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ABSTRACT: A chessboard has the property that every row and every column has as many white squares as black
squares. In this mostly methodological note, we address the problem of counting such rectangular arrays with a
fixed (numeric) number of rows, but an arbitrary (symbolic) number of columns. We first address the “vanilla”
problem where there are no restrictions, and then go on to discuss the still-more-challenging problem of counting
such binary arrays that are not permitted to contain a specified (finite) set of horizontal patterns and a specified
set of vertical patterns. While we can rigorously prove that each such sequence satisfies some linear recurrence
equation with polynomial coefficients, actually finding these recurrences poses major symbolic-computational
challenges, that we can only meet in some small cases. In fact, just generating as many as possible terms of
these sequences is a big numeric-computational challenge. This was tackled by computer whiz Ron H. Hardin,
who contributed several such sequences and computed quite a few terms of each. We extend Hardin’s sequences
quite considerably. We also talk about the much easier problem of counting such restricted arrays without
balance conditions.
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1. Preface: How it all started

Like many combinatorial problems [2, 3], ours was inspired by real life. A few weeks ago, the New York Times
magazine started publishing a new kind of logic puzzle that they call Not Alone, created by Presanna Seshadri.
You are given a 6 x 6 (or 8 x 8) array of boxes with most of them empty, but a few of them are filled with
either a solid circle, that we will denote by 1, or an empty circle, that we will denote by 0. The solver has to,
presumably using logic and human cleverness, fill in the empty boxes such that the following conditions are
met:

e Every row and every column must have as many zeroes as ones (i.e., they each must contain 3 zeroes and
3 ones in the 6 x 6 case).

e It is forbidden that on any row, and on any column, a single zero will be ‘all alone’ between two ones
and that a single one will be all alone between two zeroes. In other words, the patterns 010 and 101 are
forbidden both horizontally and vertically.
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Three Natural Enumeration Problems Being enumerators, the following three questions immediately
came to mind.

e For a fized, ‘numeric’, positive integer k, but an arbitrary, ‘symbolic’ n, how many 2k x 2n 0-1 balanced
matrices are there? In other words how many 2k x 2n 0-1 matrices are there where every row has n zeroes
and n ones and every column has k zeroes and k ones?

Looking up some numbers from this problem leads to a family of sequences submitted by Ron H. Hardin
[7], who has made a number of interesting submissions to the OEIS. Some of these were detected by an
automated search of the OEIS for recurrences by Kauers and Koutschan [13], and later proven to satisfy
those recurrences by Dougherty-Bliss and Kauers [14]. We will tell a similar story here.

We will show that the family of sequences by (n), the number of 2k x 2n balanced matrices, is “D-finite” for
every fixed k. That is, it satisfies a linear recurrence relation with polynomial coefficients. The approach
will be to use ‘holonomic nonsense’ [10, 1, 15] which guarantees the existence of such a recurrence and also
outlines a method to construct it. Using the very efficient implementations of [6, 11, 12] we—or rather
our beloved computers—were able to compute these recurrences for k£ = 2 and k = 3.

Alas, it seems too difficult at present to determine rigorously what recurrence by(n), b5(n), and so on might
satisfy in n. The deterministic algorithms just take too long to run. At least for bs(n), we succeeded to
generate enough data to make a conjecture, using a recent and novel approach for guessing recurrences
from little data [5]. For bg(n) with & > 5 we unfortunately were not able to compute enough data to guess
recurrences.

e For an arbitrary (finite) alphabet (not just {0,1}) and arbitrary finite sets of forbidden horizontal and
vertical patterns, H and V', how many k X n matrices are there avoiding the patterns of H in the rows and
the patterns of V in the columns (with no balance conditions)? We will show that these sequences are
much easier, both conceptually and computationally, since they always satisfy linear recurrence equations
with constant coefficients, or equivalently, their generating function is a rational function.

