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Abstract: Let {Sj , j ≥ 0} be a simple random walk with S0 = 0 and let R denote the number of runs in the
first excursion path. We condition R on the event that the excursion is positive, there are at least 4 runs (two
peaks), and the first minimum has level at least ` for some ` ≥ 1; we call R` the corresponding random number
of runs. We establish an explicit form of the probability-generating function E{xR`}. For a > 0 we find the

limiting Laplace transform limN→∞E{exp(−λN−2RbaNc)} = e−a
√
λ. We show that r`(n) = 2`−232n+2P (R` =

2(n+ 2)), n ≥ 0, is an integer sequence with the property that r` is an `–fold convolution of integer sequences
based on rook numbers.
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1. Introduction

Our motivation stems from an observation that connects the probability distribution of the number of runs
in an excursion of simple random walk with the number r(n), n ≥ 0, of Catalan rook paths enumerated
by 1, 1, 5, 29, 185, 1257, . . . , [10, A059231]. Here r(n) is defined as the number of lattice paths from (0, 0) to
(2n, 0) in Z2 using steps from S = {(k, k) : k ≥ 1}∪ {(k,−k) : k ≥ 1} that never cross the x–axis. The ordinary
generating function of the sequence is determined as

∑∞
n=0 r(n)tn = (8t)−1(1+3t−

√
1− 10t+ 9t2), [2, Theorem

2.2], [6, Theorem 6]. Let {Sj , j ≥ 0} be the simple random walk on the integers with S0 = 0. Denote
L = inf{j ≥ 2 : Sj = 0} as the epoch of first return of this random walk to the origin and let R denote the
number of runs, or one more than the number of turns in the excursion lattice path {(j,Sj), j = 0, . . . ,L}. The
probability generating function of R is

E{xR} =
1

4
(3 + x2 −

√
x4 − 10x2 + 9), (1)

[8, p. 2021]. The observation alluded to above, and proved by means of the Legendre function, is that

r(n) =
1

2
32n+1P (R = 2(n+ 1)), (2)

[8, Cor. 3, Remark 4]. We therefore have a probabilistic interpretation of r(n). By [2, Theorem 2.2(b)] the

rook numbers for n ≥ 1 are given by r(n) =
∑n
k=1 4n−kN(n, k) where N(n, k) = 1

n

(
n
k

)(
n

k − 1

)
are the Narayana

numbers [10, A001263], which in turn enumerate Dyck paths of semi length n and k peaks that we shall describe
below; see [3, 4, 11, 12]. Thus r(n) is a central figure among integer sequences related to the combinatorics of
Dyck paths. In this paper, we expand on the phenomenon emulated by (1)–(2). We find explicit generating
functions for a sequence of probability distributions obtained by conditioning R, along with convolution-type
descriptions of new integer sequences that arise from these distributions.

To introduce our approach, we define a nearest neighbor path of length n in Z to be a finite sequence
Γ = Γ0,Γ1, . . . ,Γn, where Γj ∈ Z and εj := Γj − Γj−1 satisfies |εj | = 1 for all j = 1, . . . , n. We connect
successive lattice points (j−1,Γj−1) and (j,Γj) in the plane by straight line segments, and term this connected
union of straight line segments the lattice path; see for example Figure 2. We define the number of runs along
Γ as the number of inclines, either straight line ascents or descents, of maximal extent along the lattice path;
in Figure 2 there are 6 runs in the lattice path Γ. An excursion is a nearest neighbor path that starts and ends
at m = 0, Γ0 = Γn = 0, but for which Γj 6= 0 for 1 ≤ j ≤ n − 1. A positive excursion is an excursion whose
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graph lies above the x–axis save for its endpoints. For a positive excursion path, the number of runs is just
twice the number of peaks, where a peak at lattice point (j,Γj) corresponds to εj = +1 and εj+1 = −1; a valley
corresponds instead to εj = −1 and εj+1 = +1. Alternatively, for any excursion path the number of runs is one
more than the number of turns where a turn occurs at (j,Γj) means εj+1 = −εj , that is there is a change of
direction of Γ. In the positive excursion of Figure 2 there are 3 peaks, 2 valleys, and 5 turns.

We mainly consider lattice paths Γ such that Γ0 = Γn = 0. One such type of lattice path is a Dyck
path, [3,4,11,12], which satisfies in addition Γj ≥ 0 for all 1 ≤ j ≤ n− 1. A positive excursion path is a special
case of a Dyck path with zeros of the path only at the endpoints. Even though the length of any given lattice
path is finite, we consider certain infinite sets of such paths by letting the length parameter n be arbitrary
because we now weight a path of length n by the Bernoulli probability 2−n. The event {R = 2(k + 1)} defined
above in terms of the simple random walk can be regarded as a collection of paths Γ that have exactly 2(k+ 1)
runs along them and start and terminate on the x–axis. We apply the Bernoulli weight to each such path to
calculate the probability: P (R = 2(k + 1)) =

∑
Γ 2−|Γ|, where |Γ| denotes the length of Γ ∈ {R = 2(k + 1)}.

For any positive excursion path Γ with at least two peaks, the path begins with an ascent followed by a descent,
and at the end of this first descent, we have the initial minimum height m = m(Γ). Conditional on S1 = +1,
the first excursion from zero of a simple random walk is a positive excursion. Conditional also that this positive
excursion has at least 2 peaks, that is R ≥ 4, the initial minimum (random variable) m is well defined and
satisfies m ≥ 1. In the case of a positive excursion with R = 2 we define m = −∞. Thus for a positive
excursion, for any ` ≥ 1 the condition m ≥ ` implies R ≥ 4, that is we have equality of events as follows:
{S1 = +1,R ≥ 4,m ≥ `} = {S1 = +1,m ≥ `}.

Definition 1.1. Let ` ≥ 1. We conditionally define the random variable R` as the number of runs R in the
first excursion of the random walk {Sn} given that S1 = +1 and m ≥ `. Denote the probability generating
function of R` by:

r(x; `) = E{xR | S1 = +1,m ≥ `} =

∞∑
n=0

ρ`(n)x2(n+2),

where ρ`(n) = P (R = 2(n+ 2) | S1 = +1,m ≥ `).

Theorem 1.1. Let ` ≥ 1. Recall the probability generating function f(x) = E{xR} of (1) for the number of
runs R in an excursion of a simple random walk. For all |x| ≤ 1 the probability generating function r(x; `) of
Definition 1.1 is given by

r(x; `) = 4x212−`f(x)
(3 + x2 +

√
x4 − 10x2 + 9)2`−1

(3− 5x2/3 +
√
x4 − 10x2 + 9)`

. (3)

Denote TN = TN,a = N−2RbaNc for a > 0 and R` given by Definition 1.1. By calculating the limiting
Laplace transform of TN as N →∞ we obtain the following result of Theorem 1.1.

Corollary 1.1. For each λ ≥ 0 and a > 0 we have limN→∞E{e−λTN,a} = e−a
√
λ. Hence TN converges in

distribution to a limit that has probability density a
2
√
π
t−3/2e−a

2/4t, t > 0.

We shall obtain Theorem 1.1 by applying a recurrence relation (33) involving probabilities α`(n) and δ(n)
that we now introduce. We define for each k ≥ 0 the event Dk, that is a collection of lattice paths, by

Dk =
⋃
n∈2N
{paths Γ with ε1 = +1, εn = −1, Γ0 = Γn = 0, and exactly 2(k + 1) runs}. (4)

In words, for each path of Dk the first step is positive and the last step is negative and by assumption Γ0 =
Γn = 0, but the length n of the path is not fixed though it must be even; only the number of runs along the
path is fixed. Notice that the paths in Dk are not restricted to be Dyck paths. An alternative description
of the lattice paths in Dk is to rotate each path 45◦ counterclockwise in the plane and scale by 1/

√
2 so that

the original line segments connecting (j − 1,Γj−1) and (j,Γj) now become vertical and horizontal segments of
unit length, and the transformed paths now start and end on the line y = x. Further, because the paths in
Dk have the first step positive, the rotated and scaled path will be a North and East path, starting by going
vertically up (North) and finishing by going horizontally to the right (East), terminating on the line y = x.
Since the original lattice paths of Dk are not restricted to lie on or above the x–axis, the corresponding North
and East paths are not restricted to lie on or above the line y = x; see Figure 1. The probability δ(k) = P (Dk)
is defined as the sum of the Bernoulli probability weights 2−|Γ| over all paths in Γ ∈ Dk. There is a nice way
to calculate δ(k) by following the idea of [11, p. 30]. There are exactly k + 1 peaks and k valleys on the paths
of Dk. Consider the paths of Dk that, after being transformed to North and East paths, go from (0, 0) to
(n + 1, n + 1) for some integer n ≥ k. Denote the transformed valley points as (x1, y1), . . . , (xk, yk) where we
have 1 ≤ x1 < x2 < · · · < xk ≤ n and 1 ≤ y1 < y2 < · · · < yk ≤ n. By specifying these transformed valley
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Figure 1: A North and East path with k + 1 peaks and k valleys, illustrated for k = 2. The path starts North,
ends East, and runs from (0, 0) to (n+ 1, n+ 1) for some n ≥ k.

points on the North and East paths we specify uniquely the lattice path. There are
(
n
k

)
ways to choose the

xk’s and independently the same number of ways to choose the yk’s. Therefore, by writing n + 1 = k + 1 + h
for some h ≥ 0 we have

δ(k) =

∞∑
h=0

4−(h+k+1)
(
h+ k
k

)2

. (5)

For example, δ(1) =
∑
h≥0(h + 1)24−(h+2) = 5

27 . In contrast to the probability distribution P (R = 2(k + 1)),
k ≥ 0, the δ(k) do not comprise a discrete probability distribution; in fact their sum is infinite. One finds the
well known sequence

d(n) =

n∑
k=0

4k
(
n
k

)2

= 1, 5, 33, 245, 1921, . . . , (6)

[10, A084771], as the numerators of δ(n) in the following sense: d(n) = 32n+1δ(n). We show this by the proof
of Remark 3.1. In Lemma 4.1 we show a recurrence relation between δk, 1 ≤ k ≤ n, and P (R = 2(k + 1)),
1 ≤ k ≤ n. In Corollary 4.1 we re–derive the probability generating function f(x) = E{xR} of (1) by using the
recurrence (25) and the well–known representation d(n) = 3nPn( 5

3 ), where Pn is the n–th Legendre polynomial,
to find the generating function of δ(n). Our proof of Corollary 4.1 serves to set the ideas used to obtain another
recurrence (33) in the proof of Theorem 1.1.

