated this way, the two operations actually
commute.) Hence the images of the three matrices shown above are the simple Monge matrices

Φ(X) =


0 1 2 6 6
0 1 2 6 6
0 0 1 4 4
0 0 1 1 1
0 0 0 0 0

 , Φ(Y ) =


0 1 1 2 4
0 1 1 1 2
0 1 1 1 1
0 0 0 0 0
0 0 0 0 0

 , Φ(X ? Y ) =


0 1 1 2 3
0 1 1 2 3
0 1 1 1 2
0 1 1 1 1
0 0 0 0 0

 .
To verify Theorem 4.1, we use (10) to take the distance product Φ(X)�Φ(Y ) directly, and we find that indeed

Φ(X)� Φ(Y ) =


0 1 2 6 6
0 1 2 6 6
0 0 1 4 4
0 0 1 1 1
0 0 0 0 0

�


0 1 1 2 4
0 1 1 1 2
0 1 1 1 1
0 0 0 0 0
0 0 0 0 0

 =


0 1 1 2 3
0 1 1 2 3
0 1 1 1 2
0 1 1 1 1
0 0 0 0 0

 = Φ(X ? Y ).
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En route to proving Theorem 4.1, we first prove two lemmas below. In stating them, it will be convenient to
restrict a kelp bed X to the subgraph induced by a certain interval of top or bottom vertices. Given S, T ⊆ [n],
we will adopt the standard notation for the subgraph of X induced by S × T , writing

X[S × T ] :=
{

(i, j), . . . , (i, j)︸ ︷︷ ︸
Xij copies

: (i, j) ∈ S × T
}
.

Since our subsets S and T will always be (possibly empty) intervals of positive integers, we use the standard
interval notation [a, b] := {a, a+ 1, . . . , b} restricted to the integers.

Lemma 4.3. Let Φ be the map defined in (9), and let ? denote the Demazure product on Nn×n from Defini-
tion 2.3. For all 1 ≤ i, j ≤ n+ 1, we have

Φ(X ? Y )ij = wt
(
X
[
[i, n]× [1, n]

]
, Y
[
[1, n]× [1, j − 1]

])
with the weight (wt) as defined in Definition 2.2.

Proof. From step 2 of Definition 2.3, it is clear that for each 1 ≤ ` ≤ w, we have wt(X`, Y`) = `, since
wt(X0, Y0) = 0 and the weight increases by exactly 1 every time we add a pair (x`, y`). Moreover, since we
successively choose the kelps x` from right to left (with respect to their top vertex), and the corresponding kelps
y` from left to right (with respect to their bottom vertex), we have

#(X ? Y )
[
[i, n]× [1, j]

]
= wt

(
X
[
[i, n]× [1, n]

]
, Y
[
[1, n]× [1, j]

])
. (18)

Meanwhile, rewriting the definitions (6), (8), and (9) in terms of our new induced subgraph notation, we have
the general fact

Φ(X)ij = #X
[
[i, n]× [1, j − 1]

]
. (19)

Combining this fact with (18), we obtain

Φ(X ? Y )ij = #(X ? Y )
[
[i, n]× [1, j − 1]

]
= wt

(
X
[
[i, n]× [1, n]

]
, Y
[
[1, n]× [1, j − 1]

])
.

Lemma 4.4. Let X,Y ∈ Nn×n. We have

wt(X,Y ) = min
1≤k≤n+1

{
#X

[
[1, n]× [1, k − 1]

]
+ #Y

[
[k, n]× [1, n]

]}
. (20)

Proof. Let w = wt(X,Y ). By Definition 2.2, there exists a system

{(x`, y`) : 1 ≤ ` ≤ w}

of up-down pairs in (X,Y ). More specifically, by Definition 2.1, for all 1 ≤ ` ≤ w, we have x` = (a`, b`) and
y` = (c`, d`) with b` ≤ c`. Thus for all 1 ≤ k ≤ n + 1, and all 1 ≤ ` ≤ w, we have b` < k or c` ≥ k, or both.
Thus the right-hand side of (20) is at least w. We must now show that it is exactly w.

To this end, in choosing the up–down pairs (x`, y`), choose the x` so that b1 ≤ · · · ≤ bw; then choose the y`
so that c` is as small as possible while satisfying c` ≥ b`. Let y′ = (c′, d′) ∈ Y \ {y1, . . . , yw} such that c′ is as
large as possible; if this set is empty, then put c′ = 0. We claim that the right-hand side of (20) equals w at
the index k = c′ + 1.

Taking k = c′ + 1 in (20), we first observe that for each 1 ≤ i ≤ w, we have either b` < k or c` ≥ k, but not
both. This is because if both were true, then we would have b` ≤ c′ < c`, which violates the minimality of c` (and
if c′ = 0, then we would have b` = 0, which is impossible since 1 ≤ b` ≤ n). Hence the subset {x1, y1, . . . , xw, yw}
contributes exactly 1 to the right-hand side of (20). We must show that each kelp in X \ {x1, . . . , xw} and in
Y \ {y1, . . . , yw} contributes 0. This is immediate for Y \ {y1, . . . , yw}, since every element is of the form (b, c)
with c ≤ c′, and thus does not contribute to the right-hand side of (20) at k = c′ + 1. Finally, suppose (toward
contradiction) that x = (a, b) ∈ X \ {x1, . . . , xw} and b ≤ c′. Then {(x`, y`) : 1 ≤ ` ≤ w} ∪ {(x, y′)} is a system
of up–down pairs in (X,Y ), which is a contradiction since it implies that wt(X,Y ) > w.

Proof of Theorem 4.1. Since Φ is a bijection of sets, it suffices to show that Φ(X ? Y ) = Φ(X)� Φ(Y ). For all
1 ≤ i, j ≤ n+ 1, we have

Φ(X ? Y )ij = wt
(
X
[
[i, n]× [1, n]

]
, Y
[
[1, n]× [1, j − 1]

])
by Lemma 4.3
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= min
1≤k≤n+1

{
#X

[
[i, n]× [1, k − 1]

]
+ #Y

[
[k, n]× [1, j − 1]

]}
by Lemma 4.4

= min
1≤k≤n+1

{
Φ(X)ik + Φ(Y )kj

}
by (19)

=
(
Φ(X)� Φ(Y )

)
ij

by (10),

and the result follows.
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