e Going back to the alphabet {0, 1}, for a specific k, how many 2k x 2n balanced 0-1 matrices are there
that also avoid a prescribed horizontal set of patterns H and (another or the same) prescribed vertical set
of patterns V. Once again, we will show that for each such scenario, the enumerating sequence satisfies
some linear recurrence equation with polynomial coefficients (in n). Alas finding it is yet harder than the
‘vanilla’ case above. Once again this leads to numeric challenges. In particular, it turns out that for the
original New York Times puzzles where k =n =3 and H =V = {010, 101} that number is exactly 368.
It is relatively easy to actually construct the set of all such legal matrices, once and for all. It follows
that, surprisingly, a pure brute-force algorithm for solving these original puzzles is more efficient than
using logic, as a human solver would. Just try out all 368 possible answers and see which one agrees with
the given clues. For the 8 x 8 puzzles that started to appear shortly after, we found that there are 34586
possible answers, which suggests that it may be more efficient to do it the human way of using logic.

The Maple package NotAlone.txt, available from
https://sites.math.rutgers.edu/~zeilberg/tokhniot/NotAlone.txt

solves and creates such puzzles. Procedure Ptor implements the brute-force approach that is optimal for the
6 x 6 case. Procedure SolveN does it in a way a human would tackle it.

2. Theorems

In this section, that is purely theoretical, we will prove that the first and third kind of sequences above are
P-recursive (aka holonomic), in other words are guaranteed to satisfy some linear recurrence equation with
polynomial coefficients (see [4] chapter 7), while any sequence that comes from the second kind of enumeration
problems belongs to the simpler class of C-finite sequences ([4], chapter 4), i.e., satisfies some linear equation
with constant coefficients.

Theorem 2.1. Let k be a specific positive integer, and let n be a general positive integer. Let bp(n) be the
number of balanced 2k x 2n 0-1 matrices, i.e., binary matrices with 2k rows and 2n columns where every row
has ezxactly n ones (and hence exactly n zeroes), and every column has exactly k ones (and hence ezxactly k
zeroes). Then the sequence {by(n)}22, is holonomic. In other words there exists a positive integer L (the order)
and polynomials in n, p;(n),0 < i < L, with pr,(n) # 0 such that

Zpi(n)bk(n +1i)=0.
i=0
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Proof. Let eg(z1,...,2,) be the elementary symmetric function of degree k:

ep(T1,...,xy) = Z Xy + e Ty

1<i1 <ig < <ipg<n

It is readily seen that by(n) is the coefficient of a7 ---2%, in ex(z1,...,22;)?". Indeed, each monomial of

er(x1,...,To,) corresponds to a way of placing k ones (and k zeroes) in any particular column, making each
column balanced. e (z1,... ,xzk)% then is the weight enumerator of all column-balanced 2k by 2n 0-1 matrices.
The coefficient of z7 - - - %, collects those that are also row-balanced. Hence

2\ 2k 2\ "
ep(r1,...,x 1 ep(r1,...,x dxy---dx
bi(n) = Coeff 0.0 erl@, s Tak)” =|:= / (1 2%) - 2,
1 2k 1’1"'*%2]6 27TZ xl...ka xl"'ka
where the integration is over the multi-circle |x1| = 1,...,|xor| = 1. Since the integrand is holonomic in the
2k continuous variables x1,...,z9r and the one discrete variable n, it follows from algorithmic proof theory

[10, 1, 6] that integrating away the 2k continuous variables leaves by (n) holonomic in the surviving discrete
variable n. |

So far our alphabet was {0,1}. In the next theorem (answering the second question above) we will be more
general, but we need to introduce some definitions.

Definition 2.1. Fix a finite alphabet A once and for all. A word wy ...w, in the alphabet A contains the
word p1 .. .px (called a ‘pattern’) if there is a location i such that w; = p1,...,Witrk—1 = pi. For example, with
the Latin alphabet, robert contains the words Tob, obe, t, and many others. A word w avoids the pattern p if it
does not contain it. For example 101010001 avoids 11.