To introduce the key element for the recurrence (33), we make a definition.

Definition 1.2. Recall the definition of the collection of paths Dn defined by (4) and the initial minimum
m = m(Γ) defined just before Definition 1.1. Define for each ` ≥ 1

α`(n) = P (Γ ∈ Dn+1 : m(Γ) ≥ `), n ≥ 0.

The reason we put Dn+1 instead of Dn under the probability sign in Definition 1.2, so that the paths have
n + 2 peaks, is that we require at least 2 peaks in the paths to satisfy the condition that the level m of the
first valley point satisfies m ≥ `. We shall calculate α`(n) by Lemma 2.2. To accomplish this we may use a
direct probability summation method based on Lemma 2.1 that in turn follows by the classical “stars and bars”
counting method. Another method is to adapt the valley points argument by introducing some surgery on the
paths. Since we will use similar surgery in a constructive proof of Theorem 1.2 we will show both of these
methods in the proof of Lemma 2.2. A reason to apply surgery in the valley points construction is that, unlike
(5), we obtain a factor of 1

3 in the formula (10).
There are binomial sums associated as numerators of the α`(n) as follows. Define for each ` ≥ 1 the integer

sequence

A`(n) =

n∑
k=0

4k
(
n+ 1− `
n− k

)(
n+ `
k

)
, n ≥ 0, (7)

We find in Lemma 3.1 that α`(n) = 41−`3−2n−3A`(n) as a consequence of the representation (10) and one of
Euler’s transformation formulae (14) for the hypergeometric function. In Proposition 3.1 we pass to the Jacobi
polynomial generating function to calculate the generating function A(x; `) of the integer sequence A` of (7) as
defined by A(x; `) =

∑∞
n=0A`(n)xn. This then leads in Section 4.1 to a proof of Theorem 1.1 via generating

function algebra after utilizing the recurrence (33). In a parallel development of the relation (2), by (3) and Defi-
nitions 1.1 and 4.2 we find for each ` ≥ 1 a positive integer sequence r` = r`(n), n ≥ 0, that determines the proba-

bility distribution with generating function r(x; `). We easily find r1(n) = r(n+1) =
∑n
k=0 4k 1

n+1

(
n+ 1
k

)(
n+ 1
k + 1

)
,

n ≥ 0, or r1 = (1, 5, 29, . . . ) for r = (1, 1, 5, 29, . . . ), [10, A059231]; see (39) and Definition 4.2. By Definition
4.3 and (43) we have a positive integer sequence s0 = (1, 3, 12r(1), 12r(2), 12r(3), . . . ) such that the terms of
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Figure 2: A path Γ ∈ {S1 = +1,m ≥ 4,R = 6}. Here m = m(Γ) = 5 with gap g = m − 4 = 1. We take
a = 1 and b = 3 to illustrate equations (48)–(49). O′ is the translation of the origin O by g positive steps. A is
the point of intersection of the first ascent of Γ with y = g + a. M is the point where the first minimum m is
achieved. B is the first point after M on Γ that touches the line y = g + b. Z is the terminus.

s0 after the leading term 1 are written: (3, 12r(1), 12r(2), . . . ) = 3s1 where s1 = (1, 4, 20, 116, . . . ) enumerates
rook paths for positive excursions from (0, 0) to (2(n+ 1), 0), [10, A082298]. By the following we have that r`
is r1 convolved with the (`− 1)–fold convolution power of s0.

Corollary 1.2. Let r` be given by Definition 4.2. Then for each ` ≥ 1 we have the convolution identity:
r`+1 = r` ∗ s0.

We study also s(x; `) = 2r(x; `) − r(x; ` + 1), that is the probability generating function of the number of
runs in simple random walk paths conditioned to be positive excursions with first local minimum equal to `;
see Definition 5.1 and (45). Of course s(x; `)/x2 is the generating function of the conditional distribution of
R given that the simple random walk starts at position ` at time zero and takes its first step to the right. In
Section 5 we give both an algebraic proof and a path decomposition proof of the following somewhat surprising
identity.

Theorem 1.2. For all a, b ≥ 1 we have

s(x; a)s(x; b) = x4r(x; a+ b).

Our path decomposition proof of Theorem 1.2 involves the introduction of an arbitrary tent path consisting
of h steps up followed immediately by h steps down with some h ≥ 1; see Figure 3. We utilize the tent paths
first in the constructive proof of Lemma 2.2.

By Definitions 5.1–5.2, for each ` ≥ 1 we have a sequence of positive integers s` associated to the probability
generating function s(x; `); here s1 is as shown above by Remark 5.2. By Corollary 5.1 of Theorem 1.2 we tie
the study of the integer sequences r` to those of s` by the relation sa ∗ sb = ra+b for all a, b ≥ 1. By Remark
5.3 we also have s`+1 = s` ∗ s0.

In summary, here is an outline of the rest of the paper. In Section 2 we calculate the probabilities α`(n); see
Lemma 2.2. By Lemma 3.1 we establish A` of (7) as the integer sequence of “numerators” of the probabilities
α`(n), n ≥ 0. In Proposition 3.1 we apply hypergeometric function transformation formulae to calculate the
generating function A(x; `) of the integer sequence A`. In Section 4 we develop the recurrence (33) and use it
in Section 4.1 to prove Theorem 1.1. We prove Corollary 1.2 in Section 4.2. In Section 5 we prove Theorem
1.2. We present some corollaries of Theorem 1.2 involving the integer sequences r` and s` in Section 5.1. We
prove Corollary 1.1 in Section 6.

2. Calculation of α`(n)

Let m and N be positive integers with m ≤ N . We want the number of m–tuples k = (k1, . . . , km) of positive
integers, that is the number of k ∈ Nm, that satisfy (a) k1 + · · ·+ km = N . We also want to count the number
of such solutions to (b) m ≤ k1 + · · · + km ≤ N . The numbers of such solutions are well known and are given
as follows.

Lemma 2.1. The number of solutions in Nm to the equations (a) k1 +· · ·+km = N and (b) m ≤ k1 +· · ·+km ≤
N are given respectively by

(a)
(
N − 1
m− 1

)
(b)

(
N
m

)

ECA 5:2 (2025) Article #S2R12 4
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Figure 3: Step 1: Revise the path Γ of Figure 2 shown at top. Cut out the subpath BZ to be pasted later;
leave the point B as the right endpoint of the subpath OB of Γ. Cut OO′ and paste O at B, calling the result
BB′. Insert an arbitrary h× h–tent AA′ at A; for this example h = 2. Insert a 1× 1–tent B′B′′. Paste the left
endpoint B of BZ at B′′; call the result B′′Z ′. Translate the whole revised path to the new origin O′.

Recall the probability α`(n) as given by Definition 1.2; the paths under the probability sign in this definition
have exactly n + 2 peaks. We first find a representation of α`(n) by a direct calculation involving the lengths
a1, . . . , an+2 ≥ 1 of the ascents and the lengths d1, . . . , dn+2 ≥ 1 of the descents. The calculation is a little
simpler to develop if we take the symmetric condition that the final minimum ordinate on the paths is at least
` instead of m ≥ `. So we calculate α`(n) by summing over all the ascents and descents under the conditions I:∑n+1
i=1 (ai − di) ≥ ` and II:

∑n+2
i=1 (ai − di) = 0. Note that under condition II we may rewrite the total number

of steps
∑n+2
i=1 (ai + di) = 2

∑n+2
i=1 ai and we may rewrite condition I by −` +

∑n+1
i=1 ai ≥

∑n+1
i=1 di. Note that

the value of dn+2 is determined by the values of a1, . . . , an+1 and d1, . . . , dn+1 satisfying I, together with a free
parameter an+2 ≥ 1. Thus

α`(n) =
∑
I, II

2−
∑n+2

i=1 (ai+di) =
∑

−`+
∑n+1

i=1 ai ≥
∑n+1

i=1 di

4−
∑n+1

i=1 ai

∞∑
an+2=1

4−an+2

= 3−1
∑

a1,...,an+1≥1

4−
∑n+1

i=1 ai
∑

∑n+1
i=1 di≤−`+

∑n+1
i=1 ai

1,

(8)

where it is understood that in the last sum, that is the inner sum of 1’s, the indices d1, . . . , dn+1 vary subject to
the summation condition I with di ≥ 1. Put now h = −(n+1)+a1 + · · ·+an+1, so that h ≥ 0. Then by Lemma
2.1(b) with m = n + 1 and N = h + n + 1 − `, the inner sum of the double sum at the end of (8) is written(
h+ n+ 1− `

n+ 1

)
. Now rewrite the sum over a1, . . . , an+1 ≥ 1 by fixing h ≥ 0 as an index of outer summation and

apply the condition a1 + · · ·+ an+1 = h+ (n+ 1). Thus by Lemma 2.1(a) applied to this condition, again with
m = n+ 1 but this time with N = h+ n+ 1, we have

α`(n) = 3−1
∞∑
h=0

4−(h+n+1)
(
h+ n
n

)(
h+ n+ 1− `

n+ 1

)
. (9)

Therefore, since
(
h+ n+ 1− `

n+ 1

)
= 0 for 0 ≤ h ≤ `, we replace h− ` by h in (9) to conclude the following:

Lemma 2.2. Let ` ≥ 1. Then for all n ≥ 0 we have

α`(n) = 3−1
∞∑
h=0

4−(h+n+1+`)
(
h+ n+ `

n

)(
h+ n+ 1
n+ 1

)
(10)

We next show a proof of Lemma 2.2 by counting valley points.