Theorem 2.2. Let A be an arbitrary (finite) alphabet, and H and V be arbitrary finite sets of words in A.
Let k be a fized (numeric) positive integer. Let my(n) = ma g vie(n) be the number of n x k matrices with
entries in A such that every row avoids the patterns in H, and every column avoids the patterns in V', then
the sequence {my(n)}>2, satisfies a linear recurrence equation with constant coefficients. In other words there
ezists a positive integer L and numbers cg,c1,...,cr such that

L
Zcimk(n—ki) = 0.
=0
Equivalently, there exist polynomials P(t) and Q(t) (where Q(t) has degree L) such that

i mg(n)t" = @
n=0

Proof. Let B be the set of words of length k£ in the alphabet A that avoid the patterns in V. This is a finite
set. We will view the k x n matrix as a one-dimensional word in this meta-alphabet. Then the restrictions that
the rows avoid the patterns in H translate to many conditions about pattern avoiding in this meta-alphabet.
This gives rise to a so-called type-3 grammar, or finite automaton, whose enumerating generating functions
are famously rational functions. In order to actually find them one can use the positive approach, using the
transfer-matrix method ([9], ch. 4), or the negative approach, using the powerful Goulden-Jackson method,
nicely exposited in [8]. O

Comment For the motivating example (the Not Alone puzzles), A = {0,1} and H =V = {010, 101}.
The next theorem states that if one counts 2k x 2n balanced 0-1 matrices and imposes arbitrary horizontal
and vertical conditions, the resulting sequences are still holonomic.

Theorem 2.3. Let k be a specific positive integer, and let n be a general positive integer. Let H and V' be finite
sets of words (‘patterns’) in {0,1}. Let by vx(n) = bi(n) be the number of balanced 2k x 2n 0-1 matrices, that
avoid the patterns of H in every row and the patterns of V in every column, then there exists a positive integer
L and polynomials p;(n), 0 <i < L, with pr,(n) # 0 such that

L
> pi(n)br(n+1i) = 0.
i=0
Proof. Instead of naive counting where the weight of a 2k x 2n matrix was simply #?", we now introduce 2k
formal variables x1, ..., 22, and assign a weight of a matrix A = (a;5,1 <7 < 2k,1 < j < n) to be
" xclll . l.gll;k’
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where a; is the number of ones in the i-th row.

Once again we can use the transfer matrix method or the Goulden-Jackson method, to find the weight-
enumerator of the set of all matrices avoiding H horizontally and V vertically, with the above weight. This is
a very complicated rational function in the 2k + 1 variables, ¢t and x4, ..., x2;. In order to count balanced such
matrices with 2n columns, we have to extract the coefficient of

gl
Let’s call this giant, but explicitly computable, rational function R(x1,...,x2;t) then
bi(n) = Coeﬁtznw?..,wgkR(:zl, ey Togs )
- 1 2k+1/ R(l‘l,...,l‘gk;t) d.ﬁl"'dﬂigkdt
~ \2mi '

(w1 o)™ xp - Tkt

The integrand is holonomic in the 2k + 1 continuous variables x1,...,Zox,t and the one discrete variable
n, and once again, integrating with respect to the 2k + 1 continuous variables leaves us, by algorithmic proof
theory [10, 1, 6], with a holonomic discrete function in n. O

Comment Theorem 1 is the special case of Theorem 3 where the sets of forbidden patterns H and V are
empty. Nevertheless, the simple explicit form of the integrand is useful, as we will see below.

3. Symbol Crunching

The main Maple package accompanying this article is Hardin. txt available from https://sites.math.rutge
rs.edu/~zeilberg/tokhniot/Hardin. txt.
Let us take a tour of the main features.

e SeqB(k,N) uses the formula in the proof of Theorem 1 to crank-out the first N terms of the sequence
enumerating balanced 0-1 2k x 2n matrices for n = 1 to n = N. This is useful for checking with the OEIS.

For example SeqB(2,10) ; gives:
6,90, 1860, 44730, 1172556, 32496156, 936369720, 27770358330, 842090474940, 25989269017140, . ..

This is a very famous sequence, listed at https://oeis.org/A002896 as the “number of walks with 2n
steps on the cubic lattice Z® beginning and ending at (0,0, 0).

Can you see why these two sequences are the same?

e SeqB(3,10); gives the first 10 terms of OEIS sequence A172556 https://oeis.org/A172556, given
there with the same description as ours, created by Ron Hardin, who computed 49 terms. With our
Maple package, we were able to compute 55 terms. In fact, already 49 terms suffice to conjecture a linear
recurrence. See the output file https://sites.math.rutgers.edu/~zeilberg/tokhniot/oHardin2.tx
t. Later on we will see how to derive it rigorously, without guessing.