Proof. For ` ≥ 1 consider α̂`(n) = P (Γ ∈ Dn+1 : m(Γ) = `). We recall by the definition that Dn+1 consists of
paths with the first incline an ascent from the origin, the last incline a descent to the x-axis, and n+ 2 peaks.

ECA 5:2 (2025) Article #S2R12 5
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The event defining α̂`(n) specifies that the first valley point has level exactly `. We claim the following:

α̂`(n) =
1

3
P (Γ̂ ∈ Dn : there are at least `+ 1 steps in the first ascent of Γ̂) (11)

Note that the paths in the event under the probability sign in (11) have n+ 1 peaks. To establish the claim, we

work with the original paths that leave from and return to the x–axis. Let Γ̂ ∈ Dn such that the first ascent of
Γ̂ consists of at least `+ 1 steps. We cut Γ̂ at the level ` on the first ascent and horizontally translate the part
coming after the cut point (`, `) to the right by 2j units for an arbitrary j ≥ 1. We connect the two pieces of
the cut path by inserting a j × j–tent with base points (`, `) and (`+ 2j, `), where a j × j–tent is a path with

a single ascent of j steps followed by a single descent of j steps. Since we have thus added a peak, from Γ̂ we
have constructed for each j ≥ 1 a path Γ = Γj ∈ Dn+1 with m(Γ) = `. Each path Γ in the event defining α̂`(n)

corresponds to exactly one pair Γ̂ and j, where j is determined as the length of the descent to the first valley
point in Γ and Γ̂ results from cutting off the j× j–tent containing this descent followed by reconnecting the cut
path by horizontal translation to the left. Therefore, since the probability of an arbitrary tent is

∑∞
j=1 4−j = 1

3 ,
the claim is established.

We now calculate the probability on the right side of (11) by counting valley points on the North and East

transformed paths Γ̂; recall Figure 1. Consider North and East paths with n+ 1 peaks and n valleys that run
from (0, 0) to (N + 1, N + 1) and have valley points (xi, yi), 1 ≤ i ≤ n, where x1 < · · · < xn and y1 < · · · < yn.

To match the condition that there are at least `+1 steps in the first ascent of Γ̂, we assume y1 ≥ `+1. Thus we
have `+ 1 ≤ y1 < · · · < yn ≤ N and 1 ≤ x1 < · · · < xn ≤ N for some N ≥ n. The collection of all such valley
point sequences is in one-to-one correspondence with the subcollection of all paths Γ̂ under the probability sign
of the right side of (11) determined by the condition that the length of the path is exactly 2(N + 1). There

are
(
N
n

)(
N − `
n

)
many paths in this subcollection, where this expression evaluates to zero unless N ≥ n + `.

Therefore by (11) we have

α̂`(n) =
1

3

∞∑
N=n

4−(N+1)
(
N
n

)(
N − `
n

)
. (12)

Now we apply the simple fact that α`(n) =
∑∞
r=` α̂r(n). Correspondingly, we sum the right side of (12) with r

in place of ` over all r ≥ `. This is easily accomplished by noting the binomial identity
∑A
k=a

(
k
a

)
=
(
A+ 1
a+ 1

)
.

Therefore, applying this identity with A = N − ` and a = n, by (12) we have

α`(n) =
1

3

∞∑
N=n

4−(N+1)
(
N
n

)(
N − `+ 1
n+ 1

)
=

1

3

∞∑
N=n+`

4−(N+1)
(
N
n

)(
N − `+ 1
n+ 1

)
, (13)

where in the last expression we simply started the sum on N from n + ` since the preceding terms are zero.
Finally we take h = N − (n + `) ≥ 0 to rewrite the last sum in (13) and thus obtain exactly the formula (10)
obtained by our first proof.

Recall the definition of the binomial coefficient:
(
r
k

)
= r(r−1)···(r−k+1)

k! for any real r and nonnegative integer

k, [5, (5.1)].

Example 2.1. By direct calculation of (10) we have 4233α3(0) = 1, 4235α3(1) = 15, and 4237α3(2) = 160.

On the other hand, by (7) we find A3(0) = 1, A3(1) = 40
(
−1
1

)(
4
0

)
+ 41

(
−1
0

)(
4
1

)
= −1 + 16 = 15, and

A3(2) = 40
(

0
2

)(
5
0

)
+ 41

(
0
1

)(
5
1

)
+ 42

(
0
0

)(
5
2

)
= 0 + 0 + 160.

3. The sequence A`(n), n ≥ 0, and its generating function.

In this section, we first show the simple relation of Lemma 3.1 between the probabilities α`(n) and the integers
A`(n) defined by (7). We then find the ordinary generating function of the sequence A`(n), n ≥ 0, where
we regard ` ≥ 1 as a parameter. In the proofs of this section, we make extensive use of the definition and
transformation properties of the hypergeometric function 2F1, which is defined as follows.

Definition 3.1. [1, 15.1.1] Define

2F1[a, b; c; z] =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where we employ the Pochhammer symbol (a)n = (a)(a+ 1) · · · (a+ n− 1), with (a)0 = 1.
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Lemma 3.1. Let ` ≥ 1 and let α`(n) be given by (10) for n ≥ 0 and A`(n) be defined by (7). Then

A`(n) = 4`−132n+3α`(n).

Proof. We shall apply Euler’s transformation formula for the hypergeometric function as follows:

2F1[a, b; c; z] = (1− z)c−a−b2F1[c− a, c− b; c; z], | arg(1− z)| < π, (14)

[1, 15.3.1, 15.3.3]. To apply (14) we first write α`(n) as represented by (10) in terms of the hypergeometric func-

tion. Rewrite (10) by symmetry of the binomial coefficients as 314n+`+1α`(n) =
∞∑
h=0

4−h
(
h+ n+ `
h+ `

)(
h+ n+ 1

h

)
.

Hence, by this formula and the Pochhammer symbol of Definition 3.1, we have

314n+`+1α`(n) =

(n+ 1)`
`!

+
(n+ 1)`+1

(`+ 1)!

(n+ 2)

411!
+

(n+ 1)`+1

(`+ 2)!

(n+ 2)(n+ 3)

422!
+ · · ·

=

(
n+ `
`

)(
1 +

(n+ `+ 1)

`+ 1

(n+ 2)

411!
+

(n+ `+ 1)(n+ `+ 2)

(`+ 1)(`+ 2)

(n+ 2)(n+ 3)

422!
+ · · ·

)
=

(
n+ `
`

)
2F1[n+ `+ 1, n+ 2; `+ 1; 4−1].

(15)

Now apply (14) to the hypergeometric function of the last line of (15). Then(
n+ `
`

)
2F1[n+ `+ 1, n+ 2; `+ 1; 4−1] =

(
4

3

)2n+2(
n+ `
`

)
2F1[−n, `− (n+ 1); `+ 1; 4−1] (16)

Note that
(
n+ `
`

)
2F1[−n, `− (n+ 1); `+ 1; 4−1] has a finite expansion consisting of n+ 1 terms that we write

starting from the (n+ 1)–st term as follows.(
n+ `
`

)
2F1[−n, `− (n+ 1); `+ 1; 4−1]

=
(n+ 1)`

`!

(
(−n)n

(1 + `)n

(`− (n+ 1))n
4nn!

+
(−n)n−1

(1 + `)n−1

(`− (n+ 1))n−1

4n−1(n− 1)!
+ · · ·+ 1

)
=

(1)n+`

(1)n+`

(−1)n(`− (n+ 1))n
n!

4−n +
(2)n+`−1

(1)n+`−1

(−1)n−1(`− (n+ 1))n−1

(n− 1)!
4−n+1 + · · ·+ 1

=

(
n+ `

0

)(
n+ 1− `

n

)
4−n +

(
n+ `

1

)(
n+ 1− `
n− 1

)
4−n+1 + · · ·+ 1

=

n∑
k=0

4−n+k

(
n+ `
k

)(
n+ 1− `
n− k

)
= 4−nA`(n).

(17)

Accounting finally for the various powers of 3 and 4, by (15)–(17) we have 314n+`+1α`(n) =
(

4
3

)2n+2
4−nA`(n),

as desired.

Remark 3.1. We have that d(n) defined by (6) satisfies

d(n) = 32n+1δ(n), n ≥ 0.

Proof. First, write δ(n) as given by (5) as δ(n) = 4−n−1
∑∞
h=0 4−h

(
h+ n
h

)2

. By Definition 3.1 we easily

see that δ(n) = 4−n−1
2F1[1 + n, 1 + n; 1; 1/4]. Apply the Euler transformation (14) to obtain δ(n) =

4−n−1
(

4
3

)2n+1
2F1[−n, −n; 1; 1/4], or 32n+1δ(n) = 4n2F1[−n, −n; 1; 1/4]. Then, by writing the finite expan-

sion of this last hypergeometric function from the last term to the first, similar as in (17), the remark follows
in view of (6).