SeqB(4,10); gives the first 10 terms of OEIS sequence A172555 https://oeis.org/A172555, also due
to Hardin, who computed 33 terms.

SeqB(5,10) ; gives the first 10 terms of OEIS sequence A172557 https://oeis.org/A172557, also due
to Hardin, who computed 24 terms.

While we know from Theorem 1 that these sequences do satisfy linear recurrences with polynomial coef-
ficients, we are unable at present to find them. We need bigger and faster computers!

e GF1t(A,H,V,k,t): inputs an alphabet A, sets of horizontal and vertical forbidden patterns H and V
respectively, a positive integer k, and a variable t. It outputs the rational function whose coefficient of
t™ is the number of k x n matrices avoiding the patterns of H in rows and the patterns of V in columns,
whose existence is guaranteed by Theorem 2.

For example to get the rational function whose coefficient of ¢ is the number of 3 x n 0-1 matrices avoiding
010 and 101 both vertically and horizontally enter:

GF1t({o,1}, {[0,1,01,[1,0,11}, {[0,1,0],[1,0,1]1},3,t);

getting right away :
5t4 — 1912 — 4t — 1
t4 =562 -2t +1 °
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4.

Using

The first few terms are

6,36,102,378,1260, 4374, 14946, 51384, 176238, 605022, 2076288, . . .

Surprise! These are in the OEIS https://oeis.org/A060521 for a different reason. They are the numbers
of 3 x n 0-1 matrices avoiding, both vertically and horizontally, the patterns 000 and 111.

And indeed this is confirmed by our Maple package. Typing:
GFit({o,1 }, {[1,1,1],[0,0,01}, {[1,1,1],[0,0,01},3,t);

gives the same output. Here is an explicit bijection between these two sets of 0-1 3 x n matrices. Define
the bijective map that maps the matrix entry m; ; to m; j +i+j (mod 2), forall1 <i<3and 1< j <n.
In other words, use as “mask” a 0-1 matrix with chessboard pattern and add it to the input matrix
(in binary arithmetic). Clearly, every occurrence of 000 or 111 (either vertically or horizontally) will be
mapped to 101 or 010, and vice versa. Thus, this map transforms each {010, 101}-avoiding matrix into a
{000, 111}-avoiding one, and vice versa.

GF2t (H,V,k,x,t): inputs sets of horizontal and vertical forbidden patterns H and V respectively, variable
names x and t, and outputs the rational function in ¢ and x1,...,xax, whose coefficient of ¢"x7* - - - x5
gives the number of 2k x 2n column-balanced 0-1 matrices avoiding the horizontal patterns H and vertical

patterns V and having a; ones in row 4, for all 1 <i < 2k.

For example if H =V = {010, 101} (as in the Not-Alone puzzles), the rational function for 4 x 2n matrices
is given in the output file https://sites.math.rutgers.edu/~zeilberg/tokhniot/oHardin5.txt.

This is already big! But once we have it, we can Taylor expand it in ¢, extract the coefficient of #2"
followed by extracting the coefficient of z725x5 2} to get many terms, see the output file https://site
s.math.rutgers.edu/~zeilberg/tokhniot/oHardinba. txt.

However, here we can do better, by noting that there are exactly four columns that are both balanced
and V-avoiding,

)

i)

1
0
0

= -0 O

[==]

1

OO ==

and that they must come in pairs in order to satisfy the row-balancing condition, i.e., there must be
the same number of columns of the first and second type, and the same number of columns of the third
and fourth type. Hence we introduce weights a,a™',b,b~" for the four types of columns and arrive at a
three-variable rational function R(a,b;t), see https://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/hardinC/Jan13_2025a.txt, whose coefficient of a’b%t2" gives the number of 4 x 2n balanced
Not-Alone matrices. Applying creative telescoping twice to extract the constant coefficient a®t° yields a
linear differential equation (of order 5 and degree 27) for the generating function, which can be converted
into a recurrence (of order 10 and degree 21) for the sequence itself, see https://sites.math.rutgers
.edu/~zeilberg/mamarim/mamarimhtml/hardinC/Jan13_2025b. txt.

The generating function for 6 x 2n 0-1 matrices avoiding 010,101 both horizontally and vertically is
much bigger! See the output file https://sites.math.rutgers.edu/~zeilberg/tokhniot/oHardiné.
txt. Note that the above strategy for 4 x 2n matrices does not apply here.

This enabled us to find the first 30 terms, via symbolic computation. See: https://sites.math.rutgers
.edu/~zeilberg/tokhniot/oHardin6a.txt. They start with

8,64, 368, 2776, 25880, 251704, 2629080, 28964248, 331032312, 3907675376, . . .

In particular, the third term, 368 is the exact number, mentioned above, of solutions to a 6 x 6 Not-Alone
puzzle. See the next section for 70(!) terms using numeric computations.

Recurrences for the number of balanced 2k x 2n ma-
trices

the Maple package https://sites.math.rutgers.edu/~zeilberg/tokhniot/SMAZ.txt

that accompanies [1], one very quickly gets the following theorem.

Theorem 4.1. Let a(n) be the number of 4 by 2n balanced matrices. Then:

36(2n + 3)(2n + 1)(n + L)a(n) — 2(2n + 3) (10n* + 30n + 23) a(n + 1) + (n + 2)*a(n + 2) = 0.
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But SMAZ.txt was unable, with our computers, to find a recurrence for the sequence enumerating 6 by 2n
balanced matrices. Amazingly, the second author’s Mathematica package https://risc. jku.at/sw/holonom
icfunctions/ did it! We have the following fully rigorously-proved recurrence.

Theorem 4.2. Let a(n) be the number of 6 by 2n balanced matrices. Then:

51200(2n + 7)(2n + 5)(2n + 3)(2n + 1)(n + 2)(n + 1)(33n* + 242n + 445) a(n)

—128(2n + 7)(2n + 5)(2n + 3)(n + 2) (7491n* + 84898n® + 351364n°
+ 628997n + 414370) a(n + 1)

+16(2n + 5)(2n + 7)(2772n° + 48048n° + 344379n* + 1307394n°
+2775099n% + 31253360 + 1460132) a(n + 2)

+2(2n + 7)(n + 3)(3201n° + 61886n° + 497179n" + 2124170n° + 5089654n>
+ 64840240 + 3431096) a(n + 3)

— (n+3)(n+4)°(33n> + 176n + 236) a(n + 4) = 0.

For k > 4 it seems impossible to determine the recurrence for by (n) rigorously by creative telescoping, at
least with our software and computers. Instead, we can try to empirically find recurrences by fitting a large
number of sequence terms into a suitably chosen ansatz. For k = 4 this approach was successful, yielding a
conjectured (but absolutely certain) recurrence:

Conjecture 4.1. The number of 8 by 2n balanced matrices satisfies a linear recurrence of order 9 with polyno-
mial coefficients of degree 36, which is too large to be printed here, but which can be found on our website ht tp s:
//sites. math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/birec. txt.

We do not expect that the guessing approach can deliver recurrences for by (n) with & > 5 in the near future,
because already Conjecture 4.1 posed considerable challenges: Note that a naive ansatz for a recurrence of this
size contains (9 4+ 1) - (36 + 1) = 370 unknowns, hence 379 terms would be required to generate a sufficient
number of linear equations. In contrast, we were only to able to get 150 terms, see the next section. Even the
commonly-used technique of order-versus-degree-trading—where one first guesses recurrences of non-minimal
order but much lower degree, and then constructs the minimal-order recurrence via ged computations—did not
work here as it needed at least 266 terms (and we estimate that with our C program, this would take 500 years
and require a supercomputer with 18 TB of memory). Instead, we employed a recently-developed guessing
procedure [5] that is based on the celebrated LLL lattice reduction algorithm. We found that the minimal
number of terms of A172555 that are necessary to find the order-9 and degree-36 recurrence with this guesser
is 110. It is interesting to note that the bit size of the guessed recurrence (after applying an “offset shift” and
counting only its integer coeflicients) is 46,599, which comes quite close to the bit size 70,955 of the first 110
terms that were used for guessing. Despite the fact that the recurrence stated in Conjecture 4.1 has “ugly” (i.e.,
large, up to 67 decimal digits!) integer coefficients, we have strong evidence that it is correct: its polynomial
coefficients have quite a few small (linear) factors, the recurrence is also valid for terms that were not used
for guessing, and continuing the sequence by unrolling the recurrence produces only integers (at least up to
n = 10000) and not a single term with a denominator, as one would expect for a random artifact.