Recall Definition 3.1. To find the generating function of the sequence A`(n), n ≥ 0, we use another transfor-

mation of the hypergeometric function as well as a representation of the Jacobi polynomials P
(α,β)
n (x), [1, 22.1,

22.2.1], in terms of it. First, by [1, 15.3.1,15.3.4] we have the Euler transformation

2F1[a, b; c; z] = (1− z)−a2F1[a, c− b; c; z/(z − 1)], | arg(1− z)| < π. (18)
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Second, by [1, 15.4.6] we have

2F1[−n, α+ 1 + β + n; α+ 1; x] =
n!

(α+ 1)n
P (α,β)
n (1− 2x). (19)

Here, for nonnegative integers α, we may write n!
(α+1)n

= 1/
(
n+ α
n

)
. Further, by [1, 22.9.1] we have that

∞∑
n=0

znP (α,β)
n (u) = 2α+βR−1(1− z +R)−α(1 + z +R)−β , |z| < 1, (20)

where R =
√

1− 2uz + z2.

Definition 3.2. Define A(x; `) =
∑∞
n=0 x

nA`(n) for A`(n) defined by (7).

Proposition 3.1. Denote R(x) =
√

1− 10x+ 9x2. For all ` ≥ 0 and x ∈ (−1, 1) we have

A(x; `) = 21−` 1

R(x)

(1 + 3x+R(x))
2`−1

(1− 5x+R(x))
`
.

Proof. By Definition 3.2 we have

A(x; `) =

∞∑
n=0

xn
n∑
k=0

4k
(
n+ 1− `
n− k

)(
n+ `
k

)
=

∞∑
k=0

(4x)k
∞∑
j=0

xj
(
j + k + 1− `

j

)(
j + k + `

k

)
=

∞∑
k=0

(4x)k
(
k + `
`

)
2F1[k + 2− `, k + `+ 1; `+ 1; x],

(21)

where we introduced j = n − k to rewrite the double sum. Here, to obtain the hypergeometric function we
rewrite the sum on j in the first line of (21) as

∞∑
j=0

xj
(
j + k + 1− `

j

)(
j + k + `
j + `

)
=

(k + 1)`
(1)`

(
1 +

(k + 2− `)1

1!

(k + `+ 1)1

(`+ 1)1
x+

(k + 2− `)2

2!

(k + `+ 1)2

(`+ 1)2
x2 + · · ·

)
.

This last expression is clearly equal to
(
k + `
`

)
2F1[k + 2− `, k + `+ 1; `+ 1; x] as appears on the second line

of (21), as desired.
Next, first apply (18) to obtain that

2F1[k + 2− `, k + `+ 1; `+ 1; x] = (1− x)−(k+2−`)
2F1[k + 2− `, −k; `+ 1; x/(x− 1)]. (22)

Note that by definition 2F1[a, b; c; z] = 2F1[b, a; c; z], so we can rewrite the right side of (22) by (1 −
x)−(k+2−`)

2F1[−k, k + 2− `; `+ 1; x/(x− 1)]. Second, apply (19) to write

2F1[−k, k + 2− `; `+ 1; x/(x− 1)] =
(
k + `
`

)−1

P
(α,β)
k (1− 2x/(x− 1)), (23)

where the parameters α and β satisfy α+ 1 + β + k = k+ 2− ` and α+ 1 = `+ 1. Thus, α = ` and β = 1− 2`.

Therefore by (21)–(23), after canceling the term
(
k + `
`

)
, we have

A(x; `) =

∞∑
k=0

(4x)k(1− x)−(k+2−`)P
(`,1−2`)
k ((1 + x)/(1− x)). (24)

Now apply (20) to the right side of (24) with z = 4x/(1− x), u = (1 + x)/(1− x), α = ` and β = 1− 2`. Then
R =

√
1 + 2uz + z2 = (1 − x)−1

√
(1− x)2 − 2(1 + x)4x+ 16x2 = (1 − x)−1

√
1− 10x2 + 9x2. And therefore,

with S = (1− x)R,

(1− x)`−2R−1(1 + z +R)−`(1− z +R)2`−1 = S−1((1− x)(1− z) + S)−`((1− x)(1 + z) + S)2`−1.

Hence by (20), (24), (1− x)(1− z) = 1− 5x, (1− x)(1 + z) = 1 + 3x, and α+ β = 1− `, we have

A(x; `) =
21−`

√
1− 10x2 + 9x2

(1− 5x+
√

1− 10x2 + 9x2)−`(1 + 3x+
√

1− 10x2 + 9x2)2`−1,

which matches the statement of the proposition.
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4. Proof of Theorem 1.1

In this section, we first set the stage for a recurrence approach based on Lemma 4.2 to prove Theorem 1.1 in
Section 4.1. We construct the framework of this approach by recovering (1) by the prototype recurrence (25).
Once we establish the formula (3) for the probability generating function of R given S1 = +1 and m ≥ `,
we will develop the integer sequences associated with these conditional probability distributions in Section 4.2.
Recall that δ(k) = P (Dk), where Dk as defined by (4) is the event that the nearest neighbor path starts on the
x–axis with an ascent and ends on the x–axis with a descent and has 2(k + 1) runs or k + 1 peaks. We easily
see directly that δ(0) = P (D0) = 1

3 , or find this by Remark 3.1. The following recurrence leads to the proof of
Corollary 4.1.

Lemma 4.1. For all n ≥ 0 we have

δ(n) =
3

2

n∑
k=1

P (R = 2(k + 1))δ(n− k) +
1

2

n−1∑
k=0

P (R = 2(k + 1))δ(n− k − 1) +
1

2
P (R = 2(n+ 1)). (25)

Proof. Recall that R is the number of runs in an excursion of a simple random walk on the integers, denoted
{Sn : n = 0, 1, 2 . . . } with S0 = 0. Here we define σ as the epoch at which the simple random walk first returns
to zero:

σ = inf{n ≥ 0 : Sn = 0},
and the (first) excursion is the path S0,S1, . . . ,Sσ. Thus, save for the endpoints, the paths Γ in the event
{R = 2(k + 1)} lie either strictly above or strictly below the x–axis. Thus the probability that we have a
positive excursion path with 2(k + 1) runs is 1

2P (R = 2(k + 1)). We will focus on a simple random walk path
that has the first step positive. Consider the paths of the event Dn in the definition of δ(n) for some n ≥ 0: for
any path Γ ∈ Dn we have Γσ = 0. Of course, it is possible that the path Γ ∈ Dn actually terminates at epoch
σ. If Γ ∈ Dn does not terminate at σ, then there are two possibilities: the path could either (1) continue to
descend and fall below the x–axis at the next step, or (2) could turn from its descent to the x–axis and ascend
above the x–axis at the next step. Define τ ≥ σ as the first epoch at or after σ such that a path ascends to
a level Γτ+1 = +1, so that Γτ = 0. In the case (1) we have τ > σ, while in case (2) we have τ = σ. In case
Γ terminates at σ we define τ(Γ) = +∞; this can cause no confusion because {0 = Sσ,Sσ+1,Sσ+2, . . . } is a
simple random walk on the integers, so must return to zero in finite time with probability 1. Now focus on the
case (1): τ > σ. Then we have an excursion below the x–axis along the random walk path from epoch σ to
epoch τ . If we now modify any given such path Γ by reflecting this negative excursion over [σ, τ ] in the x–axis
to form a positive excursion over [σ, τ ], but otherwise leave the path Γ intact, then we will have added two runs
to the final tally of runs for the full modified path, and we have that on the discrete-time interval between 0
and τ we have at least one interior local minimum value 0 along the path, namely at epoch σ. So, on any event
{σ = s, τ = t} ∩Dn for which s < t, we modify each path by reflection over [s, t] to form a Dyck path on [0, t]
of k + 1 peaks for some 1 ≤ k ≤ n and at least one interior zero; note that a path in Dn can not terminate at
epoch τ on the event σ > τ (case (1)). If k ≥ 1, define the event Fk by

Fk = {Γ ∈ Dk : Γ is a Dyck path of k + 1 peaks and at least one interior zero}. (26)

Then for all k ≥ 1, Fk = Gk \ Ek where Gk is the event of a general Dyck path of k + 1 peaks and Ek is
the event of a Dyck path with k + 1 peaks and no interior zeros, that is a positive excursion path for the
simple random walk. We can lift any path in the event Gk by adding a positive step at the beginning and
a negative step at the end to make a positive excursion path of the same number k + 1 of peaks, so that
P (Gk) = (1

2 )−2P (Ek) = 41
2P (R = 2(k + 1)). Therefore

P (Fk) = P (Gk)− P (Ek) = (4− 1)P (Ek) =
3

2
P (R = 2(k + 1)), k ≥ 1. (27)

To obtain the recurrence (25) we divide the event D = Dn into the three disjoint pieces D = D(1) ∪D(2) ∪D(3)

as follows:
D(1) = D ∩ {σ < τ}, D(2) = D ∩ {σ = τ}, D(3) = D ∩ {τ =∞}.

Note that P (Fk) equals the total of all weights of unmodified paths in D(1) that originally had exactly k peaks
up to the original epoch τ , because the modification does not change these weights even though it adds one more
peak over the interval [0, τ ]. Thus P (D(1)) is the sum over k ≥ 1 of the product of P (Fk) with the probability
that we have a path with (n+ 1) + 1− (k+ 1) = n− k+ 1 peaks that starts from zero with an ascent and ends
by coming again to zero with a descent. Thus this second probability is δ(n− k). Hence by (27) we obtain that
P (D(1)) equals the first sum in (25).

Since the event Ek as defined above is the event of a positive excursion with k + 1 peaks, the probability
P (D(2)) is the sum over k ≥ 0 of the product of P (Ek) with P (Dn−(k+1)) = δ(n− k − 1). Therefore we obtain

the second term of (25). Finally the third term of (25) is simply P (D(3)) = P (En) = 1
2P (R = 2(n+ 1)).
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As a corollary of Lemma 4.1 we can recover the probability generating function of the random variable R,
that is the number of runs in an excursion from the origin of a simple random walk on the integers. We note
that the joint distribution of R and the number of steps L is well known in the case of simple random walk due
to the result of Narayana [9], [11]; for the corresponding joint generating function see [7], [8, p. 2014].