5. Number Crunching

Since it is unrealistic to try and find recurrences for enumerating 2k x 2n balanced matrices for k > 5, it would
be nice to extend, as far as our computers would allow, Hardin’s already impressive computational feats. Note
that a brute-force approach is doomed.

To that purpose, we have a C program available from https://sites.math.rutgers.edu/~zeilberg/mama
rim/mamarimhtml/hardinC/balmat4p.c that extended Hardin’s sequences quite a bit. The program computes,

for n = 1,2,...,2N, the coefficients of the polynomial ey (z1,...,z2;)"™, and whenever n is even, outputs the
coefficient of (1 --- o)™ For a = (ay,...,a;) let
cn(a) == Coeffm«fl_,,a:ggk ep(T1,. .., zo1)".

The trivial identity ey (x1,...,721)" = ex(x1,...,2or) - €x(T1,...,T2x)" 1 immediately yields a recursive def-
inition of these coefficients. Let S := {(51, o, Sor) € {0,1}%F | S1 4 o+ Sop = k} denote the support of
er(z1,..., o), then cp(a) = > gcn_1(a —s). In this formula, one has to apply the boundary conditions
¢n—1(a —s) = 0 whenever a — s has a negative component or one that is larger than n — 1. Thanks to the
symmetry in the variables z1, ..., x2, and thanks to the fact that eg (1, ..., x2r)™ is a homogeneous polynomial
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of degree kn, it suffices to store c¢,(a) for n > a; > -+ > agr > 0 and ay + - -+ + agr, = kn. Moreover, if we
fix the number N of desired terms from the very beginning, we can impose the additional condition a; < N.
Since these vectors a do not any more form a rectangular (multi-dimensional) array, we flatten it to a one-
dimensional array, in order to handle it more easily in the C language. Conversion between these two data
structures can be done by a suitable rank and unrank function. Finally, the whole computation is done modulo
prime numbers, using 64-bit integers. A sufficient number of primes can be determined by the trivial upper

2
bound (zkk) "> can(n, ..., n), the latter being the n-th term of the sequence.

e If you want to see 150 terms of the sequence enumerating 8 by 2n 0-1 matrices with row sums 4 and
column sums n, in other words, OEIS sequence A172555 (Hardin only had 33 terms) see the output file
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data4.txt.

e If you want to see 50 terms of the sequence enumerating 10 by 2n 0-1 arrays with row sums 5 and
column sums 7, in other words OEIS sequence A172557 (Hardin only had 24 terms) see the file https:
//sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/datab.txt.

e If you want to see 39 terms of the sequence enumerating 12 by 2n 0-1 matrices with row sums 6 and
column sums n, in other words, OEIS sequence A172558 (Hardin only had 19 terms) see the file: https:
//sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data6.txt.

e If you want to see 30 terms of the sequence enumerating 14 by 2n by 0-1 matrices with row sums 7
and column sums n, in other words, OEIS sequence A172559 (Hardin only had 17 terms) see the file:
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data7.txt.

e If you want to see 25 terms of the sequence enumerating 16 by 2n by 0-1 matrices with row sums 8
and column sums n, in other words, OEIS sequence A172560 (Hardin only had 14 terms) see the file:
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data8.txt.

e If you want to see 22 terms of the sequence enumerating 18 by 2n 0-1 matrices with row sums 9 and
column sums n, in other words, OEIS sequence A172554 (Hardin only had 12 terms) see the file: https:
//sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data9.txt.

e So far for the ‘vanilla case’. Above, using the Maple package Hardin.txt we were able to find 30 terms
of the motivating sequence of this paper, i.e., the number of balanced 6 by 2n 0-1 matrices avoiding the
patterns 010 and 101 both vertically and horizontally. Using the C' program mentioned above we now
have 70 terms. See the output file: https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimh
tml/hardinC/datalNA3. txt.

e The sequence counting the number of balanced 8 by 2n 0-1 matrices avoiding the patterns 010 and 101
both vertically and horizontally starts as follows: 18,324,2776, 34586, ..., where 34586 gives the number
of 8 x 8 Not-Alone puzzles. Due to the increased computational complexity (e.g., number of states), we
attain only 16 terms, which took 22 CPU hours and required almost 1 TB of memory, the latter being
our limiting factor. See the output file https://sites.math.rutgers.edu/~zeilberg/mamarim/mamari
mhtml/hardinC/dataNA4.txt

Conclusion: Humankind, and even computerkind, will most probably never know the exact number of
100 x 100 0-1 matrices with row- and columns- sums all equal to 50, but it is fun to try and see how far we
can go. The OEIS created, by our hero Neil Sloane, is an ideal platform for publishing these hard-to-compute
numbers.

Happy 85" birthday, Neil. May you live to see the OEIS with 1,200,000 sequences!

References

[1] M. Apagodu and D, Zeilberger, Multi- Variable Zeilberger and Almkvist-Zeilberger Algorithms and the Sharp-
ening of Wilf-Zeilberger Theory, Adv. in Appl. Math. 37 (2006), 139—-152. Special issue in honor of Amitai
Regev.

[2] R. Embar and D. Zeilberger, Counting Condorcet, Enumer. Comb. Appl. 2:3 (2022), Article S2R22.

[3] S. B. Ekhad, C. Koutschan, and D. Zeilberger, There are EXACTLY 149380...9556 ways to derange a
standard deck of cards (ignoring suits) [and many other such useful facts], Enumer. Comb. Appl. 1:3
(2021), Article S2R17.

[4] M. Kauers and P. Paule, The Concrete Tetrahedron, Springer, 2011.

ECA 5:2 (2025) Article #S2R14 7


https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data4.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data5.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data5.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data6.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data6.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data7.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data8.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data9.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data9.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/dataNA3.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/dataNA3.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/dataNA4.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/dataNA4.txt

Robert Dougherty-Bliss, Christoph Koutschan, Natalya Ter-Saakov, and Doron Zeilberger

[5] M. Kauers and C. Koutschan, Guessing with little data, Proceedings of the International Symposium on
Symbolic and Algebraic Computation (ISSAC), ACM, New York, USA, 2022, 83-90.

[6] C. Koutschan, Holonomic Functions (a Mathematica package), https://risc.jku.at/sw/holonomicfu
nctions/.

[7] R. H. Hardin, OFIS sequences A172555, A172557, A172558, URLs: https://oeis.org/A172555, https:
//oeis.org/A17257, and https://oeis.org/A17258.

[8] J. Noonan and D. Zeilberger, The Goulden-Jackson cluster method: extensions, applications, and imple-
mentations, J. Difference Equ. Appl. 5 (1999), 355-377.

[9] R. Stanley, Enumerative Combinatorics, Volume 1, Wadsworth and Brooks/Cole, 1986.

[10] D. Zeilberger, A Holonomic Systems Approach To Special Functions, J. Comput. Appl. Math. 32 (1990),
321-368.

[11] C. Koutschan, A fast approach to creative telescoping, Math. Comput. Sci. 4:2 (2010), 259—-266.
[12] C. Koutschan, Advanced applications of the holonomic systems approach, 2009.
[13] M. Kauers and C. Koutschan, Some D-Finite and Some Possibly D-Finite Sequences in the OFIS, J. Integer

Seq. 26:2 (2023), Article 23.4.5.
[14] R. Dougherty-Bliss and M. Kauers, Hardinian Arrays Electron. J. Combin. 31:2 (2024), #P2.9.
[15] M. Kauers, D-Finite Functions, Springer, 2023.

ECA 5:2 (2025) Article #S2R14 8


https://risc.jku.at/sw/holonomicfunctions/
https://risc.jku.at/sw/holonomicfunctions/
https://oeis.org/A172555
https://oeis.org/A17257
https://oeis.org/A17257
https://oeis.org/A17258

	Preface: How it all started
	Theorems
	Symbol Crunching
	Recurrences for the number of balanced 2k 2n matrices
	Number Crunching