Corollary 4.1. [8, p. 2021]
Denote f(x) = E{xR} =

∑∞
n=0 x

2(n+1)P (R = 2(n+ 1)). Then for all |x| < 1 we have that (1) holds.

Proof. We simply construct the ordinary generating function of each side of (25) and solve algebraically for the
probability generating function f(x) of R, as follows. First we define and calculate the generating function of
δ(n) = P (Dn) while keeping track of the number of runs for the paths of Dn in the exponent of the generating
function variable.

Definition 4.1. Define

G(x) =

∞∑
n=0

x2(n+1)δ(n) =
x2

3
+

5x4

27
+ · · · .

By Definition 4.1 and Lemma 4.1 we have

G(x) =
x2

3
+

∞∑
n=1

x2(n+1)δ(n) =
3

2

∞∑
n=1

n∑
k=1

x2(n+1)P (R = 2(k + 1))δ(n− k)

+
1

2

∞∑
n=1

n−1∑
k=0

x2(n+1)P (R = 2(k + 1))δ(n− k − 1) +
x2

3
+

1

2

∞∑
n=1

x2(n+1)P (R = 2(n+ 1)).

(28)

Notice that, by P (R = 2) = 2
3 , the term x2

3 added to the last sum on the right side of (28) yields 1
2f(x).

Therefore, with j = n− k after changing the order of summation, by (28) and Definition 4.1 we have

G(x)− f(x)

2
=

3

2

∞∑
k=1

x2(k+1)P (R = 2(k + 1))

∞∑
j=0

x2jδ(j)

+
1

2

∞∑
k=0

x2(k+1)P (R = 2(k + 1))

∞∑
j=1

x2jδ(j − 1) =
3

2

(
f(x)− 2x2

3

)
G(x)

x2
+

1

2
f(x)G(x).

(29)

From (29) after multiplying through by 2 we solve algebraically for f via 2G = (3f − 2x2)G/x2 + fG + f or
4G = f(1 +G+ 3G/x2). Hence

f(x) =
4x2G(x)

3G(x) + x2(1 +G(x))
. (30)

It only remains to calculate the exact form of G(x) which we simply take from the Definition 4.1 and Remark 3.1,
so that δ(n) = 3−(2n+1)d(n), valid for all n ≥ 0, for d(n) given by (6). Now it is well known that d(n) = 3nPn( 5

3 )

where Pn is the n–th Legendre polynomial, that is the special case α = β = 0 of the Jacobi polynomial P
(α,β)
n .

In fact this is easy to see by writing d(n) = 32n+1δ(n) = 32n+14−1−n
2F1[1 + n, 1 + n; 1; 1/4] via (5) and

Definition 3.1, followed by applying (18)–(19). Thus

G(x) =

∞∑
n=0

x2(n+1)3−(2n+1)3nPn(5/3) =
x2

3

∞∑
n=0

x2n3−nPn(5/3).

But by (20) we have
∑∞
n=0 x

2n3−nPn(5/3) = R−1 for R =
√

1− 2(5/3)x2/3 + (x2/3)2 = 1
3

√
9− 10x2 + x4.

Therefore we have

G(x) =
x2

√
9− 10x2 + x4

. (31)

Hence by (30)–(31) we easily find that f(x) = 4x2
√

9−10x2+x4+x2+3
= x2+3−

√
9−10x2+x4

4 .

4.1 Positive excursion runs statistic conditioned by the first local minimum

Recall that {Sn} denotes a simple random walk on the integers with S0 = 0. Conditional on S1 = +1, the first
excursion from zero of the random walk is a positive excursion. As described in the paragraph immediately
preceding Definition 1.1, any positive excursion path Γ that has an initial local minimum value m = m(Γ)
with m ≥ 1 automatically has at least 4 runs, that is at least 2 peaks. We use the recurrence method via the
following Lemma 4.2 that is proved in a similar manner as Lemma 4.1 to establish (3). Recall the definition of
ρ`(n) along with the probability generating function r(x; `) of R` in Definition 1.1. Let ` ≥ 1 and denote the
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normalization constant in the definition of the conditional distribution of R` by C(`) = P (S1 = +1, m ≥ `),
so that for all n ≥ 0, C(`)ρ`(n) = P (S1 = +1, R = 2(n + 2), m ≥ `). Note that the paths under α`(n) of
Definition 1.2 may cross the x–axis, while the paths under C(`)ρ`(n) are positive excursions. As in the proof
of Lemma 4.1, for all j ≥ 0 we define

Gj = {Γ ∈ Dj : Γ is a Dyck path of j + 1 peaks};
Ej = {Γ ∈ Dj : Γ is a positive excursion of j + 1 peaks}.

(32)

Note that P (G0) = P (E0), but for j ≥ 1 we have P (Gj) = 4P (Ej) = 2P (R = 2(j + 1)).

Lemma 4.2. For each ` ≥ 1 we have

α`(n)/C(`) =

n−1∑
k=0

∑
i,j≥0, i+j=k

ρ`(i)P (Gj)δ(n− k − 1) +

n−1∑
k=0

ρ`(k)δ(n− k − 1) + ρ`(n), n ≥ 0. (33)

Proof. For simplicity we prove the relation after both sides have been multiplied by C(`) so that (33) becomes
a recurrence between probabilities instead of between conditional probabilities. We follow the method of proof
of Lemma 4.1. We define σ and τ exactly as before. Also as before, on the event {τ > σ} we modify the paths
by reflecting the part of the path over the time interval [σ, τ ] (which originally was an upside down Dyck path)
across the x–axis. However, whereas in Lemma 4.1 we treated the distribution of R and therefore P (Gj) as
unknown, due to the condition m ≥ ` we will now bootstrap the probability P (Gj) in the summation term
corresponding to the case τ > σ. That is, the condition m ≥ ` is now carried by the term ρ`(i) for some i ≥ 0,
where by definition of ρ`(i) this means we have i+ 2 peaks in the path until σ. Still in the case τ > σ, following
these i + 2 peaks we have in the modified path over [σ, τ ] a general Dyck path of j + 1 peaks for some j ≥ 0.
Since by i+ j = k we have at this point k+ 3 peaks and require (n+ 2) + 1 = n+ 3 peaks for the final modified
paths, and since again there is one more peak than the index m in the paths under the probability δ(m), we
have a final term δ(n− k− 1) in the right side of the first summation. The remaining two terms, corresponding
to τ = σ and τ =∞, respectively, are handled as before.

By Proposition 3.1 and Lemma 4.2 we can now prove the explicit expression (3) for r(x; `) of Definition 1.1.

Proof of Theorem 1.1. Define

H`(x) =

∞∑
n=0

α`(n)x2(n+2), (34)

where α`(n) is given by Definition 1.2. By the definition (34) and Lemma 4.2 we now write H`(x)/C(`) as a
sum of three generating functions given respectively by the three expressions on the right side of (33). The first
of these generating functions, corresponding to the double sum expression of (33), that is

I =

∞∑
n=0

x2(n+2)
n−1∑
k=0

∑
i,j≥0, i+j=k

ρ`(i)P (Gj)δ(n− k − 1),

may be rewritten by a change of order of summation with indices j ≥ 0, i = k− j ≥ 0, and m = n− k− 1 ≥ 0,
so that (j + 1) + (i+ 1) + (m+ 1) = n+ 2. Thus in all, by Lemma 4.2 we have

H`(x)/C(`) =

∞∑
j=0

P (Gj)x
2(j+1)

∞∑
i=0

ρ`(i)x
2(i+1)

∞∑
m=0

x2(m+1)δ(m)

+

∞∑
k=0

ρ`(k)x2(k+2)
∞∑
m=0

x2(m+1)δ(m) +

∞∑
n=0

ρ`(n)x2(n+2) = I + II + III.

(35)

Here, by (35), I =
(
P (G0)x2 +

∑∞
j=1 2P (R = 2(j + 1))x2(j+1)

)
x−2r(x; `)G(x), where we applied the evalua-

tion of P (Gj) after (32) and we used Definitions 4.1 and 1.1. Now P (G0)x2 +
∑∞
j=1 2P (R = 2(j+ 1))x2(j+1) =

x2

3 + 2(f(x)− 2x2

3 ) = 2f(x)− x2. Therefore

I = (2f(x)− x2)
r(x; `)

x2
G(x).

Again by Definitions 4.1 and 1.1 we have II = r(x; `)G(x) and III = r(x; `). Hence by (35), and by substitution
of the explicit formulae for f(x) and G(x) from (1) and (31), we have

H`(x)

C(`)r(x; `)
= (2f(x)− x2)

G(x)

x2
+G(x) + 1

=
3− x2 −

√
9− 10x2 + x4

2
√

9− 10x2 + x4
+

x2

√
9− 10x2 + x4

+ 1 =
3 + x2 +

√
9− 10x2 + x4

2
√

9− 10x2 + x4
.

(36)
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Here, C(`) = P (S1 = +1, m ≥ `) = 1
2

∑∞
s=1

∑
r≥s+` 2−(r+s) = 2−`

∑∞
s=1 4−s = 2−`/3. Another way to

compute C(`) is to use (36)–(37) together with the requirement that r(1; `) = 1. Because by Lemma 3.1 we
have A`(n) = 4`−132n+3α`(n), by (34) and Proposition 3.1 we claim:

H`(x) =

∞∑
n=0

x2(n+2)41−`3−2n−3A`(n) =
72x4

27

2−3`3−`√
9− 10x2 + x4

(3 + x2 +
√
x4 − 10x2 + 9)2`−1

(3− 5x2/3 +
√
x4 − 10x2 + 9)`

. (37)

To verify (37) we simply note by Definition 3.2 and Proposition 3.1 that

H`(x) =
41−`x4

27
A(x2/9; `) =

41−`x421−`

27
√

1− 10x2/9 + x4/9

(1 + 3x2/9 +
√

1− 10x2/9 + x4/9)2`−1

(1− 5x2/9 +
√

1− 10x2/9 + x4/9)`
.

Therefore after a bit of simplification the claim (37) is established. Finally via (36)–(37) we compute

r(x; `) =
H`(x)

C(`)

2
√

9− 10x2 + x4

3 + x2 +
√

9− 10x2 + x4

=
8x42−3`3−`

2−`
2

3 + x2 +
√

9− 10x2 + x4

(3 + x2 +
√
x4 − 10x2 + 9)2`−1

(3− 5x2/3 +
√
x4 − 10x2 + 9)`

.

(38)

Since 1
3+x2+

√
9−10x2+x4

= f(x)
4x2 , by (38) the proof is complete.

4.2 Integer sequences arising from the probability generating functions r(x; `)

In this section, we establish for each ` ≥ 1 an integer sequence associated in a natural way with the generating
function r(x; `) =

∑∞
n=0 ρ`(n)x2(n+2) of Definition 1.1. First, either by direct computation from the formula of

Theorem 1.1, or by elementary considerations after the Definition 1.1, we note that r(x; 1) = 3f(x)−2x2, where
f(x) is given by (1). Indeed we have that for a positive excursion the condition m ≥ 1 is equivalent to R ≥ 4,
and therefore r(x; 1) is the (conditional) probability generating function of R given R ≥ 4, which is in turn
f(x)− 2x2

3

P (R≥4) = 3(f(x) − 2x2

3 ). By (1)–(2) we have f(x) = 2
∑∞
n=0 3−2n−1r(n)x2(n+1) for r(n) = 1, 1, 5, 29, 185, . . .

[10, A059231]. Therefore, r(x; 1) = 3f(x)− 2x2 = 2
∑∞
m=0 3−2(m+1)r(m+ 1)x2(m+2), that is

ρ1(n) = 2 · 3−2n−2r(n+ 1), n = 0, 1, 2, . . . . (39)

In particular, ρ1(n) = 2
9 · 1,

2
81 · 5,

2
729 · 29, . . . , for n = 0, 1, 2, . . . . We find by Taylor series expansions of the

explicit formulae for r(x; 2) and r(x; 3) given by (3) that

r(x; 2) =
x4

9
+

8x6

81
+

56x8

729
+

392x10

6561
+ · · · ; r(x; 3) =

x4

18
+

11x6

162
+

46x8

729
+

358x10

6561
+ · · · . (40)

Definition 4.2. Recall the conditional probability sequences ρ`(n), n = 0, 1, 2, . . . written by Definition 1.1.
For each ` ≥ 1 we define the sequence r` = r`(n), n = 0, 1, 2, . . . by

r`(n) = 2`−232n+2ρ`(n).

We have just seen that r1(n) = r(n + 1) = 1, 5, 29, 185, . . . for the rook number sequence r = r(n), n ≥
0. By Definition 4.2 and our experimental results (40) we also have r2(n) = 1, 8, 56, 392, . . . and r3(n) =
1, 11, 92, 716, . . . though we have not yet proved that these are fully integer sequences. The fact that r` is
indeed an integer sequence follows immediately from our proof of Corollary 1.2 below; see Remark 4.1. Our
proof follows by simply observing a multiplication relation between the generating functions r(x; ` + 1) and
r(x; `) for ` ≥ 1. In fact by Theorem 1.1 we have

r(x; `+ 1) = r(x; `)θ(x), θ(x) :=
1

12

(3 + x2 +
√
x4 − 10x2 + 9)2

3− 5x2/3 +
√
x4 − 10x2 + 9

. (41)

Furthermore, for θ(x) defined by (41) we can algebraically show that

θ(x) = f(x) +
1

2
− x2

2
, (42)

where again f(x) is given by Corollary 4.1. The verification of (42) is easily established by multiplying numerator

and denominator of θ(x) by 3− 5x2/3−
√
x4 − 10x2 + 9, so θ(x) = (3+x2+

√
x4−10x2+9)2(3−5x2/3−

√
x4−10x2+9)

12(16x4/9) =

(3+x2+
√
x4−10x2+9)(3−x2−

√
x4−10x2+9)

8x2 = 1
4 (5− x2 −

√
9− 10x2 + x4), which is seen to agree with (42) via (1).
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Definition 4.3. Define s0(n) = 2 · 32n[x2n]θ(x), n = 0, 1, 2 . . . , for θ(x) given by (41).

We identify the terms of the sequence s0 of Definition 4.3 as follows. By (1)–(2) and (42) we have 2θ(x) =

1− x2 + 4
3x

2 +
∑∞
n=1

4r(n)
32n+1x

2n+2 = 1 + 3
9x

2 +
∑∞
n=1

12r(n)
32n+2 x

2n+2. Therefore by Definition 4.3 we have

s0 = (1, 3, 12r(1), 12r(2), · · · ). (43)

Proof of Corollary 1.2. By (41)–(42), we have

r(x; `+ 1) =
1

2
r(x; `)(2θ(x)).

By Definitions 1.1, 4.2, and 4.3 together with (43), we have

r(x; `) = 22−`
∞∑
n=0

r`(n)3−2n−2x2(n+2); 2θ(x) =

∞∑
n=0

s0(n)3−2nx2n. (44)

Hence 1
2r(x; `)(2θ(x)) = 22−(`+1)

∑∞
k=0 r`(k)3−2k−2x2(k+2)

∑∞
j=0 s0(j)3−2jx2j . Therefore by (41) we have

r(x; `+ 1) = 22−(`+1)
∑∞
n=0(

∑
j+k=n r`(k)s0(j))3−2n−2x2(n+2). Hence by replacing ` by `+ 1 in the formula for

r(x; `) of (44), and by matching coefficients of powers x2(n+2), the proof is complete.

Remark 4.1. It is now clear by induction and Corollary 1.2 that for each ` ≥ 1 the sequence r`(n), n ≥ 0, is
a sequence of positive integers starting with r`(0) = 1.

Example 4.1. We apply Corollary 1.2 to obtain the first few terms of the sequences r2(n) and r3(n) which
were shown instead via Taylor expansion and Definition 4.2 in (40). Indeed,

r2 = r1 ∗ s0

= (1, 5, 29, 185, · · · ) ∗ (1, 3, 12, 60, . . . ) = (1, 5 + 3, 29 + 5 · 3 + 12, . . . ) = (1, 8, 56, 392, . . . )

Next, plugging in the result of r2 to compute r3, we have

r3 = r2 ∗ s0 = (1, 8 + 3, 56 + 8 · 3 + 12, 392 + 56 · 3 + 8 · 12 + 60, . . . ) = (1, 11, 92, 716, . . . ).

Remark 4.2. By Theorem 1.1 and Definitions 1.1 and 4.2 we easily find the ordinary generating function of
the integer sequence r` by

∞∑
n=0

r`(n)xn =
2−`−2

x
(1 + 3x−

√
1− 10x+ 9x2)

(1 + 3x+
√

1− 10x+ 9x2)2`−1

(1− 5x+
√

1− 10x+ 9x2)`
.

5. Proof of Theorem 1.2

In this section, besides the conditional distribution of R given m ≥ `, we consider the conditional distribution
of R given m = ` and S1 = +1. We then show how the two distributions relate by our proof of Theorem 1.2.

Definition 5.1. Let ` ≥ 1. We denote the probability generating function of σ`(n), n ≥ 0, by

s(x; `) = E{xR | S1 = +1,m = `} =

∞∑
n=0

x2(n+2)σ`(n),

where σ`(n) = P (R = 2(n+ 2) | S1 = +1,m = `).

It is easy to see that for each ` ≥ 1 we have P (S1 = +1,m ≥ ` + 1) = 1
2P (S1 = +1,m ≥ `), and both of

these equal P (S1 = +1,m = `). Thus, after taking into account that P (S1 = +1,m = `,R = 2(n + 2)) =
P (S1 = +1,m ≥ `,R = 2(n+ 2))− P (S1 = +1,m ≥ `+ 1,R = 2(n+ 2)), we have that

σ`(n) =
P (S1 = +1,m = `,R = 2(n+ 2))

P (S1 = +1,m = `)

=
2P (S1 = +1,m ≥ `,R = 2(n+ 2))

P (S1 = +1,m ≥ `)
− P (S1 = +1,m ≥ `+ 1,R = 2(n+ 2))

P (S1 = +1,m ≥ `+ 1)

= 2ρ`(n)− ρ`+1(n);

s(x; `) = 2r(x; `)− r(x; `+ 1).

(45)
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Definition 5.2. For each ` ≥ 1 we define the sequence s`(n), n = 0, 1, 2, . . . by

s`(n) = 2`−132n+1σ`(n).

Remark 5.1. By Definitions 4.2 and 5.1 we calculate that s`(n) = 4
3r`(n) − 1

3r`+1(n). By Corollary 1.2 and
(43) we have that 4r`(n) − r`+1(n) is divisible by 3. Therefore since by Definition 5.2 we have that s`(n) is
positive, we indeed have that s`(n), n ≥ 0, is a positive integer sequence starting with s`(0) = 1.

We shall give two proofs of Theorem 1.2. The first proof is a short, purely algebraic calculation involving the
formula for r(x; `) given by Theorem 1.1. To help explain the result we give a second proof involving surgery
on collections of paths.

Proof of Theorem 1.2. Denote p(x) = 3 + x2 +
√
x4 − 10x2 + 9 and q(x) = 3 − 5x2/3 +

√
x4 − 10x2 + 9. Also

recall f(x) = E{xR} = 1
4 (3 + x2 −

√
x4 − 10x2 + 9) as given by (1). By Theorem 1.1 we have that

r(x; `) = 4x212−`f(x)
p(x)2`−1

q(x)`
(46)

Therefore, by s(x; `) = 2r(x; `)−r(x; `+1) in (45), and by (46), and using the abbreviations p = p(x), q = q(x),
and f = f(x), we have

s(x; a)s(x; b)− x4r(x; a+ b)

= 42x412−(a+b)f

{
f

(
2p2a−1

qa
− p2a+1

12qa+1

)(
2p2b−1

qb
− p2b+1

12qb+1

)
− x2

4

p2(a+b)−1

qa+b

}
= 42x412−(a+b)f

p2(a+b)−1

qa+b

{
fp

(
4

p2
− 4

12q
+

p2

122q2

)
− x2

4

}
.

(47)

Now fp = 4x2 and 4
p2 −

4
12q + p2

122q2 =
(

2
p −

p
12q

)2

=
(

1
4

)2
. Therefore the last expression in curly brackets in

(47) is seen to be zero. Therefore we have completed an algebraic proof of the theorem.
We next give another proof by path surgery arguments. Taking into account the normalizing terms implicit

in the Definitions 1.1 and 5.1 of the conditional probabilities ρ`(n) and σ`(n), to show the statement of the
proposition we must verify that for all a, b ≥ 1 and all k ≥ 0 we have

P (S1 = +1,R = 2(k + 2),m ≥ a+ b)
P (S1 = +1,m = a)P (S1 = +1,m = b)

P (S1 = +1,m ≥ a+ b)

=
∑
i+j=k

P (S1 = +1,R = 2(i+ 2),m = a)P (S1 = +1,R = 2(j + 2),m = b)
(48)

Here the fraction involving the normalization terms for σ`(n) and ρ`(n) in the first line turns out to be inde-
pendent of a and b. Indeed, P (S1 = +1,m = a) = 1

2

∑∞
s=1 2−(2s+a) = 1

62−a, while P (S1 = +1,m ≥ a + b) =
1
2

∑∞
`=a+b

∑∞
s=1 2−(2s+`) = 1

32−(a+b). Therefore the fraction in the first line of (48) is (1/6)22−a2−b

(1/3)2−(a+b) = 1
12 . Hence,

we must show

1

12
P (S1 = +1,R = 2(k + 2),m ≥ a+ b)

=
∑
i+j=k

P (S1 = +1,R = 2(i+ 2),m = a)P (S1 = +1,R = 2(j + 2),m = b).
(49)

Notice that the factor x4 in the statement of the theorem will come out in the wash after verifying (49) since
there are 2(i + j + 4) = 2(k + 4) = 2(k + 2) + 4 runs in total, that is (k + 2) + 2 = k + 4 peaks, represented
from two independent positive excursions on the right side of this probability equation. The way we will verify
(49) is to fix k ≥ 0 and a, b ≥ 1 and modify the collection of paths Λ = {S1 = +1,R = 2(k + 2),m ≥ a + b}
by inserting two tent paths in each path Γ ∈ Λ. Recall that an h × h–tent for any h ≥ 1 is a path consisting
of h steps up immediately followed by h steps down. Note that any peak on a positive excursion path has a
1 × 1–tent embedded at its apex. We identify three points denoted A, M , B on each such path Γ; see Figure
2 for an illustration with the initial minimum m = 5 and R = 6 (or k = 1), and a = 1, b = 2. The point M is
the point on Γ where the initial minimum is achieved. We define g = m − (a + b) to be the gap between the
actual initial minimum and the level a+ b. There must be an initial ascent of at least m + 1 = g + (a+ b) + 1
steps on Γ. Define the point A on this initial ascent of Γ after exactly g + a positive steps from the origin O.
The point B is the point following the point M where the path Γ first touches the line y = g + b; see Figure
2. The other points in this Figure are: O′, the point after exactly g positive steps from the origin, and Z, the
point of termination of Γ.
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Figure 4: Step 2: Rearrange the path from Step 1 (shown at the top). Cut out pieces A′M and MB; leave the
labeled endpoints A′ and B at their original positions. Paste the cut piece MB with M at A′; call the pasted
piece M ′B◦; it completes a first excursion O′M ′B◦. Paste the cut piece A′M with A′ at B◦. The translated
right endpoint M (shown as M ′′) coincides with the point B.

We take a two-step approach to verifying (49). As Step 1 we shall obtain an event Λ+ based on Λ with
probability P (Λ+) = 1

12P (Λ). To accomplish this we will both lengthen each path Γ ∈ Λ as well as increase
the number of paths of Λ. We first cut out the subpath BZ without removing the point B from Γ and set
it aside to be pasted after appropriate modifications. Next, we cut out the initial segment OO′ and translate
it (horizontally and vertically) so that O matches B and we paste this segment onto Γ, calling the translated
segment of exactly g positive steps now BB′. If g = 0 then we simply take B′ = B. We now insert an h×h–tent
of arbitrary size h ≥ 1 at the point A; that is we generate for each h ≥ 1 a path Γh ∈ Λ+ by the insertion at A.
All the following points M, B, B′ at this stage will of course be translated horizontally by 2h units from their
original positions in Γ to their positions in Γh but we do not change their names via this operation. We insert a
1× 1–tent at the endpoint B′, calling this tent now B′B′′. We now paste the segment BZ that we had removed
earlier by placing the endpoint B at B′′. The right endpoint Z of the pasted subpath BZ now sits at the end
of the modified path exactly g units above the x–axis at the same level as O′. Finally, we translate the whole
modified path Γh, running from O′ onwards, now back to the origin and rename the origin as O′ and rename
the terminus as Z ′; see Figure 3. Notice that by the two insertions of tents, we have indeed constructed positive
excursions in Λ+ that have k+ 4 peaks instead of k+ 2 peaks. Since an arbitrary h× h–tent has probability 1

3 ,
and a single 1× 1–tent has probability 1

4 , we indeed have P (Λ+) = 1
12P (Λ). This completes Step 1.

As Step 2 it remains to show how we get the right side of (49) from P (Λ+). In Step 2 we will simply
rearrange the path produced in Step 1. Technically we note that Λ+ decomposes into disjoint events Λ+

i,j where
i+ j = k for some 0 ≤ i, j ≤ k. In the bottom frame of Figure 4 the rearrangement of the outcome from Step 1
consists of two successive positive excursions: an a–excursion and a b–excursion respectively. In our illustration,
the a–excursion has i = 0 for i + 2 = 2 peaks ultimately because there is just one peak between M and B in
the original path Γ of Figure 2; there must be one such peak but in our illustration we have taken the bare
minimum number of peaks between M and B for this requirement. For the b–excursion we have j = 1, for
j + 2 = 3 peaks, because there is exactly one peak between B and Z in the original path Γ; in general there
need not be any peaks after the point B, and j is simply the number of such peaks after B in the original
path Γ. The description of the rearrangement to form the bottom frame of Figure 4 is as follows. From Step 1,
cut out pieces A′M and MB, that is divide the subpath A′MB in two pieces, each to be pasted, yet leave the
labeled endpoints A′ and B at their original positions in the path of Λ+

i,j where i and j have been determined
by the original path Γ. Switch the order of the divided pieces, by first translating the piece MB to the left
with its translated left endpoint M now called M ′ pasted to A′, and call the translated piece now M ′B◦, so as
to complete the a–excursion O′M ′B◦. Here we note that the initial minimum for this a–excursion is exactly a
because by construction the level of A′ at the end of Step 1 is (g + a) − g = a. Next, paste the original piece
A′M , to now serve as the first leg of the b–excursion, by translating A′ to B◦. The translated right endpoint M
now coincides with the point B of the end of Step 1 and is illustrated with the additional name M ′′. Thus the
point M at the end of Step 1, that originally marked the first valley after the initial peak on Γ, is translated in
Step 2 in two ways: to the left to become the first valley M ′ of the a–excursion and to the right to become the
first valley M ′′ of the b–excursion. This completes Step 2.
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To summarize, we may reverse Steps 1 and 2 to create a path Γ. Assume we have two successive positive
excursions, the first an a–excursion with initial minimum exactly a and i+2 peaks and the second a b–excursion
with initial minimum exactly b and j + 2 peaks. Call A′ = M ′ the first valley point of the a–excursion, call B◦

the right endpoint of the a–excursion that is also the left endpoint of the b–excursion, and call B = M ′′ the first
valley point of the b–excursion. Cut out the segments B◦M ′′ and M ′B◦ but do not remove the labels A′ and
B where they originally stood. That is divide M ′B◦M ′′ in two at B◦. Now switch their left to right order by
translations in the plane by both pasting the right endpoint B◦ of the cut segment M ′B◦ now at B and pasting
the left endpoint B◦ of the cut segment B◦M ′′ now at A′. Because B◦ was a common point of the two segments
it is easy to see that the two repositioned segments will meet at a single point M to form a single excursion
where the height of M currently equals a+ b. Next we must cut the 1× 1–tent at the top of the first peak after
point B (such a peak must exist by j+ 2 ≥ 2); call this tent B′B′′ and leave the tent base points B′ and B′′ on
the two sides of the disconnected path after the cut. Before rejoining the path we must also cut the segment
BB′ of positive steps (if any) that remains, that is the maximal upward segment immediately preceding the
1× 1–tent; do not remove the label B. We define g ≥ 0 as the number of positive steps in this maximal upward
segment. We translate every point that remains of the subpath from the origin to B by g positive steps in order
to relocate the removed upward segment BB′ as the first g steps of the initial ascent of this subpath from the
origin. We do not rename the points A′, M , and B after this translation. At this stage, the point A′ lies at
height g + a, M lies at height g + a+ b, and B lies at height g + b and coincides with the previous position of
B′. We now rejoin the remainder of the path by translating B′′ and the path after it to the left by 2 units so
that B′′ is pasted at B. We now have a single excursion path again but with one peak removed that originally
was the second peak of the b–excursion. Finally, there must be some maximal h × h–tent forming the apex of
the initial peak of the whole path as it stands (the initial peak of what had been the a–excursion) such that the
right base point of the tent is positioned at the first valley point A′; call the left base point of this tent as A.
We remove this peak by cutting off this tent and rejoining the path by horizontally translating the entire path
that lies to the right of A′ by 2h units left to the point A. Thus we have removed one peak from what had been
the first peak of the a–excursion. This completes the reversal of the Steps 1 and 2. Thus (49) has been verified
and the second proof of the theorem is complete.

5.1 Corollaries of Theorem 1.2

Recall the Definitions 4.2 and 5.2. By Remarks 4.1 and 5.1 both r` and s` are positive integer sequences.

Corollary 5.1. For any a, b ≥ 1 we have (sa ∗ sb)(n) = ra+b(n), for all n ≥ 0.

Proof. By Definitions 1.1, 4.2, 5.1, and 5.2, we have

x4r(x; a+ b) =
4

2a+b
x4

(
ra+b(0)

32
x4 +

ra+b(1)

34
x6 +

ra+b(2)

36
x8 + · · ·

)
;

s(x; a)s(x; b) =
2

2a
2

2b

(
sa(0)

31
x4 +

sa(1)

33
x6 + · · ·

)(
sb(0)

31
x4 +

sb(1)

33
x6 + · · ·

)
.

(50)

Therefore, since by Theorem 1.2 the two formulas in (50) are equal, by matching the coefficients of powers of

x2k+8 for k = 0, 1, 2, . . . , we have
∑
i+j=k

sa(i)sb(j)
32i+132j+1 = ra+b(k)

32k+2 , which immediately gives the result.

We want to have a nice formula for s(x; 1). Recall the definition f(x) = E{xR} appearing in Corollary 4.1.
Also recall s(x; 1) as given by Definition 5.1 for ` = 1.

Lemma 5.1. We have
s(x; 1) = 2x2f(x)− x4.

Proof. We give a simple path construction based on introducing an arbitrary h×h–tent after the first step of a
positive excursion assuming there are at least two peaks in such an excursion. Thus, if n ≥ 1, so that n+ 1 ≥ 2,
then, because the probability of an arbitrary tent is 1

3 , we have

1

3
P (S1 = +1,R = 2(n+ 1)) = P (S1 = +1,R = 2(n+ 2),m = 1). (51)

But the right side of (51) is the numerator of the conditional probability expression for σ1(n) as given by
Definition 5.1 for ` = 1 and the normalization probability is P (S1 = +1,R ≥ 4,m = 1) = 1

12 . Therefore
since the left side of (51) may be rewritten by symmetry as 1

6P (R = 2(n + 1)), we have for all n ≥ 1 that

P (R = 2(n + 1)) = 6
12σ1(n). Therefore f(x) =

∑∞
n=0 P (R = 2(n + 1))x2(n+1) = 2

3x
2 + 6

12

∞∑
n=1

σ1(n)x2(n+1).

But we easily see that σ1(0) = ( 1
6 )2/ 1

12 = 1
3 . So, taking account of the definition s(x; 1) =

∞∑
n=0

σ1(n)x2(n+2), we

have f(x) = 2
3x

2 + 1
2

(
s(x; 1)− 1

3x
4
)
/x2 = 1

2x
2 + 1

2x
−2s(x; 1), or 2x2f(x) = x4 + s(x; 1).
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Recall the generating functions r(x; `) and s(x; `) of Definitions 1.1 and 5.1 and integer sequences r` and

s` of Definitions 4.2 and 5.2. By (1)–(2) we have f(x) =
∑∞
n=0

2r(n)
32n+1x

2(n+1) for the rook number sequence
r(n) = 1, 1, 5, 29, 185, . . . , [10, A059231]. Therefore we have:

Remark 5.2. By Lemma 5.1 and Definitions 5.1–5.2 we have that s1(0) = 1 and s1(n) = 4r(n) for all n ≥ 1,
or s1(n) = 1, 4, 20, 116, 740, . . . [10, A082298].

The fact that s1(n) gives the number of rook paths for positive excursions of semi-length n+ 1 follows from
the fact that r(n) gives the number of rook paths corresponding to general Dyck paths (zeros allowed) of semi
length n, [2], [6]. Indeed we may simply raise the Dyck paths by one step at the beginning and one at the end
to introduce the factor of 4 in the number of rook paths; see [2, Lemma 2.1].

Corollary 5.2. For all ` ≥ 1 we have s(x; `)f(x) = x2r(x; `). Consequently we have the convolution relation
s` ∗ r = r`.

Proof. By Lemma 5.1 we have s(x; `)f(x) = s(x; `)(x4 + s(x; 1))/(2x2). We rewrite this last expression and

then apply Theorem 1.2 to find s(x; `)f(x) = x2

2

(
s(x; `) + s(x; 1)s(x; `)/x4

)
= x2

2 (s(x; `) + r(x; `+ 1)) . But

as shown in (45) we have s(x; `) = 2r(x; `) − r(x; ` + 1). Therefore s(x; `)f(x) = x2

2 (2r(x; `) − r(x; ` + 1) +
r(x; ` + 1)) = x2r(x; `). The stated convolution relation follows from the series formulation of the identity
s(x; `)f(x) = x2r(x; `) as follows

2

2`

∞∑
n=0

s`(n)

32n+1
x2(n+2)

∞∑
n=0

2r(n)

32n+1
x2(n+1) = x222−`

∞∑
n=0

r`(n)

32n+2
x2(n+2).

Remark 5.3. For each ` ≥ 1 we have s`+1 = s` ∗ s0, for s0 written by (43).

Proof. By (41) and (45) we have s(x; `+1) = s(x; `)θ(x). Thus the result follows by Definitions 4.3, 5.1, and 5.2.
A second proof goes by convolution algebra as follows. By Corollary 5.2 we have s1∗r = r1. Since r1(n) = r(n+1)
we therefore have that 0 = r1(n)− r1(n) = r(n+ 1)− (s1 ∗ r)(n), where s1 is given by Remark 5.2. Hence the
convolution inverse r−1 of the rook sequence r is: r−1(n) = 1 if n = 0 and r−1(n) = −s1(n− 1) if n ≥ 1. Thus
r−1 = (1,−1,−4,−20,−116,−740, ...). By Remark 5.1 we have s` = (4r` − r`+1)/3. Thus by Corollary 5.2 we
have s`+1 ∗ r = r`+1 = 4r` − 3s`. Hence s`+1 = (4r` − 3s`) ∗ r−1 = 4s` − 3s` ∗ r−1. Denote the convolution
identity δ0 = (1, 0, 0, . . . ). Observe that 4δ0−3r−1 = (1, 4, 12, 60, 484, . . . ) = (1, 3s1(0), 3s1(1), 3s1(2), . . . ) = s0.
Thus s`+1 = s` ∗ s0.

Example 5.1. By the explicit formula for r(x; `) of Theorem 1.1 and the formula s(x; 2) = 2r(x; 2) − r(x; 3)
of (45), we have s(x; 2) = 1

6x
4 + 7

54x
6 + 22

243x
8 + 142

2187x
10 + 958

19683x
12 + · · · . Thus, by Definitions 5.1–5.2,

s2(n) = (1, 7, 44, 284, . . . ). By Remark 5.3 we have s2 = s1 ∗s0 = (1, 4, 20, 116, 740, . . . )∗ (1, 3, 12, 60, 348, . . . ) =
(1, 7, 44, 284, 1916, . . . ).

6. Proof of Corollary 1.1

Proof of Corollary 1.1. Let a > 0 and λ > 0. We will compute the limiting Laplace transform of the distribution
of TN = TN,a = N−2RbaNc as N →∞. Define

β =
1

4
(5− x2); α =

√
β2 − 1 =

1

4

√
x4 − 10x2 + 9. (52)

By (52) we have

2− β + α =
1

4

(
3 + x2 +

√
x4 − 10x2 + 9

)
; −4 + 5β + 3α =

1

4

(
9− 5x2 + 3

√
x4 − 10x2 + 9

)
(53)

By (53) the formula for r(x; `) of Theorem 1.1 may be written

r(x; `) = x2f(x)
(2− β + α)2`−1

(−4 + 5β + 3α)`
(54)

Finally put x = e−λ/N
2

and ` = baNc. By the exponential series x2 = e−2λ/N2

= 1 − 2λ
N2 + 2λ2

N4 + · · · , we
easily find by (52) that

β = 1 +
λ

2N2
− λ2

2N4
+ · · · ; β2 − 1 =

λ

N2
− 3λ2

4N4
+ · · · ; α =

√
λ

N
+O(N−3), N →∞. (55)
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By (55) we have

2− β + α = 1 +

√
λ

N
+O(N−2); −4 + 5β + 3α = 1 +

3
√
λ

N
+O(N−2). (56)

Since ` ∼ aN , as N →∞, and limx→1 x
2f(x) = 1, by (54) and (56) we have

lim
N→∞

r(e−λ/N
2

; baNc) = e2a
√
λ/e3a

√
λ = e−a

√
λ.

Thus TN converges in distribution, where the Laplace transform of the limit distribution is e−a
√
λ. Therefore the

limit distribution has a density given by the inverse Laplace transform as follows: a
2
√
π
t−3/2e−a

2/4t, t > 0.
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